A Randomized Polynomial-Time Simplex Algorithm for Linear Programming

Total Page:16

File Type:pdf, Size:1020Kb

A Randomized Polynomial-Time Simplex Algorithm for Linear Programming A Randomized Polynomial-Time Simplex Algorithm for Linear Programming Jonathan A. Kelner∗ Daniel A. Spielmany Computer Science and Artificial Intelligence Department of Computer Science Laboratory Yale University Massachusetts Institute of Technology ABSTRACT trast, algorithms have been developed for solving linear pro- We present the first randomized polynomial-time simplex grams that do have polynomial worst-case complexity [10, algorithm for linear programming. Like the other known 9, 5, 1]. Most notable among these have been the ellipsoid polynomial-time algorithms for linear programming, its run- method [10] and various interior-point methods [9]. All pre- ning time depends polynomially on the number of bits used vious polynomial-time algorithms for linear programming to represent its input. of which we are aware differ from simplex methods in that We begin by reducing the input linear program to a spe- they are fundamentally geometric algorithms: they work ei- cial form in which we merely need to certify boundedness. ther by moving points inside the feasible set, or by enclosing As boundedness does not depend upon the right-hand-side the feasible set in an ellipse. Simplex methods, on the other vector, we run the shadow-vertex simplex method with a hand, walk along the vertices and edges defined by the con- random right-hand-side vector. Thus, we do not need to straints. The question of whether such an algorithm can be bound the diameter of the original polytope. designed to run in polynomial time has been open for over Our analysis rests on a geometric statement of indepen- fifty years. dent interest: given a polytope Ax b in isotropic posi- We recall that a linear program is a constrained optimiza- tion, if one makes a polynomially small≤ perturbation to b tion problem of the form: then the number of edges of the projection of the perturbed maximize c x (1) polytope onto a random 2-dimensional subspace is expected · subject to Ax b; x Rd; to be polynomial. ≤ 2 where c Rd and b Rn are column vectors, and A is an 2 2 1. INTRODUCTION n d matrix. The vector c is the objective function, and the× set P := x Ax b is the set of feasible points. If Linear programming is one of the fundamental problems it is non-emptfy, Pj is a≤congvex polyhedron, and each of its of optimization. Since Dantzig [3] introduced the simplex extreme vertices will be determined by d constraints of the method for solving linear programs, linear programming has form a x = b , where a ; : : : ;a are the rows of A. It been applied in a diverse range of fields including economics, i i 1 n is not difficult· to show thatf the objectivg e function is always operations research, and combinatorial optimization. From maximized at an extreme vertex, if this maximum is finite. a theoretical standpoint, the study of linear programming The first simplex methods used heuristics to guide a walk has motivated major advances in the study of polytopes, on the graph of vertices and edges of P in search of one that convex geometry, combinatorics, and complexity theory. maximizes the objective function. In order to show that any While the simplex method was the first practically useful such method runs in worst-case polynomial time, one must approach to solving linear programs and is still one of the prove a polynomial upper bound on the diameter of polytope most popular, it was unknown whether any variant of the graphs. Unfortunately, the existence of such a bound is a simplex method could be shown to run in polynomial time wide-open question: the famous Hirsch Conjecture asserts in the worst case. In fact, most common variants have been that the graph of vertices and edges of P has diameter at shown to have exponential worst-case complexity. In con- most n d, whereas the best known bound for this diameter is superp−olynomial in n and d [8]. yPartially supported by NSF grant CCR-0324914. Later simplex methods, such as the self-dual simplex method ∗Partially supported by an NSF Graduate Fellowship and NSF grant CCR-0324914. and the criss-cross method, avoided this obstacle by consid- ering more general graphs for which diameter bounds were known. However, even though these graphs have polynomial diameters, they have exponentially many vertices, and no- body had been able to design a polynomial-time algorithm Permission to make digital or hard copies of all or part of this work for that provably finds the optimum after following a polyno- personal or classroom use is granted without fee provided that copies are mial number of edges. In fact, essentially every such algo- not made or distributed for profit or commercial advantage and that copies rithm has well-known counterexamples on which the walk bear this notice and the full citation on the first page. To copy otherwise, to takes exponentially many steps. republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. In this paper, we present the first randomized polynomial- Copyright 200X ACM X­XXXXX­XX­X/XX/XX ...