Progress Toward a Global Genealogy of Common Carp (Cyprinus Carpio L.) Strains Using Mitochondrial Nucleotide Sequences Data
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Status of the Endangered Freshwater Fishes in China and the Analysis of the Endangered Causes Institute of Hydrobiology
The status of the endangered freshwater fishes in China and The analysis of the endangered causes HE Shunping, CIIEN Yiyu Institute of Hydrobiology, CAS, Wuhan, ITubei Province, 430072 Abstract More than 800 species of freshwater fishes are precious biological resources in inland water system of China. Among them, there are a great number of endemic and precious group, and a lot of monotypic genera and species. Recently, owing to the synthetic effects of the natural and human-beings, many of these fishes gradually became endangered. The preliminary statistic result indicates that 92 species are endangered fishes and account for 10% of the total freshwater fishes in China. For the purpose of protection of the biodiversity of fishes, it is necessary to analyse these causes which have led the fishes to become endangered. This report could be used as a scientific reference for researching and saving the endemic precious freshwater fishes in China. Key words Endangered freshwater fishes, Endangered causes, China In the process of the evolution of living things, along with the origin of life, the extinction of life also existed. In the long_ life history, the speciation and the extinction of living things often keep a relative balance. As time goes on, especially after by the impact of human beings activity of production and life, the pattern of the biodiversity were changed or damaged, more or less. At last, in the modern society, human beings activity not only accelerate the progress of society and the development of economy, but also, as a special species, become the source of disturbing_ to other species. -
FIELD GUIDE to WARMWATER FISH DISEASES in CENTRAL and EASTERN EUROPE, the CAUCASUS and CENTRAL ASIA Cover Photographs: Courtesy of Kálmán Molnár and Csaba Székely
SEC/C1182 (En) FAO Fisheries and Aquaculture Circular I SSN 2070-6065 FIELD GUIDE TO WARMWATER FISH DISEASES IN CENTRAL AND EASTERN EUROPE, THE CAUCASUS AND CENTRAL ASIA Cover photographs: Courtesy of Kálmán Molnár and Csaba Székely. FAO Fisheries and Aquaculture Circular No. 1182 SEC/C1182 (En) FIELD GUIDE TO WARMWATER FISH DISEASES IN CENTRAL AND EASTERN EUROPE, THE CAUCASUS AND CENTRAL ASIA By Kálmán Molnár1, Csaba Székely1 and Mária Láng2 1Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary 2 National Food Chain Safety Office – Veterinary Diagnostic Directorate, Budapest, Hungary FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Ankara, 2019 Required citation: Molnár, K., Székely, C. and Láng, M. 2019. Field guide to the control of warmwater fish diseases in Central and Eastern Europe, the Caucasus and Central Asia. FAO Fisheries and Aquaculture Circular No.1182. Ankara, FAO. 124 pp. Licence: CC BY-NC-SA 3.0 IGO The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. -
Body Shape Change in Common Carp, Cyprinus Carpio Var. Sazan (Teleostei: Cyprinidae), During Early Development Using Geometric Morphometric Method
Iran. J. Ichthyol. (September 2016), 3(3): 210–217 Received: May 7, 2016 © 2016 Iranian Society of Ichthyology Accepted: August 30, 2016 P-ISSN: 2383-1561; E-ISSN: 2383-0964 doi: 10.7508/iji.2016.02.015 http://www.ijichthyol.org Body shape change in Common carp, Cyprinus carpio var. Sazan (Teleostei: Cyprinidae), during early development using geometric morphometric method Fatemeh MOSHAYEDI1, Soheil EAGDERI*1, Masoud IRI2 1Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, P.O. Box 4111, Iran. 2Fisheries Department, Agricultural and Natural Resources Faculty, Gonbad kavoos University, Gonbad kavoos, Iran. * . Email: [email protected] Abstract: This research was conducted to study the body shape changes in common carp, Cyprinus carpio var. Sazan during early developmental stages using landmark- based geometric morphometric method. For this purpose, a total number of 210 larvae from hatching time till 55 days post hatching (dph) were sampled. For extracting body shape data, the right side of specimens was