Speak of the Devil! the Introduction Of

Total Page:16

File Type:pdf, Size:1020Kb

Speak of the Devil! the Introduction Of Speak of the Devil! Credit: Simon deSalis The Introduction of disease free Tasmanian Devils to Maria Island National Park. Presented by Phil Wise and Pete Lingard The Tasmanian devil is the largest Extinctremaining marsupial carnivore on the planet. Apex predator, generalist, scavenger. Plays an essential role in maintaining the Tasmanian ecosystem. Endangered IUCN Red List, State and Federal Lists due to major population declines Photo – Simon deSalis Devil Facial Tumour Disease (DFTD) and the decline of wild devils. A Horrible Disease… Photo by Christo Baars Lethal & Contagious – no cureRoad &-killed no and vaccine diseased. The Shaping of a strategy. Save the Tasmanian Devil Program Established in 2003 • Research into the disease itself and its effects, search for cure or vaccine. • Monitoring change in the wild populations and the spread of the disease. Sample collection. Persistence, Recovery or Extinction. • Establishment of an insurance population. The devil is here to stay…. An insurance policy 1. Intensive management Intensive captive facility 2. Free Range Enclosures 3. Island and “virtual” islands. Freycinet Free Range Enclosure 22ha Aims of the Insurance Population Strategy • Disease (DFTD) free animals. • Genetically representative. • Able to sustain harvest for release to wild. • Maintains associated flora and fauna (commensal, symbiotic and parasitic) and wild behaviors where possible. Where on Earth is Maria?... An island off an island off an island…Perfect! Maria ‘Devil’ Island. •Isolated from disease. •Acceptable size (9000+ha). •One land tenure (National Park). •No public vehicle access, no dogs. •Modified ecosystem-fascinating human history of dreams and visions and feral animal arrival. •Previous translocations of a variety of native mammal and bird species. Requiring active management ever since. •Good diversity of prey species for devils….. with appropriate devil habitat. Estimates of carrying capacity 80-120 devils. The Devil is in the detail…… Building the partnership • Extensive approvals process at State and Federal Level. • Broad Consultation. • Establishment of an MOU between PWS & Devil team • Release and monitoring strategy Let them be free…. The release. • Zoo and Aquarium Association provided a short list of suitable devils for two releases • 28 devils selected. (15 in 2012, 13 in 2013) • Devils then subjected to health checks and behavior tests. • 13 females/15 males • Between 1-3 y/o on release. • From intensive captive facilities, Mainland Zoos and Free Range Enclosures to the wilds of Maria • Assisted release, behavior change. Devil Diaries……….How are they going? • Regular monitoring by trapping, camera and gps/vhf collars. • 93% (26/28) of released animals surviving at 20 months. • 100% Breeding success 2013 (8/8 females, 24 young). 77% in 2014 (10/13 females, 40+ young) • Precocial breeding in at least 3 generation one females. • Maria now one of the few places devils can be wild born without threat of DFTD in Tasmania. A Devilish Dichotomy….. • Tourism – Considerable interest from visitors in Devils – Increasing daily interactions between Devils and humans – Commercial operator concerns over demise of other notable wildlife species • Media – Film series: ‘Devil Island’ drew interest from around the world – Increasing visits from national & international film crews wanting to hear the Devil introduction story • Scientific – Various coinciding research programs underway or proposed Some innovations • Welcome to country • Establishing captive carnivorous animals into the wild – a challenging history. • Holistic ecological approach • Collaborations USYD to develop genetic assay technique (diversity and parentage) and contraception trials. • Collaborations UTAS and devil/feral interactions. • Looking to apply stable isotopes of prey in whiskers for diet analysis – seasonal patterns. • Partnerships with San Diego Zoo (post doc)and Wellington (remote chip reader). Devil if you do, Devil if you don’t. • The rare and extreme nature of the disease has led us