Formulating Basic Notions of Finite Group Theory Via the Lifting Property
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(Pro-) Étale Cohomology 3. Exercise Sheet
(Pro-) Étale Cohomology 3. Exercise Sheet Department of Mathematics Winter Semester 18/19 Prof. Dr. Torsten Wedhorn 2nd November 2018 Timo Henkel Homework Exercise H9 (Clopen subschemes) (12 points) Let X be a scheme. We define Clopen(X ) := Z X Z open and closed subscheme of X . f ⊆ j g Recall that Clopen(X ) is in bijection to the set of idempotent elements of X (X ). Let X S be a morphism of schemes. We consider the functor FX =S fromO the category of S-schemes to the category of sets, given! by FX =S(T S) = Clopen(X S T). ! × Now assume that X S is a finite locally free morphism of schemes. Show that FX =S is representable by an affine étale S-scheme which is of! finite presentation over S. Exercise H10 (Lifting criteria) (12 points) Let f : X S be a morphism of schemes which is locally of finite presentation. Consider the following diagram of S-schemes:! T0 / X (1) f T / S Let be a class of morphisms of S-schemes. We say that satisfies the 1-lifting property (resp. !-lifting property) ≤ withC respect to f , if for all morphisms T0 T in andC for all diagrams9 of the form (1) there exists9 at most (resp. exactly) one morphism of S-schemes T X!which makesC the diagram commutative. Let ! 1 := f : T0 T closed immersion of S-schemes f is given by a locally nilpotent ideal C f ! j g 2 := f : T0 T closed immersion of S-schemes T is affine and T0 is given by a nilpotent ideal C f ! j g 2 3 := f : T0 T closed immersion of S-schemes T is the spectrum of a local ring and T0 is given by an ideal I with I = 0 C f ! j g Show that the following assertions are equivalent: (i) 1 satisfies the 1-lifting property (resp. -
Determining Group Structure from the Sets of Character Degrees
DETERMINING GROUP STRUCTURE FROM THE SETS OF CHARACTER DEGREES A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Kamal Aziziheris May 2011 Dissertation written by Kamal Aziziheris B.S., University Of Tabriz, 1999 M.A., University of Tehran, 2001 Ph.D., Kent State University, 2011 Approved by M. L. Lewis, Chair, Doctoral Dissertation Committee Stephen M. Gagola, Jr., Member, Doctoral Dissertation Committee Donald White, Member, Doctoral Dissertation Committee Brett D. Ellman, Member, Doctoral Dissertation Committee Anne Reynolds, Member, Doctoral Dissertation Committee Accepted by Andrew Tonge, Chair, Department of Mathematical Sciences Timothy S. Moerland, Dean, College of Arts and Sciences ii . To the Loving Memory of My Father, Mohammad Aziziheris iii TABLE OF CONTENTS ACKNOWLEDGEMENTS . v INTRODUCTION . 1 1 BACKGROUND RESULTS AND FACTS . 12 2 DIRECT PRODUCTS WHEN cd(Oπ(G)) = f1; n; mg . 22 3 OBTAINING THE CHARACTER DEGREES OF Oπ(G) . 42 4 PROOFS OF THEOREMS D AND E . 53 5 PROOFS OF THEOREMS F AND G . 62 6 EXAMPLES . 70 BIBLIOGRAPHY . 76 iv ACKNOWLEDGEMENTS This dissertation is due to many whom I owe a huge debt of gratitude. I would especially like to thank the following individuals for their support, encouragement, and inspiration along this long and often difficult journey. First and foremost, I offer thanks to my advisor Prof. Mark Lewis. This dissertation would not have been possible without your countless hours of advice and support. Thank you for modeling the actions and behaviors of an accomplished mathematician, an excellent teacher, and a remarkable person. -
On Modeling Homotopy Type Theory in Higher Toposes
