Asteroid 2018 LA Impacts Earth on June 2, 2018

Total Page:16

File Type:pdf, Size:1020Kb

Asteroid 2018 LA Impacts Earth on June 2, 2018 Asteroid 2018 LA Impacts Earth on June 2, 2018 The small (<3 meters in size) asteroid 2018 LA impacted Earth’s atmosphere on 2 June 2018 at 16:44 UTC (12:44 PM EDT) and was discovered by the NASA-funded Catalina Sky Survey (University of Arizona) ~8 hours prior to its impact. Two further observations by the NASA-funded ATLAS (Asteroid Terrestrial-impact Last Alert System, University of Hawai’i) site on Mauna Loa confirmed the object. In the 20-year history of NASA’s Near-Earth Object Observations Program, this is the third time an object has been discovered and an impact solution calculated prior to impact. The previous bodies were 2008 TC3 (impacting over Sudan) and 2014 AA (impacting over the middle of the Atlantic Ocean), and all three asteroids were discovered by Catalina Sky Survey astronomer Richard Kowalski (image). The Minor Planet Center and JPL’s Center for NEO Studies (CNEOS) alerted the Planetary Defense Coordination Office of a potential impact. CNEOS calculated an initial impact corridor (left) and considerably narrowed it (right) once additional observations, including one “precovery” observation, became available. This was a much smaller object than NASA is tasked to detect and warn about, but this real- world event exercised capabilities and gave some confidence that NASA’s impact prediction models are adequate to inform response to the potential impact of a larger object. Citizen report on the bolide: The fireball was seen over Botswana, lasted ~3.5 seconds, and flared with -27 magnitude (the Sun is slightly brighter than -26). The resultant energy imparted to Earth’s atmosphere was just shy of 1 kiloton equivalent TNT. Comprehensive Test Ban Treaty Organization (CTBTO) infrasound sensors also detected the bolide. Credit: Tom Ruen, from JPL/CNEOS trajectory 1.
Recommended publications
  • Arxiv:2001.00125V1 [Astro-Ph.EP] 1 Jan 2020
    Draft version January 3, 2020 Typeset using LATEX default style in AASTeX61 SIZE AND SHAPE CONSTRAINTS OF (486958) ARROKOTH FROM STELLAR OCCULTATIONS Marc W. Buie,1 Simon B. Porter,1 et al. 1Southwest Research Institute 1050 Walnut St., Suite 300, Boulder, CO 80302 USA To be submitted to Astronomical Journal, Version 1.1, 2019/12/30 ABSTRACT We present the results from four stellar occultations by (486958) Arrokoth, the flyby target of the New Horizons extended mission. Three of the four efforts led to positive detections of the body, and all constrained the presence of rings and other debris, finding none. Twenty-five mobile stations were deployed for 2017 June 3 and augmented by fixed telescopes. There were no positive detections from this effort. The event on 2017 July 10 was observed by SOFIA with one very short chord. Twenty-four deployed stations on 2017 July 17 resulted in five chords that clearly showed a complicated shape consistent with a contact binary with rough dimensions of 20 by 30 km for the overall outline. A visible albedo of 10% was derived from these data. Twenty-two systems were deployed for the fourth event on 2018 Aug 4 and resulted in two chords. The combination of the occultation data and the flyby results provides a significant refinement of the rotation period, now estimated to be 15.9380 ± 0.0005 hours. The occultation data also provided high-precision astrometric constraints on the position of the object that were crucial for supporting the navigation for the New Horizons flyby. This work demonstrates an effective method for obtaining detailed size and shape information and probing for rings and dust on distant Kuiper Belt objects as well as being an important source of positional data that can aid in spacecraft navigation that is particularly useful for small and distant bodies.