down this path. • Will require ongoing ecosystem impact monitoring and continued monitoring of devils and adaptive management. • Future genetic supplementation. • Contraception concept • Harvest for wild to wild translocations – peninsulas and other projects. • Triggers – Welfare, Interactions, Impacts. • As partners we are in this for the long haul. • Big challenges ahead to protect the values of Maria Island National Park and contribute to the wider aims of the Save the Tasmanian Devil Program. The Vision “To maintain an enduring and ecologically functional population of Tasmanian devils in the wild” The team! • IUCN Reintroduction Specialist • Healesville Sanctuary, Monarto Zoo Group (Phil Seddon) Trowunna Wildlife Park and Halls • Dorian Moro – Chevron (Dibblers) Gap Zoo. • Brooke Rankmore (NT Quolls) • Maria Island Ferries and East Coast • Save the Tasmanian Devil Program Nature Cruises. particularly captive staff • Flinders Island Aviation • Maria Island Parks and Wildlife • Tasmanian Air Adventures Staff • San Diego Zoo and Wellington Zoo • Members of Tasmanian Aboriginal • Janeane Ingram Communities • Birds Tasmania • Save the Tasmanian Devil Appeal • Maria Island Walks • University of Tasmania • Nick Mooney • University of Sydney • Hamish McCallum • Zoo and Aquarium Association • Barbara Triggs • Chris Boland • Simon deSalis The following slides might help with questions Tasmanian devil diet on Maria Island. Site Occupancy – Multiple Mammals Ecosystem Impacts Cape Barren Goose Ecosystem Impacts – Eagles Devil road kill – a widespread issue… Reports from: • Public • Trained PWS • Staff 1989-2012 Report by: • Reply paid cards • SMS to hotline • Website 100 120 140 20 40 60 80 0 July August September October 2009-2010 (393) November December …with seasonala clear distribution… January February March April May June July August September October 2010-2011 (372) November December January February March April May June July August September October 2011-2012 (449) November December January February March April May June 2012-2013 July August September.
Recommended publications
  • Lindsay Masters
    CHARACTERISATION OF EXPERIMENTALLY INDUCED AND SPONTANEOUSLY OCCURRING DISEASE WITHIN CAPTIVE BRED DASYURIDS Scott Andrew Lindsay A thesis submitted in fulfillment of requirements for the postgraduate degree of Masters of Veterinary Science Faculty of Veterinary Science University of Sydney March 2014 STATEMENT OF ORIGINALITY Apart from assistance acknowledged, this thesis represents the unaided work of the author. The text of this thesis contains no material previously published or written unless due reference to this material is made. This work has neither been presented nor is currently being presented for any other degree. Scott Lindsay 30 March 2014. i SUMMARY Neosporosis is a disease of worldwide distribution resulting from infection by the obligate intracellular apicomplexan protozoan parasite Neospora caninum, which is a major cause of infectious bovine abortion and a significant economic burden to the cattle industry. Definitive hosts are canid and an extensive range of identified susceptible intermediate hosts now includes native Australian species. Pilot experiments demonstrated the high disease susceptibility and the unexpected observation of rapid and prolific cyst formation in the fat-tailed dunnart (Sminthopsis crassicaudata) following inoculation with N. caninum. These findings contrast those in the immunocompetent rodent models and have enormous implications for the role of the dunnart as an animal model to study the molecular host-parasite interactions contributing to cyst formation. An immunohistochemical investigation of the dunnart host cellular response to inoculation with N. caninum was undertaken to determine if a detectable alteration contributes to cyst formation, compared with the eutherian models. Selective cell labelling was observed using novel antibodies developed against Tasmanian devil proteins (CD4, CD8, IgG and IgM) as well as appropriate labelling with additional antibodies targeting T cells (CD3), B cells (CD79b, PAX5), granulocytes, and the monocyte-macrophage family (MAC387).