$5.00. time simplex method. Like the other known polynomial- time algorithms for linear programming, the running time start, the shadow-vertex method requires as input a vertex of our algorithm depends polynomially on the bit-length of v 0 of P . It then chooses some objective function optimized the input. We do not prove an upper bound on the diame- at v 0, say f , sets S = span(c; f ), and considers the shadow ter of polytopes. Rather we reduce the linear programming of P onto S. If no degeneracies occur, then for each vertex y problem to the problem of determining whether a set of lin- of P that projects onto the boundary of the shadow, there is ear constraints defines an unbounded polyhedron. We then a unique neighbor of y on P that projects onto the next ver- randomly perturb the right-hand sides of these constraints, tex of the shadow in clockwise-order. Thus, by tracing the observing that this does not change the answer, and we then vertices of P that map to the boundary of the shadow, the use a shadow-vertex simplex method to try solve the per- shadow-vertex method can move from the vertex it knows turbed problem. When the shadow-vertex method fails, it that optimizes f to the vertex that optimizes c. The number suggests a way to alter the distributions of the perturba- of steps that the method takes will be bounded by the num- tions, after which we apply the method again. We prove ber of edges of the shadow polygon. For future reference, that the number of iterations of this loop is polynomial with we call the shadow-vertex simplex method by high probability. ShadowVertex(a ; : : : ;a ; b; c; S; v ; s); It is important to note that the vertices considered during 1 n 0 the course of the algorithm may not all appear on a single where a 1; : : : ;a n; b, and c specify a linear program of form (1), polytope. Rather, they may be viewed as appearing on the S is a two-dimensional subspace containing c, and v 0 is the convex hulls of polytopes with different b-vectors. It is well- start vertex, which must optimize some objective function known that the graph of all of these \potential" vertices has in S. We allow the method to run for at most s steps. If small diameter. However, there was previously no way to it has not found the vertex optimizing c within that time, guide a walk among these potential vertices to one optimiz- it should return (fail; y), where y is its current vertex. If ing any particular objective function. Our algorithm uses it has solved the linear program, it either returns (opt; x), the graphs of polytopes \near" P to impose structure on where x is the solution, or unbounded if it was unbounded. this graph and to help to guide our walk. In the next section, we will show that if the polytope is Perhaps the message to take away from this is that instead in isotropic position and the distances of the facets from the of worrying about the combinatorics of the natural polytope origin are randomly perturbed, then the number of edges of P , one can reduce the linear programming problem to one the shadow onto a random S is expected to be polynomial. whose polytope is more tractable. The first result of our The one geometric fact that we will require in our analysis paper, and the inspiration for the algorithm, captures this is that if an edge of P is tight for inequalities a i x = bi, idea by showing that if one slightly perturbs the b-vector for i I, then the edge projects to an edge in the shado· w if 2 of a polytope in near-isotropic position, then there will be a and only if S intersects the convex hull of a i i I . Below, polynomial-step path from the vertex minimizing to the ver- we will often abuse notation by identifying anf edgeg 2 with the tex maximizing a random objective function. Moreover, this set of constraints I for which it is tight. path may be found by the shadow-vertex simplex method. We stress that while our algorithm involves a perturba- 3. THE SHADOW SIZE IN THE k-ROUND tion, it is intrinsically different from previous papers that CASE have provided average-case or smoothed analyses of linear programming.