    [Show full text]
  • Ice& Stone 2020
    Ice & Stone 2020 WEEK 41: OCTOBER 4-10 Presented by The Earthrise Institute # 41 Authored by Alan Hale This week in history OCTOBER 4 5 6 7 8 9 10 OCTOBER 4, 2020: The main-belt asteroid (1679) Nevanlinna will occult the 7th-magnitude star HD 224945 in Pisces. The predicted path of the occultation crosses Newfoundland, part of the Maritime Provinces of Canada, the northeastern through the south-central U.S. (including Houston, Texas), north-central Mexico (including the northern regions of Monterrey, Nuevo Leon), and the southern Pacific Ocean. OCTOBER 4 5 6 7 8 9 10 OCTOBER 7, 2008: Twenty hours after its discovery by Richard Kowalski during the course of the Mount Lemmon Survey in Arizona, the tiny asteroid 2008 TC3 enters Earth’s atmosphere above Sudan, explodes, and drops meteorite fragments – the Almahata Sitta meteorite – on the Nubian Desert. This is the first instance of an impacting asteroid being discovered in space while still inbound to an impact, and it is the subject of this week’s “Special Topics” presentation. OCTOBER 7, 2009: Astronomers using the Infrared Telescope Facility in Hawaii announce that the surface of the large main-belt asteroid (24) Themis appears to be completely covered with water ice. The significance of this discovery is discussed in a previous “Special Topics” presentation. OCTOBER 4 5 6 7 8 9 10 OCTOBER 8, 1769: Comet Messier C/1769 P1 passes through perihelion at a heliocentric distance of 0.123 AU. This was the brightest comet discovered by the 18th-Century French comet hunter Charles Messier and is a previous “Comet of the Week.” OCTOBER 4 5 6 7 8 9 10 OCTOBER 9, 1933: A brief but strong “storm” of Draconid meteors is seen over Europe.
    [Show full text]
  • NASA Ames Jim Arnold, Craig Burkhardt Et Al
    The re-entry of artificial meteoroid WT1190F AIAA SciTech 2016 1/5/2016 2008 TC3 Impact October 7, 2008 Mohammad Odeh International Astronomical Center, Abu Dhabi Peter Jenniskens SETI Institute Asteroid Threat Assessment Project (ATAP) - NASA Ames Jim Arnold, Craig Burkhardt et al. Michael Aftosmis - NASA Ames 2 Darrel Robertson - NASA Ames Next TC3 Consortium http://impact.seti.org Mission Statement: Steve Larson (Catalina Sky Survey) “Be prepared for the next 2008 TC3 John Tonry (ATLAS) impact” José Luis Galache (Minor Planet Center) Focus on two aspects: Steve Chesley (NASA JPL) 1. Airborne observations of the reentry Alan Fitzsimmons (Queen’s Univ. Belfast) 2. Rapid recovery of meteorites Eileen Ryan (Magdalena Ridge Obs.) Franck Marchis (SETI Institute) Ron Dantowitz (Clay Center Observatory) Jay Grinstead (NASA Ames Res. Cent.) Peter Jenniskens (SETI Institute - POC) You? 5 NASA/JPL “Sentry” early alert October 3, 2015: WT1190F Davide Farnocchia (NASA/JPL) Catalina Sky Survey: Richard Kowalski Steve Chesley (NASA/JPL) Marco Michelli (ESA NEOO CC) 6 WT1190F Found: October 3, 2015: one more passage Oct. 24 Traced back to: 2013, 2012, 2011, …, 2009 Re-entry: Friday November 13, 2015 10.61 km/s 20.6º angle Bill Gray 11 IAC + UAE Space Agency chartered commercial G450 Mohammad Odeh (IAC, Abu Dhabi) Support: UAE Space Agency Dexter Southfield /Embry-Riddle AU 14 ESA/University Stuttgart 15 SETI Institute 16 Dexter Southfield team Time UAE Camera Trans-Lunar Insertion Stage Leading candidate (1/13/2016): LUNAR PROSPECTOR T.L.I.S. Launch: January 7, 1998 UT Lunar Prospector itself was deliberately crashed on Moon July 31, 1999 Carbon fiber composite Spin hull thrusters Titanium case holds Amonium Thiokol Perchlorate fuel and Star Stage 3700S HTPB binder (both contain H) P.I.: Alan Binder Scott Hubbard 57-minutes later: Mission Director Separation of TLIS NASA Ames http://impact.seti.org 30 .
