Statistical Learning Approaches for the Control of Stormwater Systems by Abhiram Mullapudi A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Civil Engineering) in The University of Michigan 2020 Doctoral Committee: Associate Professor Branko Kerkez, Chair Associate Professor Andrew D. Gronewold Assistant Professor Neda Masoud Assistant Professor Ramanarayan Vasudevan Abhiram Mullapudi
[email protected] ORCID iD: 0000-0001-8141-3621 © Abhiram Mullapudi 2020 DEDICATION This thesis is dedicated to my family. ii ACKNOWLEDGEMENTS I want to thank my advisor, Dr. Branko Kerkez, for his guidance and mentor- ship through my Ph.D. process. I could not have asked for a better mentor. I would also like to thank my dissertation committee: Dr. Neda Masoud, Dr. An- drew D. Gronewold, and Dr. Ramanarayan Vasudevan. Their invaluable insights helped shape my dissertation. This work has been made possible by the Na- tional Science Foundation (grant number #1737432) and Great Lakes Protection Fund (grant number #1035). I want to acknowledge all the people who helped guide my research. Dr. Matthew J. Lewis and Dr. Cyndee L. Gruden, for their help, getting me started with the Reinforcement Learning and Stormwater systems. Dr. Sara P. Rimer, for all the fascinating discussions. Dr. Jonathan L. Goodall, Dr. Jon M. Hathaway, and all the Smart and Connected Communities team, for all the fantastic conver- sations over the years. They have been instrumental in framing the questions I pursued in my dissertation. I would also like to acknowledge the graduate stu- dents in the CEE and, in particular, the members of the Real-time Water Systems Lab for the amazing five years.