Recommended publications
  • Revised Primal Simplex Method Katta G
    6.1 Revised Primal Simplex method Katta G. Murty, IOE 510, LP, U. Of Michigan, Ann Arbor First put LP in standard form. This involves floowing steps. • If a variable has only a lower bound restriction, or only an upper bound restriction, replace it by the corresponding non- negative slack variable. • If a variable has both a lower bound and an upper bound restriction, transform lower bound to zero, and list upper bound restriction as a constraint (for this version of algorithm only. In bounded variable simplex method both lower and upper bound restrictions are treated as restrictions, and not as constraints). • Convert all inequality constraints as equations by introducing appropriate nonnegative slack for each. • If there are any unrestricted variables, eliminate each of them one by one by performing a pivot step. Each of these reduces no. of variables by one, and no. of constraints by one. This 128 is equivalent to having them as permanent basic variables in the tableau. • Write obj. in min form, and introduce it as bottom row of original tableau. • Make all RHS constants in remaining constraints nonnega- tive. 0 Example: Max z = x1 − x2 + x3 + x5 subject to x1 − x2 − x4 − x5 ≥ 2 x2 − x3 + x5 + x6 ≤ 11 x1 + x2 + x3 − x5 =14 −x1 + x4 =6 x1 ≥ 1;x2 ≤ 1; x3;x4 ≥ 0; x5;x6 unrestricted. 129 Revised Primal Simplex Algorithm With Explicit Basis Inverse. INPUT NEEDED: Problem in standard form, original tableau, and a primal feasible basic vector. Original Tableau x1 ::: xj ::: xn −z a11 ::: a1j ::: a1n 0 b1 . am1 ::: amj ::: amn 0 bm c1 ::: cj ::: cn 1 α Initial Setup: Let xB be primal feasible basic vector and Bm×m be associated basis.
    [Show full text]
  • Chapter 6: Gradient-Free Optimization
    AA222: MDO 133 Monday 30th April, 2012 at 16:25 Chapter 6 Gradient-Free Optimization 6.1 Introduction Using optimization in the solution of practical applications we often encounter one or more of the following challenges: • non-differentiable functions and/or constraints • disconnected and/or non-convex feasible space • discrete feasible space • mixed variables (discrete, continuous, permutation) • large dimensionality • multiple local minima (multi-modal) • multiple objectives Gradient-based optimizers are efficient at finding local minima for high-dimensional, nonlinearly- constrained, convex problems; however, most gradient-based optimizers have problems dealing with noisy and discontinuous functions, and they are not designed to handle multi-modal problems or discrete and mixed discrete-continuous design variables. Consider, for example, the Griewank function: n n x2 f(x) = P i − Q cos pxi + 1 4000 i i=1 i=1 (6.1) −600 ≤ xi ≤ 600 Mixed (Integer-Continuous) Figure 6.1: Graphs illustrating the various types of functions that are problematic for gradient- based optimization algorithms AA222: MDO 134 Monday 30th April, 2012 at 16:25 Figure 6.2: The Griewank function looks deceptively smooth when plotted in a large domain (left), but when you zoom in, you can see that the design space has multiple local minima (center) although the function is still smooth (right) How we could find the best solution for this example? • Multiple point restarts of gradient (local) based optimizer • Systematically search the design space • Use gradient-free optimizers Many gradient-free methods mimic mechanisms observed in nature or use heuristics. Unlike gradient-based methods in a convex search space, gradient-free methods are not necessarily guar- anteed to find the true global optimal solutions, but they are able to find many good solutions (the mathematician's answer vs.