    [Show full text]
  • Abstracts of the 50Th DDA Meeting (Boulder, CO)
    Abstracts of the 50th DDA Meeting (Boulder, CO) American Astronomical Society June, 2019 100 — Dynamics on Asteroids break-up event around a Lagrange point. 100.01 — Simulations of a Synthetic Eurybates 100.02 — High-Fidelity Testing of Binary Asteroid Collisional Family Formation with Applications to 1999 KW4 Timothy Holt1; David Nesvorny2; Jonathan Horner1; Alex B. Davis1; Daniel Scheeres1 Rachel King1; Brad Carter1; Leigh Brookshaw1 1 Aerospace Engineering Sciences, University of Colorado Boulder 1 Centre for Astrophysics, University of Southern Queensland (Boulder, Colorado, United States) (Longmont, Colorado, United States) 2 Southwest Research Institute (Boulder, Connecticut, United The commonly accepted formation process for asym- States) metric binary asteroids is the spin up and eventual fission of rubble pile asteroids as proposed by Walsh, Of the six recognized collisional families in the Jo- Richardson and Michel (Walsh et al., Nature 2008) vian Trojan swarms, the Eurybates family is the and Scheeres (Scheeres, Icarus 2007). In this theory largest, with over 200 recognized members. Located a rubble pile asteroid is spun up by YORP until it around the Jovian L4 Lagrange point, librations of reaches a critical spin rate and experiences a mass the members make this family an interesting study shedding event forming a close, low-eccentricity in orbital dynamics. The Jovian Trojans are thought satellite. Further work by Jacobson and Scheeres to have been captured during an early period of in- used a planar, two-ellipsoid model to analyze the stability in the Solar system. The parent body of the evolutionary pathways of such a formation event family, 3548 Eurybates is one of the targets for the from the moment the bodies initially fission (Jacob- LUCY spacecraft, and our work will provide a dy- son and Scheeres, Icarus 2011).
    [Show full text]
  • The Comet's Tale
    THE COMET’S TALE Journal of the Comet Section of the British Astronomical Association Number 33, 2014 January Not the Comet of the Century 2013 R1 (Lovejoy) imaged by Damian Peach on 2013 December 24 using 106mm F5. STL-11k. LRGB. L: 7x2mins. RGB: 1x2mins. Today’s images of bright binocular comets rival drawings of Great Comets of the nineteenth century. Rather predictably the expected comet of the century Contents failed to materialise, however several of the other comets mentioned in the last issue, together with the Comet Section contacts 2 additional surprise shown above, put on good From the Director 2 appearances. 2011 L4 (PanSTARRS), 2012 F6 From the Secretary 3 (Lemmon), 2012 S1 (ISON) and 2013 R1 (Lovejoy) all Tales from the past 5 th became brighter than 6 magnitude and 2P/Encke, 2012 RAS meeting report 6 K5 (LINEAR), 2012 L2 (LINEAR), 2012 T5 (Bressi), Comet Section meeting report 9 2012 V2 (LINEAR), 2012 X1 (LINEAR), and 2013 V3 SPA meeting - Rob McNaught 13 (Nevski) were all binocular objects. Whether 2014 will Professional tales 14 bring such riches remains to be seen, but three comets The Legacy of Comet Hunters 16 are predicted to come within binocular range and we Project Alcock update 21 can hope for some new discoveries. We should get Review of observations 23 some spectacular close-up images of 67P/Churyumov- Prospects for 2014 44 Gerasimenko from the Rosetta spacecraft. BAA COMET SECTION NEWSLETTER 2 THE COMET’S TALE Comet Section contacts Director: Jonathan Shanklin, 11 City Road, CAMBRIDGE. CB1 1DP England. Phone: (+44) (0)1223 571250 (H) or (+44) (0)1223 221482 (W) Fax: (+44) (0)1223 221279 (W) E-Mail: [email protected] or [email protected] WWW page : http://www.ast.cam.ac.uk/~jds/ Assistant Director (Observations): Guy Hurst, 16 Westminster Close, Kempshott Rise, BASINGSTOKE, Hampshire.