photographed and nine landmark-points were defined and digitized on 2D pictures using tpsDig2 software. After GPA, the landmark data were analyzed using Relative Warp analysis, regression of shape on total length and cluster analysis. The results showed that change of body shape in common carp during early development includes (1) increase in the head depth, and trunk length from hatching up to 8 dph, (2) increase in the body depth, and the head and tail lengths from 8-20 dph, and (3) increase in the head length and depth from 20-55 dph. The cluster analysis was revealed that larval stages can be divided into four phases, including eleuthero-embryonic, larva, younger juvenile and juvenile. -
1 the Origin of Domesticated Breeds of Common Carp
HYDROBIOLOGIE ET AQUACULTURE genetics and breeding of common carp VALENTIN S. KIRPITCHNIKOV revised by R. Billard, J. Repérant, J.P. Rio and R. Ward INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE 147, rue de l'Université, 75338 Paris Cedex 07 HYDROBIOLOGIE ET AQUACULTURE Déjà parus dans la même collection : Le Brochet : Aquaculture of Cyprinids gestion dans le milieu naturel Evry (France), 2-5 septembre 1985 et élevage R. Billard, J. Marcel, éd. Grignon (France), 9-10 septembre 1982 1986, 502 p. R. Billard, éd. La truite. Biologie et élevage 1983, 374 p. J.L. Bagliniere, G. Maisse, éd. 1991, 303 p. L'Aquaculture du Bar et des Sparidés Les carpes. Sète (France), 15-16-17 mars 1983 Biologie et élevage G. Barnabe et R. Billard, éd. R. Billard, coord. 1984, 542 p. 1995, 388 p. Poissons de Guyane Caractérisation et essais Guide écologique de l'Approuague et de de restauration d'un écosystème la réserve des Nouragues dégradé : le lac de Nantua Boujard T., Pascal M.. Meunier J.F., J. Feuillade, éd. Le Bail P.Y, Galle J. 1985, 168 p. 1997, 262 p. Valentin S. KIRPITCHNIKOV (f) institute of Cytology Academy of Sciences of Russia Tikhoretsky Avenue 4 Leningrad 194064, Russia revised by R. BILLARD J.P. RIO Muséum National d'Histoire Naturelle Hôpital de La Salpêtrière Ichtyologie Générale et Appliquée INSERM U 106 43 rue Cuvier 47 bd de l'Hôpital 75231 Paris cedex 05 75651 Paris cedex 13 R. WARD J. REPERANT Neurogénétique Muséum National d'Histoire Naturelle Université du Québec Laboratoire d'Anatomie Comparée CP 500, Trois-Rivières 55 rue Buffon, 75005 Paris Québec, Canada G9A 5H7 ©INRA, Paris 1999 - ISBN : 2-7380-0869-0 - ISSN : 0763-1707 ©Le code de la propriété intellectuelle du 1er juillet 1992 interdit la photocopie à usage collectif sans autor- isation des ayants-droits. -
Parasitology Is a Tool for Identifying the Original Biotope of the Gibel Carp (Carassius Auratus Gibelio Berg, 1932) Parazitoló
Pisces Hungarici 12 (2018) 87–94 Parasitology is a tool for identifying the original biotope of the gibel carp (Carassius auratus gibelio Berg, 1932) Parazitológiai bizonyítékok az ezüstkárász (Carassius auratus gibelio Berg, 1932) eredetéről Molnár K.1, Nyeste K.2, Székely Cs.1 1MTA ATK, Állatorvos‐tudományi Intézet, Budapest 2Debreceni Egyetem TTK, Hidrobiológiai Tanszék, Debrecen Keywords: original biotpe of Carassius spp., gibel carp, myxosporean infection, nomenclature Kulcsszavak: kárász eredeti biotópja, ezüstkárász, nyálkaspórás fertőzöttség, nevezéktani problémák Abstract At this time the occurrence of three Carassius taxa (C. carassius, C. auratus auratus and C. auratus gibelio) are known from Europe. Crucian carp [Carassius carassius (Linnaeus, 1758)] is a native fish species in European waters. The goldfish, a species of Chinese origin arrived to Europe long time ago, and at the time when Linnaeus in 1758 published his Systema Naturae he described two Carassius species, the crucian carp as Cyprinus carassius and the goldfish as Cyprinus auratus. During the last two centuries 13 other Carassius spp. were described which proved to be synonymous of C. carassius and 3‐3 species as synonymous of Carassius auratus auratus and C. auratus gibelio, respectively. The authors confute the European origin of Carassius gibelio Bloch, called as Prussian carp. They compared infections of the gibel carp and goldfish with myxosporeans in Europe and in the Far‐East and found that these fishes in the Far‐East have been infected by several host specific Myxobolus and Thelohanellus species, while in Europe of them only a single species is known. Great differences in the range of myxosporean spp. suggest that both gibel carp and goldfish are Far‐ East origin fishes which arrived to Europe in the historical times. -
