A Thesis Entitled Naturally-Occurring Fusion Between the Regulatory And

Total Page:16

File Type:pdf, Size:1020Kb

A Thesis Entitled Naturally-Occurring Fusion Between the Regulatory And A Thesis entitled Naturally-Occurring Fusion Between the Regulatory and Catalytic Components of Type IIP Restriction-Modification Systems by Jixiao Liang Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Master of Science Degree in Biomedical Sciences _________________________________________ Dr. Robert Blumenthal, Committee Chair _________________________________________ Dr. Steve Patrick, Committee Member _________________________________________ Dr. Jason Huntley, Committee Member _________________________________________ Dr. Patricia R. Komuniecki, Dean College of Graduate Studies The University of Toledo December 2013 Copyright 2013, Jixiao Liang This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Naturally-Occurring Fusion Between the Regulatory and Catalytic Components of Type IIP Restriction-Modification Systems by Jixiao Liang Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Master of Science Degree in Biomedical Sciences The University of Toledo December 2013 Restriction-modification (R-M) systems play key roles in controlling gene flow among bacteria and archaea, and their own genetic mobility depends critically on their regulation, but the regulation of these systems is poorly understood. The PvuII R-M system is a Type IIP R-M system in that the protective DNA methyltransferase (MTase) is a separate and independently-active protein from the potentially lethal restriction endonuclease (REase). PvuII is one of the best studied of the R-M systems that use a positive feedback regulatory loop, involving a transcriptional regulator called C protein, to delay expression of the REase relative to that of the MTase. This allows protective methylation of a new host cell’s DNA before the REase is produced. In searching for R- M systems related to PvuII, in order to study evolution and variation of its regulatory system, a putative system was found in the genome sequence of the bacterium Niabella soli strain DSM 19437, in which the regulatory C protein and the REase are translationally fused. The hypothesis is that N. soli truly produces a fused C-R protein, and that it is active as both a REase and as an autogenous regulator. The genes for the N. soli R-M system were synthesized, produced and purified with affinity tags, and the iii production of full-length C-REase fusion protein was confirmed. The dual activity of the fusion protein was determined by in vitro restriction of known DNAs, and in vivo transcriptional activation of a lacZ fusion to the promoter on which the C protein acts. iv This work is dedicated to my parents, Zhao-jun Liang and Gui-ying Xu for their love and support. Acknowledgements This thesis and the associated research would not have been possible without the ever-patient guidance of my mentor, Dr. Robert Blumenthal. I would like to express my sincere gratitude to my major advisor Dr. Robert Blumenthal for his continuous support of my graduate study and research, for his patience, encouragement, guidance and support. He recognizes my strength and weakness, which keep me motivated. I am also grateful for all his advice about life, career and everything else. I would additionally like to thank my committee members, Dr. Jason Huntley and Dr. Steve Patrick for their valuable time, constructive suggestions, and criticisms during my study. Further, for her constant support as an instructor in lab and a friend in life, I would like to sincerely thank my lab mate Dr. Kristen Williams. Also, my friends Dr. Guo-ping Ren and Dr. Gang Ren have offered me valuable advice and help on my experiments. Last but not least, I would like to thank all the students, faculty, and staff in the Medical Microbiology and Immunology Department. Thank you all! vi Table of Contents Abstract .............................................................................................................................. iii Acknowledgements ............................................................................................................ vi Table of Contents .............................................................................................................. vii List of Figures .................................................................................................................. viii Chapter 1: Literature Review ...............................................................................................1 Chapter 2: Materials and Methods .....................................................................................13 Chapter 3: Results………………………………………………………………………..22 Chapter 4: Discussion and Conclusion ..............................................................................33 References ..........................................................................................................................39 vii List of Figures Figure1 Complex formed by R.PvuII and its cognate DNA. Figure2 PvuII R-M system control region. Figure3 Structure of C. AhdI. Figure4 Sequence of synthesized NsoJS138I R-M system. Figure5 Vector map of constructed plasmids Figure6 Alignment of CR fusion proteins orthologous to C.PvuII and R.PvuII. Figure7 Test of CR fusion protein production. Figure8 Test of CR fusion protein production. Figure9 Assessment of REase activity in CR.NsoJS138I. Figure10 Confirmation of specific digestion conditions. Figure11 Assessment of C activity in CR.NsoJS138I. Figure12 Possible interactions of C-REase fusion polypeptides. viii Chapter 1 Literature Review 1. Restriction-modification (R-M) systems The biological phenomenon