    [Show full text]
  • Three Decades of Small-Telescope Science
    Three Decades of Small-Telescope Science A Report on the 2011 Society for Astronomical Sciences 30th Annual Sym- posium on Telescope Science Robert K. Buchheim For three decades, the Society for Astronomical Sciences has supported small telescope sci- ence, encouraged amateur research, and facilitated pro-am collaboration. On May 24-26, more than one hundred participants in the 30th anniversary SAS Symposium heard presentations cov- ering a wide range of astronomical topics, reaching from the laboratory to the distant cosmos. From Planets to Galaxies Sky & Telescope Editor-in-Chief Bob Naeye opened the technical session with a review of the amateur contributions to exoplanet discovery and research through monitoring of transits and micro-lensing events. R. Jay GaBany described his participation as an astro-imager in the search for evidence of galactic mergers. His exquisite deep images taken with his 24-inch telescope displayed the di- verse patterns of star streams that can be left behind when a dwarf galaxy is disrupted and ab- sorbed by a larger galaxy. He also noted that not all faint structures are evidence of galactic mergers: the faint ”loop” structure near M-81 is actually foreground “galactic cirrus” in our own Milky Way masquerading as a faux tidal loop. Education and Outreach Several papers related to education and outreach were presented. Debra Ceravolo applied her expertise in the generation and perception of colors, to describe a new method of merging narrow-band (e.g. Hα) and broad-band (e.g. RGB) images into a natural-color image that displays enhanced detail without glaring false colors.
    [Show full text]
  • Roberto Furfaro(2), Eric Christensen(1), Rob Seaman(1), Frank Shelly(1)
    SYNERGISTIC NEO-DEBRIS ACTIVITIES AT UNIVERSITY OF ARIZONA Vishnu Reddy(1), Roberto Furfaro(2), Eric Christensen(1), Rob Seaman(1), Frank Shelly(1) (1) Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona, USA, Email:[email protected]. (2) Department of Systems and Industrial Engineering, University of Arizona, Tucson, Arizona, USA. ABSTRACT and its neighbour, the 61-inch Kuiper telescope (V06) for deep follow-up. Our survey telescopes rely on 111 The University of Arizona (UoA) is a world leader in megapixel 10K cameras that give G96 a 5 square-degree the detection and characterization of near-Earth objects and 703 a 19 square-degree field of view. (NEOs). More than half of all known NEOs have been Catalina Sky Survey has been a dominant contributor to discovered by two surveys (Catalina Sky Survey or CSS the discovery of near Earth asteroids and comets over its and Spacewatch) based at UoA. All three known Earth more than two decades of operation. In 2018, CSS was impactors (2008 TC3, 2014 AA and 2018 LA) were the first NEO survey to discover >1000 new NEOs in a discovered by the Catalina Sky Survey prior to impact single year, including five larger than one kilometre, enabling scientists to recover samples for two of them. and more than 200 > 140 metres. Capitalizing on our nearly half century of leadership in NEO discovery and characterization, UoA has Our survey was a major contributor satisfying the embarked on a comprehensive space situational international Spaceguard Goal (1992) [4] of finding awareness program to resolve the debris problem in cis- 90% of the NEAs larger than 1-km in diameter, and has lunar space.
    [Show full text]
  • The Geology and Geophysics of Kuiper Belt Object (486958) Arrokoth
    science.sciencemag.org/cgi/content/full/science.aay3999/DC1 Supplementary Materials for The geology and geophysics of Kuiper Belt object (486958) Arrokoth J. R. Spencer*, S. A. Stern, J. M Moore, H. A. Weaver, K. N. Singer, C. B Olkin, A. J. Verbiscer, W. B. McKinnon, J. Wm. Parker, R. A. Beyer, J. T. Keane, T. R. Lauer, S. B. Porter, O. L. White, B. J. Buratti, M. R. El-Maarry, C. M. Lisse, A. H. Parker, H. B. Throop, S. J. Robbins, O. M. Umurhan, R. P. Binzel, D. T. Britt, M. W. Buie, A. F. Cheng, D. P. Cruikshank, H. A. Elliott, G. R. Gladstone, W. M. Grundy, M. E. Hill, M. Horanyi, D. E. Jennings, J. J. Kavelaars, I. R. Linscott, D. J. McComas, R. L. McNutt Jr., S. Protopapa, D. C. Reuter, P. M. Schenk, M. R. Showalter, L. A. Young, A. M. Zangari, A. Y. Abedin, C. B. Beddingfield, S. D. Benecchi, E. Bernardoni, C. J. Bierson, D. Borncamp, V. J. Bray, A. L. Chaikin, R. D. Dhingra, C. Fuentes, T. Fuse, P. L Gay, S. D. J. Gwyn, D. P. Hamilton, J. D. Hofgartner, M. J. Holman, A. D. Howard, C. J. A. Howett, H. Karoji, D. E. Kaufmann, M. Kinczyk, B. H. May, M. Mountain, M. Pätzold, J. M. Petit, M. R. Piquette, I. N. Reid, H. J. Reitsema, K. D. Runyon, S. S. Sheppard, J. A. Stansberry, T. Stryk, P. Tanga, D. J. Tholen, D. E. Trilling, L. H. Wasserman *Corresponding author. Email: [email protected] Published 13 February 2020 on Science First Release DOI: 10.1126/science.aay3999 This PDF file includes: Materials and Methods Supplementary Text Figs.
