The Compartmentalization of Folate Metabolism in Mammalian Cells

Total Page:16

File Type:pdf, Size:1020Kb

The Compartmentalization of Folate Metabolism in Mammalian Cells The Compartmentalization of Folate Metabolism in Mammalian Cells by Harshila Patel A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements of the degree of Doctor of Philosophy Department of Biochemistry McGili University Montreal, Quebec, Canada © by Harshila Patel June, 2004 Library and Bibliothèque et 1+1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l'édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A ON4 Ottawa ON K1A ON4 Canada Canada Your file Votre référence ISBN: 0-494-06334-3 Our file Notre référence ISBN: 0-494-06334-3 NOTICE: AVIS: The author has granted a non­ L'auteur a accordé une licence non exclusive exclusive license allowing Library permettant à la Bibliothèque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l'Internet, prêter, telecommunication or on the Internet, distribuer et vendre des thèses partout dans loan, distribute and sell th es es le monde, à des fins commerciales ou autres, worldwide, for commercial or non­ sur support microforme, papier, électronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriété du droit d'auteur ownership and moral rights in et des droits moraux qui protège cette thèse. this thesis. Neither the thesis Ni la thèse ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent être imprimés ou autrement may be printed or otherwise reproduits sans son autorisation. reproduced without the author's permission. ln compliance with the Canadian Conformément à la loi canadienne Privacy Act some supporting sur la protection de la vie privée, forms may have been removed quelques formulaires secondaires from this thesis. ont été enlevés de cette thèse. While these forms may be included Bien que ces formulaires in the document page count, aient inclus dans la pagination, their removal does not represent il n'y aura aucun contenu manquant. any loss of content from the thesis. ••• Canada This thesis is dedicated to my wonderfully supportive parents, Ashvin and Jyoti ABSTRACT Folate metabolism is compartmentalized between the cytoplasm and the mitochondria of mammalian cells. Certain folate-dependent enzymes are present in both of these compartments, such as methylenetetrahydrofolate dehydrogenases, which are required to interconvert one-carbon substituted tetrahydrofolates. In the cytoplasm, there is a trifunctional NADP-dependent methylenetetrahydrofolate dehydrogenase-cyclohydrolase-synthetase (DCS). Its mitochondrial counterpart is a bifunctional NAD-dependent methylenetetrahydrofolate dehydrogenase-cyclohydrolase (NMDMC), expressed during embryogenesis and in immortalized cells. A comparison of the 3' untranslated region of the NMDMC cDNA with the synthetase domain of the DCS cDNA and gene among different species have revealed significant regions of homology. This suggests that the mammalian mitochondrial NAD-dependent OC evolved from an NADP-dependent DCS precursor through a change in cofactor specificity of the dehydrogenase from NADP to NAD. Although the folate pathways are compartmentalized, the mitochondrial folate pathway makes an important contribution to total cellular folate metabolism. Mouse fibroblasts that have a completely inactivated NMDMC gene are glycine auxotrophs. Furthermore, growth of these Nmdmc-/- cell lines is stimulated by supplementation with formate or hypoxanthine. These cell lines also show enhanced incorporation of radioactivity into DNA from formate as compared to serine, demonstrating that formate is a preferred one-carbon donor for the Nmdmc-/- cell lines. This indicates that NMDMC is required for optimal purine biosynthesis during periods of rapid cellular proliferation su ch as embryogenesis and tumorigenesis. The rescue of these Nmdmc-/- cell lines with NMDMC expression reversed the glycine auxotrophy and the formate to serine incorporation ratio reverted toward the wild type ratio. The rescue of these Nmdmc-/- cell lines with the NAD-dependent monofunctional dehydrogenase activity also reversed the glycine auxotrophy but these cell lines did not grow as weil as the NMDMC-rescued ce Il lines. This indicates that although the cyclohydrolase activity is not required in the mitochondria, the rate of 10- formylTHF production is not optimal in its absence. Furthermore, when these Nmdmc-/- cell lines were rescued with the expression of the NADP-dependent DCS in the mitochondria there was reversai of the glycine auxotrophy as weil, indicating that the NAD cofactor specificity of the mitochondrial methylenetetrahydrofolate dehydrogenase is not absolutely essential to maintain the flux of one-carbon metabolites. RÉSUMÉ Dans les cellules de mammifères, le métabolisme du folate est compartimenté entre le cytoplasme et les mitochondries. Certaines enzymes qui dépendent du folate sont présentes dans ces deux compartiments, comme par exemple, les déshydrogénases de méthylènetétrahydrofolate nécessaire à l'interconversion des tétrahydrofolates porteurs d'unité de carbone. Le cytoplasme contient une enzyme trifonctionnelle, la déshydrogénase de méthylènetétrahydrofolate dépendante du NADP-cyclohydrolase-synthétase (DCS) dont l'équivalent mitochondrial est une enzyme bifonctionnelle: la déshydrogénase de méthylènetétrahydrofolate dépendante du NAD­ cyclohydrolase (NMDMC). Cette dernière est exprimée durant l'embryogenèse et dans les lignées de cellules transformées. Une comparaison de la région 