Monograph of the Cyprinid Fis~Hes of the Genus Garra Hamilton (173)
MONOGRAPH OF THE CYPRINID FIS~HES OF THE GENUS GARRA HAMILTON By A. G. K. MENON, Zoologist, ,Zoological Surt1ey of India, Oalcutta. (With 1 Table, 29 Text-figs. and 6 Plates) CONTENTS Page I-Introduction 175 II-Purpose and general results 176 III-Methods and approaches 176 (a) The definition of Measurements 176 (b) The analysis of Intergradation 178 (c) The recognition of subspecies. 179 (d) Procedures in the paper 180 (e) Evaluation of systematic characters 181 (I) Abbreviations of names of Institutions 181 IV-Historical sketch 182 V-Definition of the genus 187 VI-Systematic section 188 (a) The variabilis group 188 (i) The variabilis Complex 188 1. G. variabilis 188 2. G. rossica 189 (b) The tibanica group 191 (i) The tibanica Complex 191 3. G. tibanica. 191 4. G. quadrimaculata 192 5. G. ignestii 195 6. G. ornata 196 7. G. trewavasi 198 8. G. makiensis 198 9. G. dembeensis 199 10. G. ethelwynnae 202 (ii) The rufa complex 203 11. G. rufa rufa 203 12. G. rufa obtusa 205 13. O. barteimiae 206 (iii) The lamta complex 208 14. G. lamta 208 15. G. mullya 212 16. G. 'ceylonensis ceylonensis 216 17. G. c. phillipsi 216 18. G. annandalei 217 (173) 174 page (iv) The lissorkynckus complex 219 19. G. lissorkynchus 219 20. G. rupecula 220 ~ (v) The taeniata complex 221 21. G. taeniata. 221 22" G. borneensis 224 (vi) The yunnanensis complex 224 23. G. yunnanensis 225 24. G. gracilis 229 25. G. naganensis 226 26. G. kempii 227 27. G. mcOlellandi 228 28. G. -
Disease of Aquatic Organisms 105:163
Vol. 105: 163–174, 2013 DISEASES OF AQUATIC ORGANISMS Published July 22 doi: 10.3354/dao02614 Dis Aquat Org FREEREE REVIEW ACCESSCCESS CyHV-3: the third cyprinid herpesvirus Michael Gotesman1, Julia Kattlun1, Sven M. Bergmann2, Mansour El-Matbouli1,* 1Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria 2Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Infectology, Greifswald-Insel Riems, Germany ABSTRACT: Common carp (including ornamental koi carp) Cyprinus carpio L. are ecologically and economically important freshwater fish in Europe and Asia. C. carpio have recently been endangered by a third cyprinid herpesvirus, known as cyprinid herpesvirus-3 (CyHV-3), the etio- logical agent of koi herpesvirus disease (KHVD), which causes significant morbidity and mortality in koi and common carp. Clinical and pathological signs include epidermal abrasions, excess mucus production, necrosis of gill and internal organs, and lethargy. KHVD has decimated major carp populations in Israel, Indonesia, Taiwan, Japan, Germany, Canada, and the USA, and has been listed as a notifiable disease in Germany since 2005, and by the World Organisation for Ani- mal Health since 2007. KHVD is exacerbated in aquaculture because of the relatively high host stocking density, and CyHV-3 may be concentrated by filter-feeding aquatic organisms. CyHV-3 is taxonomically grouped within the family Alloherpesviridae, can be propagated in a number of cell lines, and is active at a temperature range of 15 to 28°C. Three isolates originating from Japan (KHV-J), USA (KHV-U), and Israel (KHV-I) have been sequenced. CyHV-3 has a 295 kb genome with 156 unique open reading frames and replicates in the cell nucleus, and mature viral particles are 170 to 200 nm in diameter. -
(Edcs) on FRESHWATER FISH Cyprinus Carpio