    [Show full text]
  • Planetary Defense Final Report I
    Team Project - Planetary Defense Final Report i Team Project - Planetary Defense Final Report ii Team Project - Planetary Defense Cover designed by: Tihomir Dimitrov Images courtesy of: Earth Image - NASA US Geological Survey Detection Image - ESA's Optical Ground Station Laser Tags ISS Deflection Image - IEEE Space Based Lasers Collaboration Image - United Nations General Assembly Building Outreach Image - Dreamstime teacher with students in classroom Evacuation Image - Libyan City of Syrte destroyed in 2011 Shield Image - Silver metal shield PNG image The cover page was designed to include a visual representation of the roadmap for a robust Planetary Defense Program that includes five elements: detection, deflection, global collaboration, outreach, and evacuation. The shield represents the idea of defending our planet, giving confidence to the general public that the Planetary Defense elements are reliable. The orbit represents the comet threat and how it is handled by the shield, which represents the READI Project. The curved lines used in the background give a sense of flow representing the continuation and further development for Planetary Defense programs after this team project, as we would like for everyone to be involved and take action in this noble task of protecting Earth. The 2015 Space Studies Program of the International Space University was hosted by the Ohio University, Athens, Ohio, USA. While all care has been taken in the preparation of this report, ISU does not take any responsibility for the accuracy of its content.
    [Show full text]
  • A Composite Luminous and Dark Flight Model Allowing Strewn Field Prediction
    EGU21-15687, updated on 25 Sep 2021 https://doi.org/10.5194/egusphere-egu21-15687 EGU General Assembly 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. A composite luminous and dark flight model allowing strewn field prediction Maria Gritsevich1,2,3 and Jarmo Moilanen1,3 1Finnish Geospatial Research Institute (FGI), Masala, Finland ([email protected]) 2Department of Physics, University of Helsinki, Finland 3Finnish Fireball Network, Helsinki, Finland As of today, instrumentally observed meteorite falls account for only 37 recovered meteorite cases, with derived Solar System orbit, out of 65098 registered meteorite names. To bridge this knowledge gap, a number of fireball networks have been set up around the globe. These networks regularly obtain thousands of records of well-observed meteor phenomena, some of which may be classified as a likely meteorite fall (Sansom et al. 2019). A successful recovery of a meteorite from the fireball event often requires that the science team can be promptly directed to a well- defined search area. Here we present a neat Monte Carlo model, which comprises adequate representation of the processes occurring during the luminous trajectory coupled together with the dark flight (Moilanen et al. 2021). In particular, the model accounts for fragmentation and every generated fragment may be followed on its individual trajectory. Yet, the algorithm accounts only for the mass constrained by the observed deceleration, so that the model does not overestimate the total mass of the fragments on the ground (and this mass may also be retrieved as zero). We demonstrate application of the model using historical examples of well-documented meteorite falls, which illustrate a good match to the actual strewn field with the recovered meteorites, both, in terms of fragments’ masses and their spatial distribution on the ground.
