The Soviet Robotic Lunar & Planetary Exploration Program Wesley T
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lunar Ionosphere Exploration Method Using Auroral Kilometric Radiation
Earth Planets Space, 63, 47–56, 2011 Lunar ionosphere exploration method using auroral kilometric radiation Yoshitaka Goto1, Takamasa Fujimoto1, Yoshiya Kasahara1, Atsushi Kumamoto2, and Takayuki Ono2 1Kanazawa University, Kanazawa, Japan 2Tohoku University, Sendai, Japan (Received June 3, 2009; Revised November 10, 2010; Accepted January 14, 2011; Online published February 21, 2011) The evidence of a lunar ionosphere provided by radio occultation experiments performed by the Soviet spacecraft Luna 19 and 22 has been controversial for the past three decades because the observed large density is difficult to explain theoretically without magnetic shielding from the solar wind. The KAGUYA mission provided an opportunity to investigate the lunar ionosphere with another method. The natural plasma wave receiver (NPW) and waveform capture (WFC) instruments, which are subsystems of the lunar radar sounder (LRS) on board the lunar orbiter KAGUYA, frequently observe auroral kilometric radiation (AKR) propagating from the Earth. The dynamic spectra of the AKR sometimes exhibit a clear interference pattern that is caused by phase differences between direct waves and waves reflected on a lunar surface or a lunar ionosphere if it exists. It was hypothesized that the electron density profiles above the lunar surface could be evaluated by comparing the observed interference pattern with the theoretical interference patterns constructed from the profiles with ray tracing. This method provides a new approach to examining the lunar ionosphere that does not involve the conventional radio occultation technique. Key words: KAGUYA, lunar ionosphere, auroral kilometric radiation. 1. Introduction 2001; Kurata et al., 2005). The dense plasma layers may The lunar atmosphere is extremely tenuous compared to be maintained by these strong fields. -
Exploration of the Moon
Exploration of the Moon The physical exploration of the Moon began when Luna 2, a space probe launched by the Soviet Union, made an impact on the surface of the Moon on September 14, 1959. Prior to that the only available means of exploration had been observation from Earth. The invention of the optical telescope brought about the first leap in the quality of lunar observations. Galileo Galilei is generally credited as the first person to use a telescope for astronomical purposes; having made his own telescope in 1609, the mountains and craters on the lunar surface were among his first observations using it. NASA's Apollo program was the first, and to date only, mission to successfully land humans on the Moon, which it did six times. The first landing took place in 1969, when astronauts placed scientific instruments and returnedlunar samples to Earth. Apollo 12 Lunar Module Intrepid prepares to descend towards the surface of the Moon. NASA photo. Contents Early history Space race Recent exploration Plans Past and future lunar missions See also References External links Early history The ancient Greek philosopher Anaxagoras (d. 428 BC) reasoned that the Sun and Moon were both giant spherical rocks, and that the latter reflected the light of the former. His non-religious view of the heavens was one cause for his imprisonment and eventual exile.[1] In his little book On the Face in the Moon's Orb, Plutarch suggested that the Moon had deep recesses in which the light of the Sun did not reach and that the spots are nothing but the shadows of rivers or deep chasms. -
An Impacting Descent Probe for Europa and the Other Galilean Moons of Jupiter