    [Show full text]
  • Platypus Collins, L.R
    AUSTRALIAN MAMMALS BIOLOGY AND CAPTIVE MANAGEMENT Stephen Jackson © CSIRO 2003 All rights reserved. Except under the conditions described in the Australian Copyright Act 1968 and subsequent amendments, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, duplicating or otherwise, without the prior permission of the copyright owner. Contact CSIRO PUBLISHING for all permission requests. National Library of Australia Cataloguing-in-Publication entry Jackson, Stephen M. Australian mammals: Biology and captive management Bibliography. ISBN 0 643 06635 7. 1. Mammals – Australia. 2. Captive mammals. I. Title. 599.0994 Available from CSIRO PUBLISHING 150 Oxford Street (PO Box 1139) Collingwood VIC 3066 Australia Telephone: +61 3 9662 7666 Local call: 1300 788 000 (Australia only) Fax: +61 3 9662 7555 Email: [email protected] Web site: www.publish.csiro.au Cover photos courtesy Stephen Jackson, Esther Beaton and Nick Alexander Set in Minion and Optima Cover and text design by James Kelly Typeset by Desktop Concepts Pty Ltd Printed in Australia by Ligare REFERENCES reserved. Chapter 1 – Platypus Collins, L.R. (1973) Monotremes and Marsupials: A Reference for Zoological Institutions. Smithsonian Institution Press, rights Austin, M.A. (1997) A Practical Guide to the Successful Washington. All Handrearing of Tasmanian Marsupials. Regal Publications, Collins, G.H., Whittington, R.J. & Canfield, P.J. (1986) Melbourne. Theileria ornithorhynchi Mackerras, 1959 in the platypus, 2003. Beaven, M. (1997) Hand rearing of a juvenile platypus. Ornithorhynchus anatinus (Shaw). Journal of Wildlife Proceedings of the ASZK/ARAZPA Conference. 16–20 March.
    [Show full text]
  • The Hunter and Biodiversity in Tasmania
    The Hunter and Biodiversity in Tasmania The Hunter takes place on Tasmania’s Central Plateau, where “One hundred and sixty-five million years ago potent forces had exploded, clashed, pushed the plateau hundreds of metres into the sky.” [a, 14] The story is about the hunt for the last Tasmanian tiger, described in the novel as: “that monster whose fabulous jaw gapes 120 degrees, the carnivorous marsupial which had so confused the early explorers — a ‘striped wolf’, ‘marsupial wolf.’” [a, 16] Fig 1. Paperbark woodlands and button grass plains near Derwent Bridge, Central Tasmania. Source: J. Stadler, 2010. Biodiversity “Biodiversity”, or biological diversity, refers to variety in all forms of life—all plants and animals, their genes, and the ecosystems they live in. [b] It is important because all living things are connected with each other. For example, humans depend on living things in the environment for clean air to breathe, food to eat, and clean water to drink. Biodiversity is one of the underlying themes in The Hunter, a Tasmanian film directed by David Nettheim in 2011 and based on Julia Leigh’s 1999 novel about the hunt for the last Tasmanian Tiger. The film and the novel showcase problems that arise from loss of species, loss of habitat, and contested ideas about land use. The story is set in the Central Plateau Conservation Area and much of the film is shot just south of that area near Derwent Bridge and in the Florentine Valley. In Tasmania, land clearing is widely considered to be the biggest threat to biodiversity [c, d].
    [Show full text]
  • Thylacinidae
    FAUNA of AUSTRALIA 20. THYLACINIDAE JOAN M. DIXON 1 Thylacine–Thylacinus cynocephalus [F. Knight/ANPWS] 20. THYLACINIDAE DEFINITION AND GENERAL DESCRIPTION The single member of the family Thylacinidae, Thylacinus cynocephalus, known as the Thylacine, Tasmanian Tiger or Wolf, is a large carnivorous marsupial (Fig. 20.1). Generally sandy yellow in colour, it has 15 to 20 distinct transverse dark stripes across the back from shoulders to tail. While the large head is reminiscent of the dog and wolf, the tail is long and characteristically stiff and the legs are relatively short. Body hair is dense, short and soft, up to 15 mm in length. Body proportions are similar to those of the Tasmanian Devil, Sarcophilus harrisii, the Eastern Quoll, Dasyurus viverrinus and the Tiger Quoll, Dasyurus maculatus. The Thylacine is digitigrade. There are five digital pads on the forefoot and four on the hind foot. Figure 20.1 Thylacine, side view of the whole animal. (© ABRS)[D. Kirshner] The face is fox-like in young animals, wolf- or dog-like in adults. Hairs on the cheeks, above the eyes and base of the ears are whitish-brown. Facial vibrissae are relatively shorter, finer and fewer than in Tasmanian Devils and Quolls. The short ears are about 80 mm long, erect, rounded and covered with short fur. Sexual dimorphism occurs, adult males being larger on average. Jaws are long and powerful and the teeth number 46. In the vertebral column there are only two sacrals instead of the usual three and from 23 to 25 caudal vertebrae rather than 20 to 21.