of restriction and modification were first recognized in the early 1950s, and the first R-M system was cloned in E. coli in the late 1970s [1]. R- M systems are present in the great majority of bacteria and archaea, with more than 3000 being found to date (most by detecting MTase gene sequences) [2]. As the term indicates, a typical R-M system comprises two activities: a restriction endonuclease (REase) that cleaves DNA at a target sequence, and a methyltransferase (MTase) that modifies the same sequence to protect it from the cognate REase [2]. Four broad types of R-M systems have been reported so far, each with unique characteristics, and the two enzymes have been combined into a single multi-subunit protein in some of the systems [3]. However in Type IIP R-M systems, the REase and MTase separately execute their opposing intracellular enzymatic activities [3]. 1.1 Restriction Endonuclease (REase) The REase catalyzes the cleavage of double-stranded DNA, generally on both strands. REases recognize specific sequences on the target DNA, and the cleavage occurs 1 via hydrolysis of one phosphate-deoxyribose bond in the backbone of each DNA strand [4]. Typically, such enzymatic activity takes place without energy input, but commonly requires Mg2+ or a similar divalent cation; some REases also require or are stimulated by, ATP or S-adenosylmethionine (AdoMet) [5]. REases appear to come from very different backgrounds, and are difficult to identify from their sequences alone [6-8]. 1.2 Modification Methyltransferase (MTase) REase cleavage of DNA could be lethal to cells producing R-M systems. To protect endogenous DNA from REase, the paired (cognate) MTase catalyzes addition of a methyl group to one nucleotide in each strand of the recognition sequence, with the identities and positions varying from MTase to MTase [9]. AdoMet always serves as the methyl donor and is thus an essential cofactor for methylation [10]. The sensitivity of the REase of R-M systems to methylation on the recognition sequences usually prevents cleavage of endogenous DNA. However, while cleavage can be prevented by the cognate methylation, noncognate methylation occurring elsewhere in the recognition sequence may or may not prevent the cleavage [11]. 1.3 Types of restriction modification systems R-M systems are classified based on enzyme composition and cofactor requirements, recognition sequence symmetry, and cleavage position [3, 12]. Because my research defines a new subtype of R-M system, in which the REase and regulatory C protein are fused, it is appropriate to describe the various known types of R-M systems. 2 1.3.1 Type I Systems Type I systems are considered as the most complex R-M systems, as they consist of three polypeptides: R (Restriction), M (Modification) and S (Specificity). These form a complex that can both cleave and methylate DNA in an energy (ATP) dependent manner, and about half of the bacterial genomes contain closely linked-genes that are predicted to code for these three polypeptides, based on screening of the present database of complete genomic sequences [13]. Furthermore, the fact that cleavage occurs at a considerable distance away from the recognition site in most cases, makes it difficult to visualize the discrete bands by gel electrophoresis [14]. So these enzymes have substantial biological significance, but have not yet found major biotechnological uses. 1.3.2 Type II Systems Type II systems are believed to be the simplest and most prevalent R-M systems. As opposed to type I systems, Type II REase and MTase act independently without the need of a specificity protein, and each has its own simple catalytic requirement: REase requires Mg2+ (or similar divalent cation) and MTase requires AdoMet [14]. Type IIP REases are generally active after they dimerize and form homodimers, while
Recommended publications
  • Characterization of the Dominant Bacterial Communities Associated with Terrestrial Isopod Species Based on 16S Rdna Analysis by PCR-DGGE
    Open Journal of Ecology, 2018, 8, 495-509 http://www.scirp.org/journal/oje ISSN Online: 2162-1993 ISSN Print: 2162-1985 Characterization of the Dominant Bacterial Communities Associated with Terrestrial Isopod Species Based on 16S rDNA Analysis by PCR-DGGE Delhoumi Majed, Zaabar Wahiba, Bouslama Mohamed Fadhel, Achouri Mohamed Sghaier* Laboratory of Bio-Ecology and Evolutionary Systematics, Department of Biology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia How to cite this paper: Majed, D., Wahi- Abstract ba, Z., Fadhel, B.M. and Sghaier, A.M. (2018) Characterization of the Dominant Bacterial From the marine environment, woodlice gradually colonized terrestrial areas Communities Associated with Terrestrial benefiting from the symbiotic relationship with the bacterial community that Isopod Species Based on 16S rDNA Analy- they host. Indeed, they constitute the only group of Oniscidea suborder that sis by PCR-DGGE. Open Journal of Ecolo- gy, 8, 495-509. has succeed to accomplish their lives in terrestrial even desert surfaces. Here- https://doi.org/10.4236/oje.2018.89030 in they play an important role in the dynamic of ecosystems and the decom- position of litter. So to enhance our understanding of the sea-land transition Received: January 30, 2018 and other process like decomposition and digestion of detritus, we studied Accepted: September 15, 2018 Published: September 18, 2018 the bacterial community associated with 11 specimens of terrestrial isopods belonging to six species using a Culture independent approach (DGGE). Copyright © 2018 by authors and Bands sequencing showed that the cosmopolitan species Porcellionides prui- Scientific Research Publishing Inc. nosus has the most microbial diversity.