    [Show full text]
  • The Simplex Algorithm in Dimension Three1
    The Simplex Algorithm in Dimension Three1 Volker Kaibel2 Rafael Mechtel3 Micha Sharir4 G¨unter M. Ziegler3 Abstract We investigate the worst-case behavior of the simplex algorithm on linear pro- grams with 3 variables, that is, on 3-dimensional simple polytopes. Among the pivot rules that we consider, the “random edge” rule yields the best asymptotic behavior as well as the most complicated analysis. All other rules turn out to be much easier to study, but also produce worse results: Most of them show essentially worst-possible behavior; this includes both Kalai’s “random-facet” rule, which is known to be subexponential without dimension restriction, as well as Zadeh’s de- terministic history-dependent rule, for which no non-polynomial instances in general dimensions have been found so far. 1 Introduction The simplex algorithm is a fascinating method for at least three reasons: For computa- tional purposes it is still the most efficient general tool for solving linear programs, from a complexity point of view it is the most promising candidate for a strongly polynomial time linear programming algorithm, and last but not least, geometers are pleased by its inherent use of the structure of convex polytopes. The essence of the method can be described geometrically: Given a convex polytope P by means of inequalities, a linear functional ϕ “in general position,” and some vertex vstart, 1Work on this paper by Micha Sharir was supported by NSF Grants CCR-97-32101 and CCR-00- 98246, by a grant from the U.S.-Israeli Binational Science Foundation, by a grant from the Israel Science Fund (for a Center of Excellence in Geometric Computing), and by the Hermann Minkowski–MINERVA Center for Geometry at Tel Aviv University.
    [Show full text]
  • 11.1 Algorithms for Linear Programming
    6.854 Advanced Algorithms Lecture 11: 10/18/2004 Lecturer: David Karger Scribes: David Schultz 11.1 Algorithms for Linear Programming 11.1.1 Last Time: The Ellipsoid Algorithm Last time, we touched on the ellipsoid method, which was the first polynomial-time algorithm for linear programming. A neat property of the ellipsoid method is that you don’t have to be able to write down all of the constraints in a polynomial amount of space in order to use it. You only need one violated constraint in every iteration, so the algorithm still works if you only have a separation oracle that gives you a separating hyperplane in a polynomial amount of time. This makes the ellipsoid algorithm powerful for theoretical purposes, but isn’t so great in practice; when you work out the details of the implementation, the running time winds up being O(n6 log nU). 11.1.2 Interior Point Algorithms We will finish our discussion of algorithms for linear programming with a class of polynomial-time algorithms known as interior point algorithms. These have begun to be used in practice recently; some of the available LP solvers now allow you to use them instead of Simplex. The idea behind interior point algorithms is to avoid turning corners, since this was what led to combinatorial complexity in the Simplex algorithm. They do this by staying in the interior of the polytope, rather than walking along its edges. A given constrained linear optimization problem is transformed into an unconstrained gradient descent problem. To avoid venturing outside of the polytope when descending the gradient, these algorithms use a potential function that is small at the optimal value and huge outside of the feasible region.
    [Show full text]
  • Chapter 1 Introduction
    Chapter 1 Introduction 1.1 Motivation The simplex method was invented by George B. Dantzig in 1947 for solving linear programming problems. Although, this method is still a viable tool for solving linear programming problems and has undergone substantial revisions and sophistication in implementation, it is still confronted with the exponential worst-case computational effort. The question of the existence of a polynomial time algorithm was answered affirmatively by Khachian [16] in 1979. While the theoretical aspects of this procedure were appealing, computational effort illustrated that the new approach was not going to be a competitive alternative to the simplex method. However, when Karmarkar [15] introduced a new low-order polynomial time interior point algorithm for solving linear programs in 1984, and demonstrated this method to be computationally superior to the simplex algorithm for large, sparse problems, an explosion of research effort in this area took place. Today, a variety of highly effective variants of interior point algorithms exist (see Terlaky [32]). On the other hand, while exterior penalty function approaches have been widely used in the context of nonlinear programming, their application to solve linear programming problems has been comparatively less explored. The motivation of this research effort is to study how several variants of exterior penalty function methods, suitably modified and fine-tuned, perform in comparison with each other, and to provide insights into their viability for solving linear programming problems. Many experimental investigations have been conducted for studying in detail the simplex method and several interior point algorithms. Whereas these methods generally perform well and are sufficiently adequate in practice, it has been demonstrated that solving linear programming problems using a simplex based algorithm, or even an interior-point type of procedure, can be inadequately slow in the presence of complicating constraints, dense coefficient matrices, and ill- conditioning.