Review: model categories for type theory Left exact localizations Injective fibrations On modeling homotopy type theory in higher toposes Mike Shulman1 1(University of San Diego) Midwest homotopy type theory seminar Indiana University Bloomington March 9, 2019 Review: model categories for type theory Left exact localizations Injective fibrations Here we go Theorem Every Grothendieck (1; 1)-topos can be presented by a model category that interprets \Book" Homotopy Type Theory with: • Σ-types, a unit type, Π-types with function extensionality, and identity types. • Strict universes, closed under all the above type formers, and satisfying univalence and the propositional resizing axiom. Review: model categories for type theory Left exact localizations Injective fibrations Here we go Theorem Every Grothendieck (1; 1)-topos can be presented by a model category that interprets \Book" Homotopy Type Theory with: • Σ-types, a unit type, Π-types with function extensionality, and identity types. • Strict universes, closed under all the above type formers, and satisfying univalence and the propositional resizing axiom. Review: model categories for type theory Left exact localizations Injective fibrations Some caveats 1 Classical metatheory: ZFC with inaccessible cardinals. 2 Classical homotopy theory: simplicial sets. (It's not clear which cubical sets can even model the (1; 1)-topos of 1-groupoids.) 3 Will not mention \elementary (1; 1)-toposes" (though we can deduce partial results about them by Yoneda embedding). 4 Not the full \internal language hypothesis" that some \homotopy theory of type theories" is equivalent to the homotopy theory of some kind of (1; 1)-category. Only a unidirectional interpretation | in the useful direction! 5 We assume the initiality hypothesis: a \model of type theory" means a CwF. -
Affine Sieve and Expanders 327
Thin groups and superstrong approximation MSRI Publications Volume 61, 2013 Affine sieve and expanders ALIREZA SALEHI GOLSEFIDY The goals of this article are to describe the affine sieve in its most general setting and the fundamental theorem on the subject; to convey the main ideas behind the proof of that theorem and its connection with expansion in linear groups; to survey some of the results on the expansion in linear groups and briefly explain what goes into their proofs; and to collect some questions and conjectures. 1. The affine sieve 1.1. What is the affine sieve? Lots of problems and theorems in number theory concern the existence of infinitely many primes in a subset of integers. (1) Dirichlet’s theorem: For any integers a 0 and b, there are infinitely many ¤ integers x such that ax b is prime if there are no local obstructions — that is, C if gcd.a; b/ 1. D Instead of restricting ourselves to coprime pairs, we can work with ZŒ1=gcd.a; b/ and say for any integers a 0 and b there are infinitely many integers x such ¤ that ax b is prime in ZŒ1=gcd.a; b/. C (2) Twin prime conjecture: There are infinitely many positive integers x such that x.x 2/ has at most two prime factors. C This is a well-known long standing open problem. If we relax it and ask for infinitely many almost primes instead, then we have an affirmative result. Brun developed a combinatorial sieve and proved that there are infinitely many x such that x.x 2/ has at most 20 prime factors. -
A Godefroy-Kalton Principle for Free Banach Lattices 3
A GODEFROY-KALTON PRINCIPLE FOR FREE BANACH LATTICES ANTONIO AVILES,´ GONZALO MART´INEZ-CERVANTES, JOSE´ RODR´IGUEZ, AND PEDRO TRADACETE Abstract. Motivated by the Lipschitz-lifting property of Banach spaces introduced by Godefroy and Kalton, we consider the lattice-lifting property, which is an analogous notion within the category of Ba- nach lattices and lattice homomorphisms. Namely, a Banach lattice X satisfies the lattice-lifting property if every lattice homomorphism to X having a bounded linear right-inverse must have a lattice homomor- phism right-inverse. In terms of free Banach lattices, this can be rephrased into the following question: which Banach lattices embed into the free Banach lattice which they generate as a lattice-complemented sublattice? We will provide necessary conditions for a Banach lattice to have the lattice-lifting property, and show that this property is shared by Banach spaces with a 1-unconditional basis as well as free Banach lattices. The case of C(K) spaces will also be analyzed. 