TOXICITY STUDY OF ENDOCRINE DISRUPTING CHEMICALS (EDCs) ON FRESHWATER FISH Cyprinus carpio Thesis Submitted in partial fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY by REKHA RAO DEPARTMENT OF CIVIL ENGINEERING NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA SURATHKAL, MANGALORE – 575025 December 2017 DECLARATION I hereby declare that the Research Thesis entitled TOXICITY STUDY OF ENDOCRINE DISRUPTING CHEMICALS (EDCs) ON FRESHWATER FISH Cyprinus carpio which is being submitted to the National Institute of Technology Karnataka, Surathkal in partial fulfilment of the requirements for the award of the Degree of Doctor of Philosophy in ENVIRONMENTAL ENGINEERING is a bonafide report of the research work carried out by me. The material contained in this Research Thesis has not been submitted to any University or Institution for the award of any degree. 123001CV12F06, REKHA RAO Department of Civil Engineering Place: NITK, Surathkal Date: 26/12/2017 2 CERTIFICATE This is to certify that the Research Thesis entitled TOXICITY STUDY OF ENDOCRINE DISRUPTING CHEMICALS (EDCs) ON FRESHWATER FISH Cyprinus carpio submitted by REKHA RAO, (Register Number: 123001CV12F06) as the record of the research work carried out by her, is accepted as the Research Thesis submission in Partial fulfilment of the requirements for the award of degree of Doctor of Philosophy. Dr. B. Manu Dr. Arun Kumar Thalla Research Guide(s) Chairman – DRPC 3 ACKNOWLEDGEMENTS I acknowledge my thanks to NITK, Surathkal for providing the fellowship and financial support necessary for the completion of my doctoral work. I would like to express my deep sense of gratitude to my research supervisors, Dr. B. Manu, Associate Professor and Dr. -
Cyprinus Barbatus ERSS
Cyprinus barbatus (a carp, no common name) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, October 2012 Revised, November 2018 Web Version, 7/29/2019 1 Native Range and Status in the United States Native Range From Chen and Zhou (2011): “Endemic to Erhai Lake (250 km2), Yunnan province (Mekong drainage), China. Previous records from Yilonghu Lake are miss-identifications.” Status in the United States No records of Cyprinus barbatus in the wild or in trade in the United States was found. Means of Introductions in the United States No records of Cyprinus barbatus in the wild in the United States was found. 1 Remarks An ERSS for Cyprinus barbatus was previously published in 2012. From Chen and Zhou (2011): “It has not been recorded since 1982 (W. Zhou pers. comm.) and is assessed as Critically Endangered Possibly Extinct.” From Wang et al. (2015): “In 1970s, the indigenous fish species, such as Schizothorax yunnanensis, Schizothorax lissolabiatus Tsao, Schizothorax griseus Pellegrin, Cyprinus barbatus and Cyprinus daliensis disappeared [from Lake Erhai].” 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From Fricke et al. (2018): “Current status: Valid as Cyprinus barbatus Chen & Huang 1977.” From ITIS (2018): “Kingdom Animalia Subkingdom Bilateria Infrakingdom Deuterostomia Phylum Chordata Subphylum Vertebrata Infraphylum Gnathostomata Superclass Actinopterygii Class Teleostei Superorder Ostariophysi Order Cypriniformes Superfamily Cyprinoidea Family Cyprinidae Genus Cyprinus Species Cyprinus barbatus Chen and Huang, 1977” Size, Weight, and Age Range From Froese and Pauly (2018): “Max length : 35.0 cm OT male/unsexed; [Hwang et al. 1988]” 2 Environment From Froese and Pauly (2018): “Freshwater; benthopelagic.” Climate/Range From Froese and Pauly (2018): “Subtropical” Distribution Outside the United States Native From Chen and Zhou (2011): “Endemic to Erhai Lake (250 km2), Yunnan province (Mekong drainage), China. -
Parasites of the Common Carp Cyprinus Carpio L., 1758 (Teleostei: Cyprinidae) from Water Bodies of Turkey: Updated Checklist and Review for the 1964–2014 Period
Turkish Journal of Zoology Turk J Zool (2015) 39: 545-554 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1401-42 Parasites of the common carp Cyprinus carpio L., 1758 (Teleostei: Cyprinidae) from water bodies of Turkey: updated checklist and review for the 1964–2014 period 1, 1 2 Lorenzo VILIZZI *, Ali Serhan TARKAN , Fitnat Güler EKMEKÇİ 1 Faculty of Fisheries, Muğla Sıtkı Koçman University, Kötekli, Muğla, Turkey 2 Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey Received: 18.01.2014 Accepted/Published Online: 14.11.2014 Printed: 30.07.2015 Abstract: A synopsis is provided of the parasites of common carp Cyprinus carpio L. from water bodies of Turkey based on literature data from 1964 to 2014. In total, 45 studies were included in the review and these provided data from 41 water bodies, comprising 12 man-made reservoirs, 21 natural lakes, and 8 water courses. Forty-one different taxa (including molluscan Glochidium sp.) in total were recorded. Of these taxa, 2 had not been previously reviewed