    [Show full text]
  • A Branch-And-Bound Algorithm for Zero-One Mixed Integer
    A BRANCH-AND-BOUND ALGORITHM FOR ZERO- ONE MIXED INTEGER PROGRAMMING PROBLEMS Ronald E. Davis Stanford University, Stanford, California David A. Kendrick University of Texas, Austin, Texas and Martin Weitzman Yale University, New Haven, Connecticut (Received August 7, 1969) This paper presents the results of experimentation on the development of an efficient branch-and-bound algorithm for the solution of zero-one linear mixed integer programming problems. An implicit enumeration is em- ployed using bounds that are obtained from the fractional variables in the associated linear programming problem. The principal mathematical result used in obtaining these bounds is the piecewise linear convexity of the criterion function with respect to changes of a single variable in the interval [0, 11. A comparison with the computational experience obtained with several other algorithms on a number of problems is included. MANY IMPORTANT practical problems of optimization in manage- ment, economics, and engineering can be posed as so-called 'zero- one mixed integer problems,' i.e., as linear programming problems in which a subset of the variables is constrained to take on only the values zero or one. When indivisibilities, economies of scale, or combinatoric constraints are present, formulation in the mixed-integer mode seems natural. Such problems arise frequently in the contexts of industrial scheduling, investment planning, and regional location, but they are by no means limited to these areas. Unfortunately, at the present time the performance of most compre- hensive algorithms on this class of problems has been disappointing. This study was undertaken in hopes of devising a more satisfactory approach. In this effort we have drawn on the computational experience of, and the concepts employed in, the LAND AND DoIGE161 Healy,[13] and DRIEBEEKt' I algorithms.
    [Show full text]
  • Arxiv:1706.05795V4 [Math.OC] 4 Nov 2018
    BCOL RESEARCH REPORT 17.02 Industrial Engineering & Operations Research University of California, Berkeley, CA 94720{1777 SIMPLEX QP-BASED METHODS FOR MINIMIZING A CONIC QUADRATIC OBJECTIVE OVER POLYHEDRA ALPER ATAMTURK¨ AND ANDRES´ GOMEZ´ Abstract. We consider minimizing a conic quadratic objective over a polyhe- dron. Such problems arise in parametric value-at-risk minimization, portfolio optimization, and robust optimization with ellipsoidal objective uncertainty; and they can be solved by polynomial interior point algorithms for conic qua- dratic optimization. However, interior point algorithms are not well-suited for branch-and-bound algorithms for the discrete counterparts of these problems due to the lack of effective warm starts necessary for the efficient solution of convex relaxations repeatedly at the nodes of the search tree. In order to overcome this shortcoming, we reformulate the problem us- ing the perspective of the quadratic function. The perspective reformulation lends itself to simple coordinate descent and bisection algorithms utilizing the simplex method for quadratic programming, which makes the solution meth- ods amenable to warm starts and suitable for branch-and-bound algorithms. We test the simplex-based quadratic programming algorithms to solve con- vex as well as discrete instances and compare them with the state-of-the-art approaches. The computational experiments indicate that the proposed al- gorithms scale much better than interior point algorithms and return higher precision solutions. In our experiments, for large convex instances, they pro- vide up to 22x speed-up. For smaller discrete instances, the speed-up is about 13x over a barrier-based branch-and-bound algorithm and 6x over the LP- based branch-and-bound algorithm with extended formulations.