An Impacting Descent Probe for Europa and the other Galilean Moons of Jupiter P. Wurz1,*, D. Lasi1, N. Thomas1, D. Piazza1, A. Galli1, M. Jutzi1, S. Barabash2, M. Wieser2, W. Magnes3, H. Lammer3, U. Auster4, L.I. Gurvits5,6, and W. Hajdas7 1) Physikalisches Institut, University of Bern, Bern, Switzerland, 2) Swedish Institute of Space Physics, Kiruna, Sweden, 3) Space Research Institute, Austrian Academy of Sciences, Graz, Austria, 4) Institut f. Geophysik u. Extraterrestrische Physik, Technische Universität, Braunschweig, Germany, 5) Joint Institute for VLBI ERIC, Dwingelo, The Netherlands, 6) Department of Astrodynamics and Space Missions, Delft University of Technology, The Netherlands 7) Paul Scherrer Institute, Villigen, Switzerland. *) Corresponding author, [email protected], Tel.: +41 31 631 44 26, FAX: +41 31 631 44 05 1 Abstract We present a study of an impacting descent probe that increases the science return of spacecraft orbiting or passing an atmosphere-less planetary bodies of the solar system, such as the Galilean moons of Jupiter. The descent probe is a carry-on small spacecraft (< 100 kg), to be deployed by the mother spacecraft, that brings itself onto a collisional trajectory with the targeted planetary body in a simple manner. A possible science payload includes instruments for surface imaging, characterisation of the neutral exosphere, and magnetic field and plasma measurement near the target body down to very low-altitudes (~1 km), during the probe’s fast (~km/s) descent to the surface until impact. The science goals and the concept of operation are discussed with particular reference to Europa, including options for flying through water plumes and after-impact retrieval of very-low altitude science data. -
350 International Atlas of Lunar Exploration 8 January 1973
:UP/3-PAGINATION/IAW-PROOFS/3B2/978«52181«5(M.3D 350 [7428] 19.8.20073:28PM 350 International Atlas of Lunar Exploration 8 January 1973: Luna 21 and Lunokhod 2 (Soviet Union) The 4850 kg Luna 21 spacecraft was launched from Baikonur at 06:56 UT on a Proton booster, placed in a low Earth parking orbit and then put on a lunar trajec tory. Power problems required that the Lunokhod solar panel be opened in flight to augment power, and stowed again for the trajectory correction and orbit insertion burns and for landing. On 12 January Luna 21 entered a 90 km by 100 km lunar orbit inclined 60° to the equator. After a day in orbit the low point was reduced to 16 km, and on 15 January after 40 orbits the vehicle braked and dropped to just 750 m above the surface. Then the main thrusters slowed the descent, and at :UP/3-PAGINATION/IAW-PROOFS/3B2/978«52181«5(M.3D 351 [7428] 19.8.20073:28PM Chronological sequence of missions and events 351 22 m a set of secondary thrusters took over until the After landing, Lunokhod 2 surveyed its surround spacecraft was only 1.5 meters high, when the thrusters ings. A rock partly blocked the west-facing ramp so the were shut off. Landing time was 23:35 UT. rover was driven east across a shallow crater, leaving the The site was in Le Monnier crater on the eastern edge lander at 01:14 UT on 16 January. It rested 30 m from of Mare Serenitatis, 180 km north of the Apollo 17 land the descent stage to recharge its batteries until 18 ing site, at 25.85° N, 30.45° E (Figure 327A). -
February 2022
FORECAST OF UPCOMING ANNIVERSARIES -- FEBRUARY 2022 116 Years Ago – 1902 February 4: Charles Lindbergh’s birthday. 90 Years Ago – 1932 February 19: Joseph Kerwin's birthday. 60 Years Ago – 1962 February 8: Tiros 4 launched by Thor Delta, 7:43 a.m., EST, Cape Canaveral, Fla. February 20: Mercury Atlas 6 (MA-6), Friendship 7 launched, with astronaut John H. Glenn, 9:47:39 a.m., first American to orbit the earth, Cape Canaveral, Fla. February 27: Discoverer 38 (Corona Mission 9030) launched by Thor, Vandenberg AFB. The last Discoverer named Corona mission. 55 Years Ago – 1967 February 4: Lunar Orbiter 3 launched by Atlas Agena, 8:17 p.m., EST, Cape Canaveral, Fla. February 8: Diademe 1 launched by Diamant A, Hammaguir, Algeria, French satellite. February 15: Diademe 2 launched by Diamant A, Hammaguir, Algeria, French satellite. 50 Years Ago – 1972 February 14: USSR launches Luna 20 (Lunik 20) at 03:27:59 UTC by Proton K from Baikonur which soft lands on the Moon four days later. A rotary-percussion drill retrieved samples from the surface which were returned to Earth by capsule on February 25. 45 Years Ago -1977 February 7: USSR launches Soyuz-24 from Baikonur. Cosmonauts: Viktor V.Gorbatko and Yuri N.Glazkov. Ferry flight to Salyut-5 space station. February 18: Enterprise, the first space shuttle orbiter, was flight tested at Dryden Flight Research Center. 40 Years Ago – 1982 February 25: Westar IV launched by Delta, 7:04 p.m., EST, Cape Canaveral, Fla. 35 Years Ago – 1987 February 5: Soyuz TM-2 launched from Baikonur, 2138 Moscow time, Yuri V. -