    [Show full text]
  • 6Th IAA Planetary Defense Conference 29Th April – 3Rd May, 2019 Washington DC Area, USA PROGRAM
    2019 IAA Planetary Defense Conference: 29 APRIL – 3 May 2019 Page 1 6th IAA Planetary Defense Conference 29th April – 3rd May, 2019 Washington DC area, USA PROGRAM http://pdc.iaaweb.org 2019 IAA Planetary Defense Conference: 29 APRIL – 3 May 2019 Page 2 2019 IAA Planetary Defense Conference: 29 APRIL – 3 May 2019 Page 3 DAY 1 Monday 29 April 2019 0800 REGISTRATION 0850 OPENING REMARKS: Conference Organizers 0900 WELCOME: Jason Kalirai, Civil Space Mission Area Executive, JHUAPL 0905 WELCOME: Welcome - GSFC 0910 KEYNOTE: The Honorable James Bridenstine, NASA Administrator 0940 BREAK SESSION 1: KEY DEVELOPMENTS SESSION ORGANIZERS: Detlef Koschny, Lindley Johnson 1000 IAA-PDC-19-01-01 The United Nations And Planetary Defence: Key Developments Following UNISPACE+50 In 2018 Kofler, OOSA 1012 IAA-PDC-19-01-02 Planetary Defence India: Capability, future requirements, and Deflection Strategy for 2019 PDC Singh, ISRO 1024 IAA-PDC-19-01-03 Planetary defence activities at the European Space Agency Jehn, ESA 1036 IAA-PDC-19-01-04 Planetary Defense Program of the United States Johnson, NASA 1048 IAA-PDC-19-01-05 Israel Space Agency & Planetary Defense Harel Ben-Ami, ISA SESSION 2: ADVANCEMENTS IN NEO DISCOVERY & CHARACTERIZATION SESSION ORGANIZERS: Alan Harris (US), James (Gerbs) Bauer, Giovanni Valsecchi, Amy Mainzer 1100 IAA-PDC-19-02-01 Recent Evolutions In ESA’s NEO Coordination Centre System Cano, Italy 1112 IAA-PDC-19-02-02 NEODyS services migration to ESA’s NEO Coordination Centre: the effort and the improvements Bernardi, Italy 1124 IAA-PDC-19-02-03
    [Show full text]
  • The Recovery of Asteroid 2008 TC3
    Meteoritics & Planetary Science 1–33 (2010) doi: 10.1111/j.1945-5100.2010.01116.x The recovery of asteroid 2008 TC3 Muawia H. SHADDAD1, Peter JENNISKENS2*, Diyaa NUMAN1, Ayman M. KUDODA1, Saadia ELSIR3, Ihab F. RIYAD1, Awad Elkareem ALI4, Mohammed ALAMEEN1, Nada M. ALAMEEN1, Omer EID1, Ahmed T. OSMAN1, Mohamed I. AbuBAKER1, Mohamed YOUSIF1, Steven R. CHESLEY5, Paul W. CHODAS5, Jim ALBERS2, Wayne N. EDWARDS6,7, Peter G. BROWN6, Jacob KUIPER8, and Jon M. FRIEDRICH9,10 1Department of Physics, University of Khartoum, P.O. Box 321, Khartoum 11115, Sudan 2SETI Institute, Carl Sagan Center, 189 Bernardo Avenue, Mountain View, California 94043, USA 3Department of Physics, Juba University, P.O. Box 321, Khartoum 11115, Juba, Sudan 4Department of Chemistry, University of Khartoum, P.O. Box 321, Khartoum 11115, Sudan 5Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA 6Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7, Canada 7Canadian Hazards Information Service, Natural Resources Canada, 7 Observatory Crescent Ottawa, Ontario K1A 0Y3, Canada 8Royal Netherlands Meteorological Institute, Wilhelminalaan 10, 3732 GK De Bilt, The Netherlands 9Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, New York 10458, USA 10Department of Earth and Planetary Sciences, American Museum of Natural History, 79th Street at Central Park West, New York, New York 10025, USA *Corresponding author. E-mail: [email protected] (Received 25 January 2010; revision accepted 17 September 2010) Abstract–On October 7, 2008, asteroid 2008 TC3 impacted Earth and fragmented at 37 km altitude above the Nubian Desert in northern Sudan. The area surrounding the asteroid’s approach path was searched, resulting in the first recovery of meteorites from an asteroid observed in space.
    [Show full text]