    [Show full text]
  • An Investigation Into Factors Affecting Breeding Success in The
    An investigation into factors affecting breeding success in the Tasmanian devil (Sarcophilus harrisii) Tracey Catherine Russell Faculty of Science School of Life and Environmental Science The University of Sydney Australia A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy 2018 Faculty of Science The University of Sydney Table of Contents Table of Figures ............................................................................................................ viii Table of Tables ................................................................................................................. x Acknowledgements .........................................................................................................xi Chapter Acknowledgements .......................................................................................... xii Abbreviations ................................................................................................................. xv An investigation into factors affecting breeding success in the Tasmanian devil (Sarcophilus harrisii) .................................................................................................. xvii Abstract ....................................................................................................................... xvii 1 Chapter One: Introduction and literature review .............................................. 1 1.1 Devil Life History ...................................................................................................
    [Show full text]
  • Tasmanian Treatment
    Tasmanian treatment Professor Greg Woods discusses his work to save the Tasmanian devil from extinction by a devastatingly contagious cancer, and elaborates on the research that has guided him in his pursuit of this disease University of Tasmania to continue my research Could you outline the most prominent on leukaemia. I obtained a lectureship and challenges you face in your studies? began teaching immunology. My research then switched focus to how cancers escape Developing a consistent method to activate recognition by the immune system. In early the devil’s immune response that will protect 2000 it became apparent that Tasmanian devils against the cancer. In other words, developing were dying from a disfiguring facial cancer; by a vaccine. If a vaccine is possible, it is difficult PROFESSOR GREG WOODS PROFESSOR 2006, it was clear that this was a transmissible to predict how far away it is, at least five years cancer, passing from one devil to another. – but who knows what’s around the corner? This was a perfect example of a cancer that Our work is the major project driving the escaped recognition by the immune system, development of a vaccine, so our results will and it was occurring in Tasmania, the only place be essential. where Tasmanian devils could be found – it seemed that destiny had determined that my How does collaboration advance the global research would focus on the immune escape fight against cancer? Has a multidisciplinary mechanisms of DFTD. approach proven important to the success of your own work? What are the aetiology and symptoms of DFTD and how does it affect the immune Collaboration is an important aspect of our To begin, could you provide an insight into system of the Tasmanian devil? research.
    [Show full text]
  • Ba3444 MAMMAL BOOKLET FINAL.Indd
    Intot Obliv i The disappearing native mammals of northern Australia Compiled by James Fitzsimons Sarah Legge Barry Traill John Woinarski Into Oblivion? The disappearing native mammals of northern Australia 1 SUMMARY Since European settlement, the deepest loss of Australian biodiversity has been the spate of extinctions of endemic mammals. Historically, these losses occurred mostly in inland and in temperate parts of the country, and largely between 1890 and 1950. A new wave of extinctions is now threatening Australian mammals, this time in northern Australia. Many mammal species are in sharp decline across the north, even in extensive natural areas managed primarily for conservation. The main evidence of this decline comes consistently from two contrasting sources: robust scientifi c monitoring programs and more broad-scale Indigenous knowledge. The main drivers of the mammal decline in northern Australia include inappropriate fi re regimes (too much fi re) and predation by feral cats. Cane Toads are also implicated, particularly to the recent catastrophic decline of the Northern Quoll. Furthermore, some impacts are due to vegetation changes associated with the pastoral industry. Disease could also be a factor, but to date there is little evidence for or against it. Based on current trends, many native mammals will become extinct in northern Australia in the next 10-20 years, and even the largest and most iconic national parks in northern Australia will lose native mammal species. This problem needs to be solved. The fi rst step towards a solution is to recognise the problem, and this publication seeks to alert the Australian community and decision makers to this urgent issue.