Dr. Sergei Fedorovich Teselkin Lavochkin Association, Russian Federation, [email protected]
69th International Astronautical Congress 2018 Paper ID: 44581 oral IAF SPACE EXPLORATION SYMPOSIUM (A3) Solar System Exploration (5) Author: Dr. Sergei Fedorovich Teselkin Lavochkin Association, Russian Federation, [email protected] \TO VENUS TOGETHER": RUSSIAN-AMERICAN JOINT ENCORE OF VENUS RESEARCHES WITH ORBITER, LANDER AND ATMOSPHERIC PROBES IN THE PROJECT \VENUS-D" Abstract S. Lemeshevskii, Candidate of Economics, [email protected] O. Grafodatskiy, Doctor of Engineering Sci- ence,[email protected] Kh.Karchaev, Candidate of Economics, [email protected] S. Teselkin, Candi- date of PhysicsMathematics,[email protected] V. Vorontsov, Doctor of Engineering Science, [email protected] Lavochkin Association, Russia Mission "Venera-D" by Lavochkin Association implies a long-term study of Venus. International pay- load is to be installed on orbiter, lander and long-living station on Venus surface. The project is a basis for further large-scale international missions to Venus, previously carried out in 1960-80s and early 1990s by Soviet and American spacecraft. A large amount of data on structure, soil composition, atmosphere, cloud layers, wind speed on the surface were accumulated. Soviet Venus research program was completed in 1986 by landing of \VEGA" (Venus-Halley's comet), one of the most successful projects in Lavochkin history. Since 1994 (mapping with the NASA Magellan mission) Venus was studied by two spacecraft: \Venus Express" (ESA, 2005-2014) and \Akatsuki" (JAXA, launch - 2010, start of operation - 2015). The first steps of \Venera-D" appeared in the early 2000s with the idea to provide operations on the planet's surface for several hours and possibly days. With the latest developments, unification of design solutions and new technical tools used in-house Lavochkin experts consider the mission \VEGA" as a prototype for the next automatic interplanetary station destined to Venus. -
THE SOVIET MOON PROGRAM in the 1960S, the United States Was Not the Only Country That Was Trying to Land Someone on the Moon and Bring Him Back to Earth Safely
AIAA AEROSPACE M ICRO-LESSON Easily digestible Aerospace Principles revealed for K-12 Students and Educators. These lessons will be sent on a bi-weekly basis and allow grade-level focused learning. - AIAA STEM K-12 Committee. THE SOVIET MOON PROGRAM In the 1960s, the United States was not the only country that was trying to land someone on the Moon and bring him back to Earth safely. The Union of Soviet Socialist Republics, also called the Soviet Union, also had a manned lunar program. This lesson describes some of it. Next Generation Science Standards (NGSS): ● Discipline: Engineering Design ● Crosscutting Concept: Systems and System Models ● Science & Engineering Practice: Constructing Explanations and Designing Solutions GRADES K-2 K-2-ETS1-1. Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool. Have you ever been busy doing something when somebody challenges you to a race? If you decide to join the race—and it is usually up to you whether you join or not—you have to stop what you’re doing, get up, and start racing. By the time you’ve gotten started, the other person is often halfway to the goal. This is the sort of situation the Soviet Union found itself in when President Kennedy in 1961 announced that the United States would set a goal of landing a man on the Moon and returning him safely to the Earth before the end of the decade. -
Arxiv:1912.04482V1 [Physics.Space-Ph] 10 Dec 2019
manuscript submitted to Radio Science Measuring the Earth's Synchrotron Emission from Radiation Belts with a Lunar Near Side Radio Array Alexander Hegedus1, Quentin Nenon2, Antoine Brunet3, Justin Kasper1, Ang´elicaSicard3, Baptiste Cecconi4, Robert MacDowall5, Daniel Baker6 1University of Michigan, Department of Climate and Space Sciences and Engineering, Ann Arbor, Michigan, USA 2Space Sciences Laboratory, University of California, Berkeley, CA, USA 3ONERA / DPHY, Universit´ede Toulouse, F-31055 Toulouse France 4LESIA, Observatoire de Paris, Universit PSL, CNRS, Sorbonne Universit, Univ. de Paris, Meudon, France 5NASA Goddard Space Flight Center, Greenbelt, MD, USA 