3' non traduite de l'ADNe de NMDMC avec le domaine de synthétase de l'ADNe et du gène de DCS provenant d'espèces différentes a indiqué des régions significativement homologues. Ceci suggère que l'enzyme mitochondriale de mammifères, la OC dépendante du NAD, aurait évoluée à partir d'un précurseur de la DCS dépendante du NADP ayant subi un changement de cofacteur, passant du NADP au NAD. Bien que les voies de signalisation du folate soient compartimentées, la voie mitochondriale apporte une contribution importante au métabolisme cellulaire du folate. Les fibroblastes de souris dont le gène NMDMC est complètement inactivé sont auxotrophes pour la glycine. De plus, la croissance de ces cellules I Nmdmc- - est stimulée par la présence de formate ou d'hypoxanthine. Ces cellules montrent également plus d'incorporation de radioactivité à l'ADN lorsqu'on utilise du formate au lieu de la sérine, ce qui démontre l'utilisation préferentielle du formate en tant que donneur d'unités de carbone pour ces cellules. Les résultats indiquent que la NMDMC est nécessaire à la biosynthèse optimale des purines pendant les périodes de prolifération cellulaire rapide telles I que l'embryogenèse ou la tumorigenèse. Lorsque dans ces cellules Nmdmc- - on restaure la NMDMC par transfection, l'auxotrophie pour la glycine est renversée et le rapport d'incorporation préferentielle du formate par rapport à la sérine revient à la normale. Lorsque l'activité monofonctionnelle de déshydrogénase à I NAD est restaurée dans les cellules Nmdmc- -, l'auxotrophie pour la glycine est renversée, mais les lignées cellulaires ne prolifèrent pas aussi bien que les I cellules Nmdmc- - exprimant de nouveau la NMDMC. Ceci indique que, bien que l'activité de la cyclohydrolase ne soit pas nécessaire dans les mitochondries, le taux de production du 10-formyltétrahydrofolate n'est pas optimal en son absence. De plus, quand on exprime la DCS dépendante du NADP dans les mitochondries I des cellules Nmdmc- - par transfection, l'auxotrophie pour la glycine est de nouveau renversée, indicant que la spécificité pour le NAD de la déshydrogénase de méthylènetétrahydrofolate mitochondriale n'est pas absolument essentielle au maintient du flot des métabolites d'unité de carbone. TABLE OF CONTENTS FOREWORD .......................................................................................................... i ACKNOWLEDGEMENTS ..................................................................................... v PUBLICATION OF THE WORK PRESENTED IN THIS THESIS .......................viii CONTRIBUTIONS TO ORIGINAL KNOWLEDGE .............................................. ix LIST OF FIGURES .............................................................................................. xii LIST OF TABLES ...............................................................................................xiv LIST OF ABBREVIATIONS .................................................................................xv CHAPTER ONE: GENERAL INTRODUCTION ............................................. 1 OISCOVERY OF FOLIC ACIO .......................................................................... 2 FOLIC ACIO ...................................................................................................... 2 FOLATE ABSORPTION .................................................................................... 4 MECHANISMS OF CELLULAR TRANSPORT .................................................. 5 FOLATE BINDING PROTEINS ........................................................................... 6 Folate Receptor ............................................................................................... 6 Reduced Folate Carrier ................................................................................... 9 LOW PH TRANSPORTER
Recommended publications
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • A Mathematical Model of Glutathione Metabolism Michael C Reed*1, Rachel L Thomas1, Jovana Pavisic1,2, S Jill James3, Cornelia M Ulrich4 and H Frederik Nijhout2
    Theoretical Biology and Medical Modelling BioMed Central Research Open Access A mathematical model of glutathione metabolism Michael C Reed*1, Rachel L Thomas1, Jovana Pavisic1,2, S Jill James3, Cornelia M Ulrich4 and H Frederik Nijhout2 Address: 1Department of Mathematics, Duke University, Durham, NC 27708, USA, 2Department of Biology, Duke University, Durham, NC 27708, USA, 3Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AK 72205, USA and 4Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA Email: Michael C Reed* - [email protected]; Rachel L Thomas - [email protected]; Jovana Pavisic - [email protected]; S Jill James - [email protected]; Cornelia M Ulrich - [email protected]; H Frederik Nijhout - [email protected] * Corresponding author Published: 28 April 2008 Received: 27 November 2007 Accepted: 28 April 2008 Theoretical Biology and Medical Modelling 2008, 5:8 doi:10.1186/1742-4682-5-8 This article is available from: http://www.tbiomed.com/content/5/1/8 © 2008 Reed et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Glutathione (GSH) plays an important role in anti-oxidant defense and detoxification reactions. It is primarily synthesized in the liver by the transsulfuration pathway and exported to provide precursors for in situ GSH synthesis by other tissues. Deficits in glutathione have been implicated in aging and a host of diseases including Alzheimer's disease, Parkinson's disease, cardiovascular disease, cancer, Down syndrome and autism.