    [Show full text]
  • Spotted Tailed Quoll (Dasyurus Maculatus)
    Husbandry Guidelines for the SPOTTED-TAILED QUOLL (Tiger Quoll) (Photo: J. Marten) Dasyurus maculatus (MAMMALIA: DASYURIDAE) Author: Julie Marten Date of Preparation: February 2013 – June 2014 Western Sydney Institute of TAFE, Richmond Course Name and Number: Captive Animals Certificate III (18913) Lecturers: Graeme Phipps, Jacki Salkeld, Brad Walker DISCLAIMER Please note that this information is just a guide. It is not a definitive set of rules on how the care of Spotted- Tailed Quolls must be conducted. Information provided may vary for: • Individual Spotted-Tailed Quolls • Spotted-Tailed Quolls from different regions of Australia • Spotted-Tailed Quolls kept in zoos versus Spotted-Tailed Quolls from the wild • Spotted-Tailed Quolls kept in different zoos Additionally different zoos have their own set of rules and guidelines on how to provide husbandry for their Spotted-Tailed Quolls. Even though I researched from many sources and consulted various people, there are zoos and individual keepers, researchers etc. that have more knowledge than myself and additional research should always be conducted before partaking any new activity. Legislations are regularly changing and therefore it is recommended to research policies set out by national and state government and associations such as ARAZPA, ZAA etc. Any incident resulting from the misuse of this document will not be recognised as the responsibility of the author. Please use at the participants discretion. Any enhancements to this document to increase animal care standards and husbandry techniques are appreciated. Otherwise I hope this manual provides some helpful information. Julie Marten Picture J.Marten 2 OCCUPATIONAL HEALTH AND SAFETY RISKS It is important before conducting any work that all hazards are identified.
    [Show full text]
  • SPOTTED-TAILED QUOLL (Tiger Quoll)
    Husbandry Guidelines for the SPOTTED-TAILED QUOLL (Tiger Quoll) (Photo: J. Marten) Dasyurus maculatus (MAMMALIA: DASYURIDAE) Date By From Version 2014 Julie Marten WSI Richmond v 1 DISCLAIMER Please note that this information is just a guide. It is not a definitive set of rules on how the care of Spotted- Tailed Quolls must be conducted. Information provided may vary for: Individual Spotted-Tailed Quolls Spotted-Tailed Quolls from different regions of Australia Spotted-Tailed Quolls kept in zoos versus Spotted-Tailed Quolls from the wild Spotted-Tailed Quolls kept in different zoos Additionally different zoos have their own set of rules and guidelines on how to provide husbandry for their Spotted-Tailed Quolls. Even though I researched from many sources and consulted various people, there are zoos and individual keepers, researchers etc. that have more knowledge than myself and additional research should always be conducted before partaking any new activity. Legislations are regularly changing and therefore it is recommended to research policies set out by national and state government and associations such as ARAZPA, ZAA etc. Any incident resulting from the misuse of this document will not be recognised as the responsibility of the author. Please use at the participants discretion. Any enhancements to this document to increase anima l care standards and husbandry techniques are appreciated. Otherwise I hope this manual provides some helpful information. Julie Marten Picture J.Marten 2 OCCUPATIONAL HEALTH AND SAFETY RISKS It is important before conducting any work that all hazards are identified. This includes working with the animal and maintaining the enclosure.
    [Show full text]
  • Animal Enrichment Strategies for Promoting Natural Behaviors in Captive Populations of Tasmanian Devils (Sarcophilus Harrisii) Tierney O’Neal SIT Study Abroad
    SIT Graduate Institute/SIT Study Abroad SIT Digital Collections Independent Study Project (ISP) Collection SIT Study Abroad Fall 2011 Animal Enrichment Strategies for Promoting Natural Behaviors in Captive Populations of Tasmanian Devils (Sarcophilus harrisii) Tierney O’Neal SIT Study Abroad Follow this and additional works at: https://digitalcollections.sit.edu/isp_collection Part of the Animal Sciences Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation O’Neal, Tierney, "Animal Enrichment Strategies for Promoting Natural Behaviors in Captive Populations of Tasmanian Devils (Sarcophilus harrisii)" (2011). Independent Study Project (ISP) Collection. 1129. https://digitalcollections.sit.edu/isp_collection/1129 This Unpublished Paper is brought to you for free and open access by the SIT Study Abroad at SIT Digital Collections. It has been accepted for inclusion in Independent Study Project (ISP) Collection by an authorized administrator of SIT Digital Collections. For more information, please contact [email protected]. Animal Enrichment Strategies for Promoting Natural Behaviors in Captive Populations of Tasmanian Devils (Sarcophilus harrisii) Tierney O’Neal Project Advisors: Marissa Parrott, Ph.D., and Melanie Lancaster, Ph.D. Threatened Species Department, Healesville Sanctuary Healesville, VIC, AU Academic Director: Tony Cummings Home Institution: Franklin & Marshall College Major: Animal Behavior Submitted in partial fulfillment of the requirements for Australia: Rainforest, Reef, and Cultural Ecology, SIT Study Abroad, Fall 2011. ABSTRACT The population of Tasmanian devils (Sarcophilus harrisii) is in rapid decline due to Devil Facial Tumour Disease, and insurance populations have been created in captivity for potential future introduction into the wild. Many problems can arise within captive animal populations including loss of natural behaviors, and development of negative stereotypical (i.e.