    [Show full text]
  • Chryseobacterium Rhizoplanae Sp. Nov., Isolated from the Rhizoplane Environment
    Antonie van Leeuwenhoek DOI 10.1007/s10482-014-0349-3 ORIGINAL ARTICLE Chryseobacterium rhizoplanae sp. nov., isolated from the rhizoplane environment Peter Ka¨mpfer • John A. McInroy • Stefanie P. Glaeser Received: 5 November 2014 / Accepted: 2 December 2014 Ó Springer International Publishing Switzerland 2014 Abstract A slightly yellow pigmented strain (JM- to the type strains of these species. Differentiating 534T) isolated from the rhizoplane of a field-grown Zea biochemical and chemotaxonomic properties showed mays plant was investigated using a polyphasic that the isolate JM-534T represents a novel species, for approach for its taxonomic allocation. Cells of the which the name Chryseobacterium rhizoplanae sp. nov. isolate were observed to be rod-shaped and to stain (type strain JM-534T = LMG 28481T = CCM 8544T Gram-negative. Comparative 16S rRNA gene sequence = CIP 110828T)isproposed. analysis showed that the isolate had the highest sequence similarities to Chryseobacterium lactis Keywords Chryseobacterium Á Rhizoplanae Á (98.9 %), Chryseobacterium joostei and Chryseobac- Taxonomy terium indologenes (both 98.7 %), and Chryseobacte- rium viscerum (98.6 %). Sequence similarities to all other Chryseobacterium species were 98.5 % or below. The fatty acid analysis of the strain resulted in a The genus Chryseobacterium described by Vandam- Chryseobacterium typical pattern consisting mainly of me et al. (1994) now harbours a large number of the fatty acids C15:0 iso, C15:0 iso 2-OH, C17:1 iso x9c, species, some of which have been isolated from plant and C17:0 iso 3-OH. DNA–DNA hybridizations with the material including the rhizosphere/rhizoplane envi- type strains of C. lactis, C.
    [Show full text]
  • Composition of Mixed Culture PHA Biopolymers and Implications For
    Composition of Mixed Culture PHA Biopolymers and Implications for Downstream Processing Liliana Montaño Herrera BEng (Hons) Biotechnological Engineering, MSc Environmental Engineering A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2015 School of Chemical Engineering Abstract Polyhydroxyalkanoates (PHAs) are biopolymers synthesised and accumulated by most bacteria for carbon and energy storage. They have properties and applications comparable to petrochemical thermoplastics. Although PHAs are produced at high yields using pure biological cultures, the use of mixed cultures can significantly reduce the production costs and make use of waste streams to produce environmentally sustainable materials. In order to produce mixed culture PHAs of relevance for broader industry applications it is necessary to develop the ability to tailor polymers with diversified mechanical properties through understanding and controlling the monomer composition and compositional distribution. Diverse and complex PHA polymer structures have been achieved in mixed microbial cultures using time-based feeding strategies. However, PHA monomer composition and compositional distribution in PHA random and blocky copolymers are sensitive to substrate feeding history, making more complex the prediction of final PHA content and composition. In this sense, a better understanding of the changing cell physiologies that develop in response to different feeding strategies and substrates is necessary to design optimised feeding strategies and process control algorithms for PHA production. This thesis presents for the first time a comprehensive flux characterisation of monomer development during mixed culture PHA accumulation concurrent with biomass growth using Metabolic Flux Analysis (MFA). A dynamic trend in active biomass growth and in polymer composition was observed and was consistent over replicate accumulations.