1. Introduction In a fundamental paper concerning the Lipschitz structure of Banach spaces, G. Godefroy and N.J. Kalton introduced the Lipschitz-lifting property of a Banach space. In order to properly introduce this notion, and as a motivation for our work, let us recall the basic ingredients for this construction (see [9] for details). Given a Banach space E, let Lip0(E) denote the Banach space of all real-valued Lipschitz functions on E which vanish at 0, equipped with the norm |f(x) − f(y)| kfk = sup : x, y ∈ E, x 6= y . Lip0(E) kx − yk E The Lipschitz-free space over E, denoted by F(E), is the canonical predual of Lip0(E), that is the closed ∗ linear span of the evaluation functionals δ(x) ∈ Lip0(E) given by hδ(x),fi = f(x) for all x ∈ E and all f ∈ Lip0(E). -
PRONORMALITY in INFINITE GROUPS by F G
PRONORMALITY IN INFINITE GROUPS By F G Dipartimento di Matematica e Applicazioni, Universita' di Napoli ‘Federico II’ and G V Dipartimento di Matematica e Informatica, Universita' di Salerno [Received 16 March 1999. Read 13 December 1999. Published 29 December 2000.] A A subgroup H of a group G is said to be pronormal if H and Hx are conjugate in fH, Hxg for each element x of G. In this paper properties of pronormal subgroups of infinite groups are investigated, and the connection between pronormal subgroups and groups in which normality is a transitive relation is studied. Moreover, we consider the pronorm of a group G, i.e. the set of all elements x of G such that H and Hx are conjugate in fH, Hxg for every subgroup H of G; although the pronorm is not in general a subgroup, we prove that this property holds for certain natural classes of (locally soluble) groups. 1. Introduction A subgroup H of a group G is said to be pronormal if for every element x of G the subgroups H and Hx are conjugate in fH, Hxg. Obvious examples of pronormal subgroups are normal subgroups and maximal subgroups of arbitrary groups; moreover, Sylow subgroups of finite groups and Hall subgroups of finite soluble groups are always pronormal. The concept of a pronormal subgroup was introduced by P. Hall, and the first results about pronormality appeared in a paper by Rose [13]. More recently, several authors have investigated the behaviour of pronormal subgroups, mostly dealing with properties of pronormal subgroups of finite soluble groups and with groups which are rich in pronormal subgroups. -
Lecture 11 Last Lecture We Defined Connections on Fiber Bundles. This Lecture We Will Attempt to Explain What a Connection Does
Lecture 11 Last lecture we defined connections on fiber bundles. This lecture we will attempt to explain what a connection does for differential ge- ometers. We start with two basic concepts from algebraic topology. The first is that of homotopy lifting property. Let us recall: Definition 1. Let π : E → B be a continuous map and X a space. We say that (X, π) satisfies homotopy lifting property if for every H : X × I → B and map f : X → E with π ◦ f = H( , 0) there exists a homotopy F : X × I → E starting at f such that π ◦ F = H. If ({∗}, π) satisfies this property then we say that π has the homotopy lifting property for a point. Now, as is well known and easily proven, every fiber bundle satisfies the homotopy lifting property. A much stronger property is the notion of a covering space (which we will not recall with precision). Here we have the homotopy lifting property for a point plus uniqueness or the unique path lifting property. I.e. there is exactly one lift of a given path in the base starting at a specified point in the total space. The point of a connection is to take the ambiguity out of the homotopy lifting property for X = {∗} and force a fiber bundle to satisfy the unique path lifting property. We will see many conceptual advantages of this uniqueness, but let us start by making this a bit clearer via parallel transport. Definition 2. Let B be a topological space and PB the category whose objects are points of B and whose morphisms are defined via {γ : → B : ∃ c, d ∈ s.t. -