    [Show full text]
  • The Revised Simplex Algorithm Assume Again That We Are Given an LP in Canonical Form, Which We Pad with Slack Variables
    Optimization Lecture 08 12/06/11 The Revised Simplex Algorithm Assume again that we are given an LP in canonical form, which we pad with ͡ slack variables. Let us place the corresponding columns on the left of the initial tableau: 0 0 ⋯ 0 ͖ ̓ As we have argued before, after ℓ iterations of the Simplex algorithm, we get: Ǝͮͤ ͭͥ ⋯ ͭ( ͯͥ ͬͤ ̼ 2 The Revised Simplex Algorithm We call this part of the tableau in the ℓ-th iteration CARRYℓ It is enough to store this part of the tableau and the ordered set Č of basis columns to execute the Simplex algorithm: Simplex with Column Generation (1) [Pricing] Compute relative costs ͗%̅ Ɣ ͗% Ǝ ͭ ̻% one at a time until we find a positive one, say ͧ, or conclude that the solution is optimal. (2) [Column Generation] Generate column X. of the ℓ-th tableau by ͯͥ ͒. Ɣ ̼ ̻.. Determine the pivot element, say ͬ-. , by the ususal ratio test ͖Ŭ min $ $∶3ĜĦ ϥͤ ͬ$. or discover that the optimal value is unbounded. (3) [Pivot] Update CARRYℓ to CARRYℓͮͥ by performing the row operations determined by column ͒. when pivoting on ͬ-. (4) [Update Basis] Replace the ͦ-th element of Č by ͧ, the index of the new basis column. 3 The Revised Simplex Algorithm Is the revised Simplex algorithm faster than the standard implementation that updates the full tableau in each step? In the worst case, the advantage is small. However, in practice two reasons speak for the revised method: 1.
    [Show full text]
  • Practical Guide to the Simplex Method of Linear Programming
    Practical Guide to the Simplex Method of Linear Programming Marcel Oliver Revised: September 28, 2020 1 The basic steps of the simplex algorithm Step 1: Write the linear programming problem in standard form Linear programming (the name is historical, a more descriptive term would be linear optimization) refers to the problem of optimizing a linear objective function of several variables subject to a set of linear equality or inequality constraints. Every linear programming problem can be written in the following stan- dard form. Minimize ζ = cT x (1a) subject to Ax = b ; (1b) x ≥ 0 : (1c) n Here x 2 R is a vector of n unknowns, A 2 M(m × n) with n typically n much larger than m, c 2 R the coefficient vector of the objective function, and the expression x ≥ 0 signifies xi ≥ 0 for i = 1; : : : ; n. For simplicity, we assume that rank A = m, i.e., that the rows of A are linearly independent. Turning a problem into standard form involves the following steps. (i) Turn Maximization into minimization and write inequalities in stan- dard order. This step is obvious. Multiply expressions, where appropriate, by −1. 1 (ii) Introduce slack variables to turn inequality constraints into equality constraints with nonnegative unknowns. Any inequality of the form a1 x1 + ··· + an xn ≤ c can be replaced by a1 x1 + ··· + an xn + s = c with s ≥ 0. (iii) Replace variables which are not sign-constrained by differences. Any real number x can be written as the difference of nonnegative numbers x = u − v with u; v ≥ 0.