    [Show full text]
  • Taibaiella Smilacinae Gen. Nov., Sp. Nov., an Endophytic Member of The
    International Journal of Systematic and Evolutionary Microbiology (2013), 63, 3769–3776 DOI 10.1099/ijs.0.051607-0 Taibaiella smilacinae gen. nov., sp. nov., an endophytic member of the family Chitinophagaceae isolated from the stem of Smilacina japonica, and emended description of Flavihumibacter petaseus Lei Zhang,1,2 Yang Wang,3 Linfang Wei,1 Yao Wang,1 Xihui Shen1 and Shiqing Li1,2 Correspondence 1State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Xihui Shen Northwest A&F University, Yangling, Shaanxi 712100, PR China [email protected] 2State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Northwest A&F University, Yangling, Shaanxi 712100, PR China 3Hubei Institute for Food and Drug Control, Wuhan 430072, PR China A light-yellow-coloured bacterium, designated strain PTJT-5T, was isolated from the stem of Smilacina japonica A. Gray collected from Taibai Mountain in Shaanxi Province, north-west China, and was subjected to a taxonomic study by using a polyphasic approach. The novel isolate grew optimally at 25–28 6C and pH 6.0–7.0. Flexirubin-type pigments were produced. Cells were Gram-reaction-negative, strictly aerobic, rod-shaped and non-motile. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain PTJT-5T was a member of the phylum Bacteroidetes, exhibiting the highest sequence similarity to Lacibacter cauensis NJ-8T (87.7 %). The major cellular fatty acids were iso-C15 : 0, iso-C15 : 1 G, iso-C17 : 0 and iso-C17 : 0 3-OH.
    [Show full text]
  • Dinghuibacter Silviterrae Gen. Nov., Sp. Nov., Isolated from Forest Soil Ying-Ying Lv, Jia Wang, Mei-Hong Chen, Jia You and Li-Hong Qiu
    International Journal of Systematic and Evolutionary Microbiology (2016), 66, 1785–1791 DOI 10.1099/ijsem.0.000940 Dinghuibacter silviterrae gen. nov., sp. nov., isolated from forest soil Ying-Ying Lv, Jia Wang, Mei-Hong Chen, Jia You and Li-Hong Qiu Correspondence State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Li-Hong Qiu Guangzhou, 510275, PR China [email protected] A novel Gram-stain negative, non-motile, rod-shaped, aerobic bacterial strain, designated DHOA34T, was isolated from forest soil of Dinghushan Biosphere Reserve, Guangdong Province, China. Comparative 16S rRNA gene sequence analysis showed that it exhibited highest similarity with Flavisolibacter ginsengiterrae Gsoil 492T and Flavitalea populi HY-50RT, at 90.89 and 90.83 %, respectively. In the neighbour-joining phylogenetic tree based on 16S rRNA gene sequences, DHOA34T formed an independent lineage within the family Chitinophagaceae but was distinct from all recognized species and genera of the family. T The major cellular fatty acids of DHOA34 included iso-C15 : 0, anteiso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1v6c and/or C16 : 1v7c). The DNA G+C content was 51.6 mol% and the predominant quinone was menaquinone 7 (MK-7). Flexirubin pigments were produced. The phenotypic, chemotaxonomic and phylogenetic data demonstrate consistently that strain DHOA34T represents a novel species of a new genus in the family Chitinophagaceae, for which the name Dinghuibacter silviterrae gen. nov., sp. nov. is proposed. The type strain of Dinghuibacter silviterrae is DHOA34T (5CGMCC 1.15023T5KCTC 42632T). The family Chitinophagaceae, belonging to the class Sphingo- For isolation of DHOA34T, the soil sample was thoroughly bacteriia of the phylum Bacteroidetes, was proposed by suspended with 100 mM PBS (pH 7.0) and the suspension Ka¨mpfer et al.