    [Show full text]
  • Skulls of Tasmania
    SKULLS of the MAMMALS inTASMANIA R.H.GREEN with illustrations by 1. L. RAINBIRIJ An Illustrated Key to the Skulls of the Mammals in Tasmania by R. H. GREEN with illustrations by J. L. RAINBIRD Queen Victoria Museum and Art Gallery, Launceston, Tasmania Published by Queen Victoria Museum and Art Gallery, Launceston, Tasmania, Australia 1983 © Printed by Foot and Playsted Pty. Ltd., Launceston ISBN a 7246 1127 4 2 CONTENTS Page Introduction . 4 Acknowledgements.......................... 5 Types of teeth........................................................................................... 6 The illustrations........................................ 7 Skull of a carnivore showing polyprotodont dentition 8 Skull of a herbivore showing diprotodont dentition......................................... 9 Families of monotremes TACHYGLOSSIDAE - Echidna 10 ORNITHORHYNCHIDAE - Platypus 12 Families of marsupials DASYURIDAE - Quolls, devil, antechinuses, dunnart 14 THYLACINIDAE - Thylacine 22 PERAMELIDAE - Bandicoots 24 PHALANGERIDAE - Brushtail Possum 28 BURRAMYIDAE - Pygmy-possums 30 PETAURIDAE - Sugar glider, ringtail 34 MACROPODIDAE - Bettong, potoroo, pademelon, wallaby, kangaroo 38 VOMBATIDAE - Wombat 44 Families of eutherians VESPERTILIONIDAE - Bats 46 MURIDAE - Rats, mice 56 CANIDAE - Dog 66 FELIDAE - Cat 68 EQUIDAE - Horse 70 BOVIDAE - Cattle, goat, sheep 72 CERVIDAE - Deer 76 SUIDAE - Pig 78 LEPORIDAE - Hare, rabbit 80 OTARIIDAE - Sea-lion, fur-seals 84 PHOCIDAE - Seals 88 HOMINIDAE - Man 92 Appendix I Dichotomous key 94 Appendix II Index to skull illustrations . ........... 96 Alphabetical index of common names . ........................................... 98 Alphabetical index of scientific names 99 3 INTRODUCTION The skulls of mammals are often brought to museums for indentification. The enquirers may be familiar with the live animal but they are often quite confused when confronted with the task of identifying a skull or, worse, only part of a skull. Skulls may be found in the bush with, or apart from, the rest of the skeleton.
    [Show full text]
  • Spotted-Tailed Quoll
    Threatened Fauna of the Hunter & Mid Coast Spotted-tailed Quoll {Dasyurus maculatus} The Spotted-tailed Quoll is a distinctive marsupial carnivore endemic to eastern Australia, where it is widely distributed from north-eastern Queensland to Tasmania. It is a well-adapted carnivore and one of the most ferocious animals in the Australian bush. Two subspecies are currently recognised: D. maculatus gracilis, restricted to north-eastern Queensland; and D. maculatus maculatus, that occurs from southern Queensland through to south-western Victoria and Tasmania. Its distribution and population have dramatically declined, and the animal is now found over a restricted range. In many cases, quolls are living in isolated areas that may be too small to support viable long-term populations. The Spotted-tailed Quoll is also known as the Tiger Quoll, (but shouldn’t be confused with the Eastern Quoll, which are only found in Tasmania). Foxes caused their extinction on mainland Australia more than 50 years ago. A small population of Eastern Quolls were released in NSW at Booderee National Park, as part of a recovery program in early 2018. To protect Spotted-tailed Quolls, retain or enhance native vegetation on your property, and take care on the roads to avoid hitting them at night. www.hunter.lls.nsw.gov.au We help secure the future of agriculture and the environment for NSW communities Hunter and Mid Coast region NSW Distribution of Spotted-tailed Quoll Taree ( ( Muswellbrook Newcastle ( Newcastle Known Predicted The areas shown in pink and purple are the sub-regions where the species or community is, or known to occur.
    [Show full text]