6University of Colorado Boulder, Laboratory for Atmospheric and Space Physics, Boulder, Colorado, USA Key Points: • Synchrotron emission between 500-1000 kHz has a total flux density of 1.4-2 Jy at lunar distances • A 10 km radio array with 16000 elements could detect the emission in 12-24 hours with moderate noise • Changing electron density can make detections 10x faster at lunar night, 10x slower at lunar noon arXiv:1912.04482v1 [physics.space-ph] 10 Dec 2019 Corresponding author: Alexander Hegedus, [email protected] {1{ manuscript submitted to Radio Science Abstract The high kinetic energy electrons that populate the Earth's radiation belts emit synchrotron emissions because of their interaction with the planetary magnetic field. A lunar near side array would be uniquely positioned to image this emission and provide a near real time measure of how the Earth's radiation belts are responding to the current solar in- put. The Salammb^ocode is a physical model of the dynamics of the three-dimensional phase-space electron densities in the radiation belts, allowing the prediction of 1 keV to 100 MeV electron distributions trapped in the belts. -
The Soviet Space Program
C05500088 TOP eEGRET iuf 3EEA~ NIE 11-1-71 THE SOVIET SPACE PROGRAM Declassified Under Authority of the lnteragency Security Classification Appeals Panel, E.O. 13526, sec. 5.3(b)(3) ISCAP Appeal No. 2011 -003, document 2 Declassification date: November 23, 2020 ifOP GEEAE:r C05500088 1'9P SloGRET CONTENTS Page THE PROBLEM ... 1 SUMMARY OF KEY JUDGMENTS l DISCUSSION 5 I. SOV.IET SPACE ACTIVITY DURING TfIE PAST TWO YEARS . 5 II. POLITICAL AND ECONOMIC FACTORS AFFECTING FUTURE PROSPECTS . 6 A. General ............................................. 6 B. Organization and Management . ............... 6 C. Economics .. .. .. .. .. .. .. .. .. .. .. ...... .. 8 III. SCIENTIFIC AND TECHNICAL FACTORS ... 9 A. General .. .. .. .. .. 9 B. Launch Vehicles . 9 C. High-Energy Propellants .. .. .. .. .. .. .. .. .. 11 D. Manned Spacecraft . 12 E. Life Support Systems . .. .. .. .. .. .. .. .. 15 F. Non-Nuclear Power Sources for Spacecraft . 16 G. Nuclear Power and Propulsion ..... 16 Te>P M:EW TCS 2032-71 IOP SECl<ET" C05500088 TOP SECRGJ:. IOP SECREI Page H. Communications Systems for Space Operations . 16 I. Command and Control for Space Operations . 17 IV. FUTURE PROSPECTS ....................................... 18 A. General ............... ... ···•· ................. ····· ... 18 B. Manned Space Station . 19 C. Planetary Exploration . ........ 19 D. Unmanned Lunar Exploration ..... 21 E. Manned Lunar Landfog ... 21 F. Applied Satellites ......... 22 G. Scientific Satellites ........................................ 24 V. INTERNATIONAL SPACE COOPERATION ............. 24 A. USSR-European Nations .................................... 24 B. USSR-United States 25 ANNEX A. SOVIET SPACE ACTIVITY ANNEX B. SOVIET SPACE LAUNCH VEHICLES ANNEX C. SOVIET CHRONOLOGICAL SPACE LOG FOR THE PERIOD 24 June 1969 Through 27 June 1971 TCS 2032-71 IOP SLClt~ 70P SECRE1- C05500088 TOP SEGR:R THE SOVIET SPACE PROGRAM THE PROBLEM To estimate Soviet capabilities and probable accomplishments in space over the next 5 to 10 years.' SUMMARY OF KEY JUDGMENTS A. -
Spacecraft Deliberately Crashed on the Lunar Surface
A Summary of Human History on the Moon Only One of These Footprints is Protected The narrative of human history on the Moon represents the dawn of our evolution into a spacefaring species. The landing sites - hard, soft and crewed - are the ultimate example of universal human heritage; a true memorial to human ingenuity and accomplishment. They mark humankind’s greatest technological achievements, and they are the first archaeological sites with human activity that are not on Earth. We believe our cultural heritage in outer space, including our first Moonprints, deserves to be protected the same way we protect our first bipedal footsteps in Laetoli, Tanzania. Credit: John Reader/Science Photo Library Luna 2 is the first human-made object to impact our Moon. 2 September 1959: First Human Object Impacts the Moon On 12 September 1959, a rocket launched from Earth carrying a 390 kg spacecraft headed to the Moon. Luna 2 flew through space for more than 30 hours before releasing a bright orange cloud of sodium gas which both allowed scientists to track the spacecraft and provided data on the behavior of gas in space. On 14 September 1959, Luna 2 crash-landed on the Moon, as did part of the rocket that carried the spacecraft there. These were the first items humans placed on an extraterrestrial surface. Ever. Luna 2 carried a sphere, like the one pictured here, covered with medallions stamped with the emblem of the Soviet Union and the year. When Luna 2 impacted the Moon, the sphere was ejected and the medallions were scattered across the lunar Credit: Patrick Pelletier surface where they remain, undisturbed, to this day. -