    [Show full text]
  • Bacterial Community Characterization in Paper Mill White Water
    PEER-REVIEWED ARTICLE bioresources.com Bacterial Community Characterization in Paper Mill White Water Carolina Chiellini,a,d Renato Iannelli,b Raissa Lena,a Maria Gullo,c and Giulio Petroni a,* The paper production process is significantly affected by direct and indirect effects of microorganism proliferation. Microorganisms can be introduced in different steps. Some microorganisms find optimum growth conditions and proliferate along the production process, affecting both the end product quality and the production efficiency. The increasing need to reduce water consumption for economic and environmental reasons has led most paper mills to reuse water through increasingly closed cycles, thus exacerbating the bacterial proliferation problem. In this work, microbial communities in a paper mill located in Italy were characterized using both culture-dependent and independent methods. Fingerprinting molecular analysis and 16S rRNA library construction coupled with bacterial isolation were performed. Results highlighted that the bacterial community composition was spatially homogeneous along the whole process, while it was slightly variable over time. The culture- independent approach confirmed the presence of the main bacterial phyla detected with plate counting, coherently with earlier cultivation studies (Proteobacteria, Bacteroidetes, and Firmicutes), but with a higher genus diversification than previously observed. Some minor bacterial groups, not detectable by cultivation, were also detected in the aqueous phase. Overall, the population
    [Show full text]
  • Epidemiological and Phylogenetic Analysis Reveals Flavobacteriaceae As Potential Ancestral Source of Tigecycline Resistance Gene Tet(X)
    ARTICLE https://doi.org/10.1038/s41467-020-18475-9 OPEN Epidemiological and phylogenetic analysis reveals Flavobacteriaceae as potential ancestral source of tigecycline resistance gene tet(X) Rong Zhang 1,5, Ning Dong2,5, Zhangqi Shen3,5, Yu Zeng1, Jiauyue Lu1, Congcong Liu1, Hongwei Zhou1, Yanyan Hu1, Qiaoling Sun1, Qipeng Cheng2,4, Lingbing Shu1, Jiachang Cai1, Edward Wai-Chi Chan4, ✉ ✉ Gongxiang Chen 1 & Sheng Chen 2 1234567890():,; Emergence of tigecycline-resistance tet(X) gene orthologues rendered tigecycline ineffective as last-resort antibiotic. To understand the potential origin and transmission mechanisms of these genes, we survey the prevalence of tet(X) and its orthologues in 2997 clinical E. coli and K. pneumoniae isolates collected nationwide in China with results showing very low pre- valence on these two types of strains, 0.32% and 0%, respectively. Further surveillance of tet (X) orthologues in 3692 different clinical Gram-negative bacterial strains collected during 1994–2019 in hospitals in Zhejiang province, China reveals 106 (2.7%) tet(X)-bearing strains with Flavobacteriaceae being the dominant (97/376, 25.8%) bacteria. In addition, tet(X)s are found to be predominantly located on the chromosomes of Flavobacteriaceae and share similar GC-content as Flavobacteriaceae. It also further evolves into different orthologues and transmits among different species. Data from this work suggest that Flavobacteriaceae could be the potential ancestral source of the tigecycline resistance gene tet(X). 1 Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, ZhejiangHangzhou, China. 2 Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China.
    [Show full text]
  • Unraveling a Lignocellulose-Decomposing Bacterial Consortium from Soil Associated with Dry Sugarcane Straw by Genomic-Centered Metagenomics
    microorganisms Article Unraveling a Lignocellulose-Decomposing Bacterial Consortium from Soil Associated with Dry Sugarcane Straw by Genomic-Centered Metagenomics Bruno Weiss 1,2,†, Anna Carolina Oliveira Souza 1,2,†, Milena Tavares Lima Constancio 1,2, Danillo Oliveira Alvarenga 1 , Victor S. Pylro 3 , Lucia M. Carareto Alves 1,* and Alessandro M. Varani 1,* 1 Departament of Technology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo 14884-900, Brazil; [email protected] (B.W.); [email protected] (A.C.O.S.); [email protected] (M.T.L.C.); [email protected] (D.O.A.) 2 Graduate Program in Agricultural and Livestock Microbiology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo 14884-900, Brazil 3 Microbial Ecology and Bioinformatics Laboratory, Department of Biology, Federal University of Lavras (UFLA), Lavras, Minas Gerais 37200-000, Brazil; victor.pylro@ufla.br * Correspondence: [email protected] (L.M.C.A.); [email protected] (A.M.V.) † Both authors contributed equally to this work. Abstract: Second-generation biofuel production is in high demand, but lignocellulosic biomass’ complexity impairs its use due to the vast diversity of enzymes necessary to execute the complete saccharification. In nature, lignocellulose can be rapidly deconstructed due to the division of Citation: Weiss, B.; Souza, A.C.O.; biochemical labor effectuated in bacterial communities. Here, we analyzed the lignocellulolytic Constancio, M.T.L.; Alvarenga, D.O.; potential of a bacterial consortium obtained from soil and dry straw leftover from a sugarcane milling Pylro, V.S.; Alves, L.M.C.; Varani, plant.