    [Show full text]
  • Simplex Algorithm(S)
    Simplicibus itaque verbis gaudet Mathematica Veritas, cum etiam per se simplex sit Veritatis oratio. [And thus Mathematical Truth prefers simple words, because the language of Truth is itself simple.] — Tycho Brahe (quoting Seneca (quoting Euripides)) Epistolarum astronomicarum liber primus (1596) When a jar is broken, the space that was inside Merges into the space outside. In the same way, my mind has merged in God; To me, there appears no duality. — Sankara, Viveka-Chudamani (c. 700), translator unknown Chapter I Simplex Algorithm(s) [Read Chapter H first.] In this chapter I will describe several variants of the simplex algorithm for solving linear programming problems, first proposed by George Dantzig in 1947. Although most variants of the simplex algorithm perform well in practice, no deterministic simplex variant is known to run in sub-exponential time in the worst case.¹ However, if the dimension of the problem is considered a constant, there are several variants of the simplex algorithm that run in linear time. I’ll describe a particularly simple randomized algorithm due to Raimund Seidel. My approach to describing these algorithms relies much more heavily on geometric intuition than the usual linear-algebraic formalism. This works better for me, but your mileage may vary. For a more traditional description of the simplex algorithm, see Robert Vanderbei’s excellent textbook Linear Programming: Foundations and Extensions [Springer, 2001], which can be freely downloaded (but not legally printed) from the author’s website. 1However, there are randomized variants of the simplex algorithm that run in subexponential expected time, most notably the RandomFacet algorithm analyzed by Gil Kalai in 1992, and independently by Jiří Matoušek, Micha Sharir, and Emo Welzl in 1996.
    [Show full text]
  • Lectures 3 (Part), 4 and 5
    Lectures 3 (part), 4 and 5 Uri Feige March 29 (part) April 12 and April 19, 2015 1 The simplex algorithm The simplex algorithm was designed by Danzig in 1947. We present the main ideas involved. 1.1 A geometric view Recall that a linear program defines a polyhedron. For simplicity, let us assume here that this polyhedron is nonempty (i.e., the LP is feasible) and bounded (namely, it is a polytope). Then we know that the optimal value of the LP is attained at a vertex of the polytope (equivalently, at a basic feasible solution to the LP). We say that two vertices of a polytope are adjacent if they are connected by an edge of the polytope. The basic idea of the simplex algorithm is as follows. One starts at an arbitrary vertex of the polytope. (The question of how to find a starting vertex will be addressed shortly.) Thereafter, at every iteration, the algorithm moves to a neighboring vertex of better value (of the objective function). The algorithm ends when such a move is no longer possible, meaning that the current vertex is a local optimum compared to all adjacent vertices. The above description gives only the basic idea. A more serious treatment invloves prov- ing that the solution found is optimal, showing how one can implement a single iteration, deciding which of several improving adjacent vertices to move to, how to find a starting feasible vertex, deal with polyhedrons that are unbounded, with degeneracies, analysing the number of iterations required (and showing that this number is finite) and so on.
    [Show full text]
  • Advanced Operations Research Techniques IE316 Lecture 7
    Advanced Operations Research Techniques IE316 Lecture 7 Dr. Ted Ralphs IE316 Lecture 7 1 Reading for This Lecture • Bertsimas 3.2-3.4 1 IE316 Lecture 7 2 The Simplex Method A typical iteration of the simplex method: 1. Start with a specified basis matrix B and a corresponding BFS x0. 2. Compute the reduced cost vector c¯. If c¯ ≥ 0, then x0 is optimal. 3. Otherwise, choose j for which c¯j < 0. −1 ∗ 4. Compute u = B Aj. If u ≤ 0, then θ = 1 and the LP is unbounded. x0 5. Otherwise, θ∗ = min B(i) . fijui>0g ui x0 6. Choose l such that θ∗ = B(l) and form a new basis matrix, replacing ul AB(l) with Aj. 1 ∗ 1 0 ∗ 7. The values of the new basic variables are xj = θ and xB(i) = xB(i)−θ ui if i =6 l. 2 IE316 Lecture 7 3 Some Notes on the Simplex Method • We will see later how to construct an initial basic feasible solution. • We saw last time that each iteration of the simplex methods ends with a new basic feasible solution. • This is all we need to prove the following result: Theorem 1. Consider a linear program over a nonempty polyhedron P and assume every basic feasible solution is nondegenerate. Then the simplex method terminates after a finite number of iterations in one of the following two conditions: – We obtain an optimal basis and a corresponding optimal basic feasible solution. – We obtain a vector d 2 Rn such that Ad = 0, d ≥ 0, and cT d < 0, and the LP is unbounded.
    [Show full text]