Apollo Over the Moon: a View from Orbit (Nasa Sp-362)
chl APOLLO OVER THE MOON: A VIEW FROM ORBIT (NASA SP-362) Chapter 1 - Introduction Harold Masursky, Farouk El-Baz, Frederick J. Doyle, and Leon J. Kosofsky [For a high resolution picture- click here] Objectives [1] Photography of the lunar surface was considered an important goal of the Apollo program by the National Aeronautics and Space Administration. The important objectives of Apollo photography were (1) to gather data pertaining to the topography and specific landmarks along the approach paths to the early Apollo landing sites; (2) to obtain high-resolution photographs of the landing sites and surrounding areas to plan lunar surface exploration, and to provide a basis for extrapolating the concentrated observations at the landing sites to nearby areas; and (3) to obtain photographs suitable for regional studies of the lunar geologic environment and the processes that act upon it. Through study of the photographs and all other arrays of information gathered by the Apollo and earlier lunar programs, we may develop an understanding of the evolution of the lunar crust. In this introductory chapter we describe how the Apollo photographic systems were selected and used; how the photographic mission plans were formulated and conducted; how part of the great mass of data is being analyzed and published; and, finally, we describe some of the scientific results. Historically most lunar atlases have used photointerpretive techniques to discuss the possible origins of the Moon's crust and its surface features. The ideas presented in this volume also rely on photointerpretation. However, many ideas are substantiated or expanded by information obtained from the huge arrays of supporting data gathered by Earth-based and orbital sensors, from experiments deployed on the lunar surface, and from studies made of the returned samples. -
The Soviet Moon Program
The Moon Race [July 1969] – down to the wire! JAMES OBERG JULY 17, 2019 SPACE CENTER HOUSTON APOLLO-11 FIFTIETH ANNIVERSARY WWW.JAMESOBERG.COM [email protected] OVERVIEW– JULY 1969 Unexpected last-minute drama was added to Apollo-11 by the appearance of a robot Soviet moon probe that might have returned lunar samples to Earth just before the astronauts got back. We now know that even more dramatic Soviet moon race efforts were ALSO aimed at upstaging Apollo, hoping it would fail. But it was the Soviet program that failed -- and they did their best to keep it secret. These Soviet efforts underscored their desperation to nullify the worldwide significance of Apollo-11 and its profound positive impact, as JFK had anticipated, on international assessments of the relative US/USSR balance of power across the board -- military, commercial, cultural, technological, economic, ideological, and scientific. These were the biggest stakes in the entire Cold War, whose final outcome hung in the balance depending on the outcome of the July 1969 events in space. On July 13, 1969, three days before Apollo-11, the USSR launched a robot probe to upstage it DAY BEFORE APOLLO-11 LANDING – BOTH SPACECRAFT ORBITING MOON IN CRISS-CROSS ORBITS THE SOVIET PROBE GOT TO THE MOON FIRST & WENT INTO ORBIT AROUND IT AS APOLLO BEGAN ITS MISSION https://i.ebayimg.com/images/g/T6UAAOSwDJ9crVLo/s-l1600.jpg https://youtu.be/o16I8S3MMo4 A FEW YEARS LATER, ONCE A NEW MISSION HAD SUCCEEDED, MOSCOW RELEASED DRAWINGS OF THE VEHICLE AND HOW IT OPERATED TO LAND, RETRIEVE SAMPLES, AND RETURN TO EARTH Jodrell Bank radio telescope in Britain told the world about the final phase of the Luna 15 drama, in a news release: "Signals ceased at 4.50 p.m.