    [Show full text]
  • Draft Genome Sequence of the Cellulolytic Endophyte Chitinophaga Costaii A37T2T Diogo N
    Proença et al. Standards in Genomic Sciences (2017) 12:53 DOI 10.1186/s40793-017-0262-2 SHORTGENOMEREPORT Open Access Draft genome sequence of the cellulolytic endophyte Chitinophaga costaii A37T2T Diogo N. Proença1, William B. Whitman2, Nicole Shapiro3, Tanja Woyke3, Nikos C. Kyrpides3 and Paula V. Morais1,4* Abstract Here we report the draft genome sequence of Chitinophaga costai A37T2T (=CIP 110584T, =LMG 27458T), which was isolated from the endophytic community of Pinus pinaster tree. The total genome size of C. costaii A37T2T is 5.07 Mbp, containing 4204 coding sequences. Strain A37T2T encoded multiple genes likely involved in cellulolytic, chitinolytic and lipolytic activities. This genome showed 1145 unique genes assigned into 109 Cluster of Orthologous Groups in comparison with the complete genome of C. pinensis DSM 2588T. The genomic information suggests the potential of the strain A37T2T to interact with the plant metabolism. As there are only a few bacterial genomes related to Pine Wilt Disease, this work provides a contribution to the field. Keywords: Chitinophaga costaii A37T2, Cellulase, Chitinase, Genome sequence Introduction Bursaphelenchus xylophilus colonization in pine trees The genus Chitinophaga belongs to the family Chtinipha- [4]. Here, we show the second genome of the genus gaceae (phylum Bacteroidetes) alongside with the genera Chitinophaga, a draft genome of Chitinophaga costaii Arachidicoccus, Asinibacterium, Balneola, Cnuella, Creno- A37T2T, previously isolated as endophyte of Pinus pin- talea, Ferruginibacter, Filimonas, Flaviaesturariibacter, aster affected by PWD [1]. Flavihumibacter, Flavisolibacter, Flavitalea, Gracilimonas, Heliimonas, Hydrotalea, Lacibacter, Niabella, Niastella, Organism information Parasediminibacterium, Parasegetibacter, Sediminibacter- Classification and features ium, Segetibacter, Taibaiella, Terrimonas, Thermoflavifi- The type strain A37T2T (=CIP 110584T =LMG lum and Vibriomonas.
    [Show full text]
  • Genome-Based Taxonomic Classification Of
    ORIGINAL RESEARCH published: 20 December 2016 doi: 10.3389/fmicb.2016.02003 Genome-Based Taxonomic Classification of Bacteroidetes Richard L. Hahnke 1 †, Jan P. Meier-Kolthoff 1 †, Marina García-López 1, Supratim Mukherjee 2, Marcel Huntemann 2, Natalia N. Ivanova 2, Tanja Woyke 2, Nikos C. Kyrpides 2, 3, Hans-Peter Klenk 4 and Markus Göker 1* 1 Department of Microorganisms, Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany, 2 Department of Energy Joint Genome Institute (DOE JGI), Walnut Creek, CA, USA, 3 Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia, 4 School of Biology, Newcastle University, Newcastle upon Tyne, UK The bacterial phylum Bacteroidetes, characterized by a distinct gliding motility, occurs in a broad variety of ecosystems, habitats, life styles, and physiologies. Accordingly, taxonomic classification of the phylum, based on a limited number of features, proved difficult and controversial in the past, for example, when decisions were based on unresolved phylogenetic trees of the 16S rRNA gene sequence. Here we use a large collection of type-strain genomes from Bacteroidetes and closely related phyla for Edited by: assessing their taxonomy based on the principles of phylogenetic classification and Martin G. Klotz, Queens College, City University of trees inferred from genome-scale data. No significant conflict between 16S rRNA gene New York, USA and whole-genome phylogenetic analysis is found, whereas many but not all of the Reviewed by: involved taxa are supported as monophyletic groups, particularly in the genome-scale Eddie Cytryn, trees. Phenotypic and phylogenomic features support the separation of Balneolaceae Agricultural Research Organization, Israel as new phylum Balneolaeota from Rhodothermaeota and of Saprospiraceae as new John Phillip Bowman, class Saprospiria from Chitinophagia.