Fibrations II - the Fundamental Lifting Property
Fibrations II - The Fundamental Lifting Property Tyrone Cutler July 13, 2020 Contents 1 The Fundamental Lifting Property 1 2 Spaces Over B 3 2.1 Homotopy in T op=B ............................... 7 3 The Homotopy Theorem 8 3.1 Implications . 12 4 Transport 14 4.1 Implications . 16 5 Proof of the Fundamental Lifting Property Completed. 19 6 The Mutal Characterisation of Cofibrations and Fibrations 20 6.1 Implications . 22 1 The Fundamental Lifting Property This section is devoted to stating Theorem 1.1 and beginning its proof. We prove only the first of its two statements here. This part of the theorem will then be used in the sequel, and the proof of the second statement will follow from the results obtained in the next section. We will be careful to avoid circular reasoning. The utility of the theorem will soon become obvious as we repeatedly use its statement to produce maps having very specific properties. However, the true power of the theorem is not unveiled until x 5, where we show how it leads to a mutual characterisation of cofibrations and fibrations in terms of an orthogonality relation. Theorem 1.1 Let j : A,! X be a closed cofibration and p : E ! B a fibration. Assume given the solid part of the following strictly commutative diagram f A / E |> j h | p (1.1) | | X g / B: 1 Then the dotted filler can be completed so as to make the whole diagram commute if either of the following two conditions are met • j is a homotopy equivalence. • p is a homotopy equivalence. -
Group and Ring Theoretic Properties of Polycyclic Groups Algebra and Applications
Group and Ring Theoretic Properties of Polycyclic Groups Algebra and Applications Volume 10 Managing Editor: Alain Verschoren University of Antwerp, Belgium Series Editors: Alice Fialowski Eötvös Loránd University, Hungary Eric Friedlander Northwestern University, USA John Greenlees Sheffield University, UK Gerhard Hiss Aachen University, Germany Ieke Moerdijk Utrecht University, The Netherlands Idun Reiten Norwegian University of Science and Technology, Norway Christoph Schweigert Hamburg University, Germany Mina Teicher Bar-llan University, Israel Algebra and Applications aims to publish well written and carefully refereed mono- graphs with up-to-date information about progress in all fields of algebra, its clas- sical impact on commutative and noncommutative algebraic and differential geom- etry, K-theory and algebraic topology, as well as applications in related domains, such as number theory, homotopy and (co)homology theory, physics and discrete mathematics. Particular emphasis will be put on state-of-the-art topics such as rings of differential operators, Lie algebras and super-algebras, group rings and algebras, C∗-algebras, Kac-Moody theory, arithmetic algebraic geometry, Hopf algebras and quantum groups, as well as their applications. In addition, Algebra and Applications will also publish monographs dedicated to computational aspects of these topics as well as algebraic and geometric methods in computer science. B.A.F. Wehrfritz Group and Ring Theoretic Properties of Polycyclic Groups B.A.F. Wehrfritz School of Mathematical Sciences -
The Theory of Finite Groups: an Introduction (Universitext)