for Turkey, and 4 were excluded from the list because of dubious identification. The Turkish parasite fauna of common carp living under natural conditions was dominated by ciliates (Ciliophora) among the protozoans and by flatworms (Platyhelminthes) among the metazoans, and this was both in terms of occurrence on fish and across water bodies. The absence of 7 taxa from both the European and North American checklists can be explained by the location of Turkey at the frontier between Asia and Europe. Additionally, the parasite fauna of the common carp in Turkey was consistently different from that of the far eastern species’ specimens. -
Chinaxiv:201711.01918V1
ChinaXiv合作期刊 第55卷 第3期 古 脊 椎 动 物 学 报 pp. 201-209 2017年7月 VERTEBRATA PALASIATICA figs. 1-2 Cyprinus-like pharyngeal bones and teeth (Teleostei, Cypriniformes, Cyprinidae) from the Early–Middle Oligocene deposits of South China CHEN Geng-Jiao1,2 CEN Li-Di1 LIU Juan3,4 (1 Natural History Museum of Guangxi Zhuang Autonomous Region Nanning 530012, China [email protected]) (2 State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences Nanjing 210008, China) (3 Department of Biological Sciences, University of Alberta Edmonton, Alberta T6G 2E9, Canada) (4 Division of Paleontology, American Museum of Natural History New York NY 10024, USA) Abstract Here we describe †Nanningocyprinus wui gen. et sp. nov, a fossil Cyprinus-like fish from the Early-Middle Oligocene deposits of Langdong, Nanning Basin, Guangxi Province, South China. †Nanningocyprinus wui is represented by a number of pharyngeal bones and teeth. It differs from all other cyprinid fishes in the following character combination: tooth formula —3·2·1, crushing molar-like A1 much larger than A2, only one groove on the grinding surface of A2 and B1 respectively, and the anterior angle of the pharyngeal bone triangular and prominent. The new-found Cyprinus-like fish, along with the previously known Late Eocene †Eoprocypris maomingensis (Procypris-like) and Oligocene †Huashancyprinus robustispinus (Cyprinus-like) from South China, further indicates an early branching and diversification of the Cyprininae (Cyprinidae) in this area. Key words Nanning Basin; Yongning Formation, Oligocene; Cyprinidae, pharyngeal bone and teeth Citation Chen G J, Cen L D, Liu J, 2017. -
Analysis and Identification of Dna Sequence Variations in Cyprinus Carpio in Lake Kerinci
20 Tomi Apra Santosa @ Analysis and Identification ANALYSIS AND IDENTIFICATION OF DNA SEQUENCE VARIATIONS IN CYPRINUS CARPIO IN LAKE KERINCI Tomi Apra Santosa1*), Abdul Razak2), Eria Marina Septiyani3) Biology-Department, Mathematics and Natural Sciences Faculty, Padang State University email: [email protected] Abstract This study aims to find out the analysis and identification of variations in DNA sequences in Cyprinus carpio in Lake Kerinci. 7. Research using qualitative research type with a literature study method. Data sources come from national and international journals. The results of the study can be concluded that Cyprinus carpio Cyprinus carpio has a varied gene that the number of DNA chromosomes 48 pairs or 2n = 96 who have DNA sequence analysis 5' GCCTTCGTGGCCCTTCCCAC-3' and 5'- GGTTGCTCCTGTCCGCCACCCC-3' and has three microsatellite eloquence, MHF6, MFW7, and MFW9. Keywords: Genetic, DNA, Cyprinus carpio 1. INTRODUCTION physical position of goldfish (Cyprinus I Goldfish or Cyprinus carpio is a carpio) can be seen by analyzing the species of the family Cyprinidae that has mitochondrial genome (Ma et al., 2019). accounted for over 30% of the world's The genome in Cyprinus carpio has aquaculture (Wang et al., 2017; Xu et al., undergone development including saveral 2011; Tea Tomljanović, et.al., 2013). This large genetic markers (Xu et al., 2014). The fish is widely researched since 1758 is genetics of Cyprinus carpio must be adapted widely used in goldfish has a long history to their properties (Marie et al., 2010). and has been cultivated by the ancestors of EDNA technology is used to monitor fish in Europeans and Asians ( Hu et al., 2016; waters and other aquatic species about Kohlmann et al., 2003; Street et al., 2008) eDNA in the natural environment Goldfish is an important commodity for the (Eichmiller et al., 2014).