    [Show full text]
  • STING Cyclic Dinucleotide Sensing Originated in Bacteria
    Article STING cyclic dinucleotide sensing originated in bacteria https://doi.org/10.1038/s41586-020-2719-5 Benjamin R. Morehouse1,2, Apurva A. Govande1,2, Adi Millman3, Alexander F. A. Keszei4, Brianna Lowey1,2, Gal Ofir3, Sichen Shao4, Rotem Sorek3 & Philip J. Kranzusch1,2,5 ✉ Received: 2 May 2020 Accepted: 26 August 2020 Stimulator of interferon genes (STING) is a receptor in human cells that senses foreign Published online: 2 September 2020 cyclic dinucleotides that are released during bacterial infection and in endogenous Check for updates cyclic GMP–AMP signalling during viral infection and anti-tumour immunity1–5. STING shares no structural homology with other known signalling proteins6–9, which has limited attempts at functional analysis and prevented explanation of the origin of cyclic dinucleotide signalling in mammalian innate immunity. Here we reveal functional STING homologues encoded within prokaryotic defence islands, as well as a conserved mechanism of signal activation. Crystal structures of bacterial STING defne a minimal homodimeric scafold that selectively responds to cyclic di-GMP synthesized by a neighbouring cGAS/DncV-like nucleotidyltransferase (CD-NTase) enzyme. Bacterial STING domains couple the recognition of cyclic dinucleotides with the formation of protein flaments to drive oligomerization of TIR efector domains and rapid NAD+ cleavage. We reconstruct the evolutionary events that followed the acquisition of STING into metazoan innate immunity, and determine the structure of a full-length TIR–STING fusion from the Pacifc oyster Crassostrea gigas. Comparative structural analysis demonstrates how metazoan-specifc additions to the core STING scafold enabled a switch from direct efector function to regulation of antiviral transcription.
    [Show full text]
  • Development of Culture Medium for the Isolation of Flavobacterium and Chryseobacterium from Rhizosphere Soil
    Microbes Environ. Vol. 31, No. 2, 104-110, 2016 https://www.jstage.jst.go.jp/browse/jsme2 doi:10.1264/jsme2.ME15144 Development of Culture Medium for the Isolation of Flavobacterium and Chryseobacterium from Rhizosphere Soil TOMOKI NISHIOKA1, MOHSEN MOHAMED ELSHARKAWY2, HARUHISA SUGA3, KOJI KAGEYAMA4, MITSURO HYAKUMACHI1, and MASAFUMI SHIMIZU1* 1Graduate School of Applied Biological Sciences, Gifu University, 1–1 Yanagido, Gifu City 501–1193, Japan; 2Department of Agricultural Botany, Faculty of Agriculture, Kafrelsheikh University, Kafr Elsheikh 33516, Egypt; 3Life Science Research Center, Gifu University, 1–1 Yanagido, Gifu City 501–1193, Japan; and 4River Basin Research Center, Gifu University, 1–1 Yanagido, Gifu City 501–1193, Japan (Received September 17, 2015—Accepted January 26, 2016—Published online April 20, 2016) An effective medium designated phosphate separately autoclaved Reasoner’s 2A supplemented with cycloheximide and tobramycin (PSR2A-C/T) has been developed for the isolation of Flavobacterium and Chryseobacterium strains from the plant rhizosphere. It consists of Reasoner’s 2A agar (R2A) prepared by autoclaving phosphate and agar separately and supplementing with 50 mg L–1 cycloheximide and 1 mg L–1 tobramycin. A comparison was made among the following nine media: PSR2A- C/T, PSR2A-C/T supplemented with NaCl, R2A agar, R2A agar supplemented with cycloheximide and tobramycin, 1/4-strength tryptic soy agar (TSA), 1/10-strength TSA, soil-extract agar, Schaedler anaerobe agar (SAA), and SAA supple- mented with gramicidin, for the recovery of Flavobacterium and Chryseobacterium strains from the Welsh onion rhizosphere. Flavobacterium strains were only isolated on PSR2A-C/T, and the recovery rate of Chryseobacterium strains was higher from PSR2A-C/T than from the eight other media.
    [Show full text]