Universitext Editorial Board (North America): S. Axler F.W. Gehring K.A. Ribet Springer New York Berlin Heidelberg Hong Kong London Milan Paris Tokyo This page intentionally left blank Hans Kurzweil Bernd Stellmacher The Theory of Finite Groups An Introduction Hans Kurzweil Bernd Stellmacher Institute of Mathematics Mathematiches Seminar Kiel University of Erlangen-Nuremburg Christian-Albrechts-Universität 1 Bismarckstrasse 1 /2 Ludewig-Meyn Strasse 4 Erlangen 91054 Kiel D-24098 Germany Germany [email protected] [email protected] Editorial Board (North America): S. Axler F.W. Gehring Mathematics Department Mathematics Department San Francisco State University East Hall San Francisco, CA 94132 University of Michigan USA Ann Arbor, MI 48109-1109 [email protected] USA [email protected] K.A. Ribet Mathematics Department University of California, Berkeley Berkeley, CA 94720-3840 USA [email protected] Mathematics Subject Classification (2000): 20-01, 20DXX Library of Congress Cataloging-in-Publication Data Kurzweil, Hans, 1942– The theory of finite groups: an introduction / Hans Kurzweil, Bernd Stellmacher. p. cm. — (Universitext) Includes bibliographical references and index. ISBN 0-387-40510-0 (alk. paper) 1. Finite groups. I. Stellmacher, B. (Bernd) II. Title. QA177.K87 2004 512´.2—dc21 2003054313 ISBN 0-387-40510-0 Printed on acid-free paper. © 2004 Springer-Verlag New York, Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. -
Algebraic Topology (Math 592): Problem Set 6
Algebraic topology (Math 592): Problem set 6 Bhargav Bhatt All spaces are assumed to be Hausdorff and locally path-connected, i.e., there exists a basis of path-connected open subsets of X. 1. Let f : X ! Y be a covering space. Assume that there exists s : Y ! X such that f ◦ s = id. Show that s(Y ) ⊂ X is clopen. Moreover, also check that (X − s(Y )) ! Y is a covering space, provided X 6= s(Y ) and Y is path-connected. 2. Let α : Z ! Y be a map of spaces. Fix a base point z 2 Z, and assume that Z and Y are path-connected, and that Y admits a universal cover. Show that α∗ : π1(Z; z) ! π1(Y; α(z)) is surjective if and only if for every connected covering space X ! Y , the pullback X ×Y Z ! Z is connected. All spaces are now further assumed to be path-connected unless otherwise specified. 3. Let G be a topological group, and let p : H ! G be a covering space. Fix a base point h 2 H living over the identity element e 2 G. Using the lifting property, show that H admits a unique topological group structure with identity element h such that p is a group homomorphism. Using a previous problem set, show that the kernel of p is abelian. 4. Let f : X ! Y be a covering space. Assume that there exists y 2 Y such that #f −1(y) = d is finite. Show that #f −1(y0) = d for all y0 2 Y . -
The Quillen Model Category of Topological Spaces 3
THE QUILLEN MODEL CATEGORY OF TOPOLOGICAL SPACES PHILIP S. HIRSCHHORN Abstract. We give a complete and careful proof of Quillen’s theorem on the existence of the standard model category structure on the category of topological spaces. We do not assume any familiarity with model categories. Contents 1. Introduction 2 2. Definitions and the main theorem 2 3. Lifting 4 3.1. Pushouts, pullbacks, and lifting 5 3.2. Coproducts, transfinite composition, and lifting 5 3.3. Retracts and lifting 6 4. Relative cell complexes 7 4.1. Compact subsets of relative cell complexes 9 4.2. Relative cell complexes and lifting 10 5. The small object argument 11 5.1. The first factorization 11 5.2. The second factorization 13 6. The factorization axiom 15 6.1. Cofibration and trivial fibration 15 6.2. Trivial cofibration and fibration 16 7. Homotopygroupsandmapsofdisks 16 7.1. Difference maps 17 7.2. Lifting maps of disks 18 arXiv:1508.01942v3 [math.AT] 22 Oct 2017 8. The lifting axiom 20 8.1. Cofibrations and trivial fibrations 20 8.2. Trivial cofibrations and fibrations 21 9. The proof of Theorem 2.5 21 References 22 Date: September 11, 2017. 2010 Mathematics Subject Classification. Primary 18G55, 55U35. Key words and phrases. model category, small object argument, relative cell complex, cell complex, difference map. c 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/. 1 2 PHILIP S. HIRSCHHORN 1. Introduction Quillen defined model categories (see Definition 2.2) in [5, 6] to apply the tech- niques of homotopy theory to categories other than topological spaces or simplicial sets.