    [Show full text]
  • Chapter 2: Literature Review
    Chapter 2: Literature Review 2.1 A historical perspective on the study of glycine conjugation The urinary excretion of hippurate after ingestion of benzoate was first observed by Alexander Ure in 1841 (Ure, 1841). This credits Ure with the first discovery of a biotransformation reaction, a finding that started the whole field of drug metabolism research. However, interest in glycine conjugation faded significantly after this great discovery, probably because very few pharmaceuticals are metabolised by conjugation to glycine (Badenhorst et al., 2013, Knights et al., 2007). This explains why, now more than 170 years later, the significance of glycine conjugation in metabolism is still not clearly understood. As mentioned in Chapter 1, GLYAT conjugates several endogenous and xenobiotic organic acids to glycine. Acylglycines from endogenous sources include butyrylglycine, hexanoylglycine, and isovalerylglycine. The xenobiotic acylglycines include hippurate, salicylurate, and methylhippurate (Bartlett and Gompertz, 1974, Nandi et al., 1979, Schachter and Taggart, 1954, Mawal and Qureshi, 1994). It seems as though this unusual range of metabolites formed by GLYAT has contributed to the lack of understanding of the glycine conjugation pathway. Some historical perspective sheds light on this situation. Initial studies of glycine conjugation were similar to Ure’s original experiments. Benzoic acid was ingested by human or animal test subjects, followed by detection and quantification of hippurate in the urine. This led to several interesting observations such as the decreased synthesis of hippurate in individuals with schizophrenia and in hepatitis patients (Quastel and Wales, 1938, Probstein and Londe, 1940, Wong, 1945, Saltzman and Caraway, 1953). In 1953 Schachter and Taggart showed that the synthesis of hippurate from benzoate and glycine is dependent on benzoyl-CoA, a high-energy form of benzoate (Schachter and Taggart, 1953).
    [Show full text]
  • Fmicb-07-01854
    Temporal Metagenomic and Metabolomic Characterization of Fresh Perennial Ryegrass Degradation by Rumen Bacteria Mayorga, O. L., Kingston-Smith, A. H., Kim, E. J., Allison, G. G., Wilkinson, T. J., Hegarty, M. J., Theodorou, M. K., Newbold, C. J., & Huws, S. A. (2016). Temporal Metagenomic and Metabolomic Characterization of Fresh Perennial Ryegrass Degradation by Rumen Bacteria. Frontiers in Microbiology, 7, 1854. https://doi.org/10.3389/fmicb.2016.01854 Published in: Frontiers in Microbiology Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights Copyright 2017 the authors. This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:07.
    [Show full text]
  • Magnetic Resonance Spectroscopy Study of Glycine Pathways in Nonketotic Hyperglycinemia
    0031-3998/02/5202-0292 PEDIATRIC RESEARCH Vol. 52, No. 2, 2002 Copyright © 2002 International Pediatric Research Foundation, Inc. Printed in U.S.A. Magnetic Resonance Spectroscopy Study of Glycine Pathways in Nonketotic Hyperglycinemia ANGÈLE VIOLA, BRIGITTE CHABROL, FRANÇOIS NICOLI, SYLVIANE CONFORT-GOUNY, PATRICK VIOUT, AND PATRICK J. COZZONE Center for Magnetic Resonance in Biology and Medicine CRMBM-UMR-CNRS 6612, Faculty of Medicine, Marseille, France [A.V., F.N., S.C.-G., P.V., P.J.C.], and Neuropediatric Service, CHU la Timone, Marseille, France [B.C.] ABSTRACT Nonketotic hyperglycinemia is a life-threatening disorder Abbreviations in neonates characterized by a deficiency of the glycine Cho, choline cleavage system. We report on four cases of the neonatal form tCr, total creatine of the disease, which were investigated by in vitro 1H mag- CSF, cerebrospinal fluid netic resonance spectroscopy of blood and cerebrospinal fluid, DX, dextromethorphan and in vivo 1H magnetic resonance spectroscopy of brain. The GA, gestational age existence of glycine disposal pathways leading to an increase GCS, glycine cleavage system in lactate in fluids and creatine in fluids and brain was Glx, glutamateϩglutamine demonstrated. This is the first observation of elevated creatine Gly, glycine in brain in nonketotic hyperglycinemia. A recurrent decrease GS, glutamine synthetase of glutamine and citrate was observed in cerebrospinal fluid, Ins, myo-inositol which might be related to abnormal glutamine metabolism in MRI, magnetic resonance imaging brain. Finally, the cerebral N-acetylaspartate to myo-inositol- MRS, magnetic resonance spectroscopy glycine ratio was identified as a prognostic indicator of the NAA, N-acetylaspartate disease. (Pediatr Res 52: 292–300, 2002) NKH, nonketotic hyperglycinemia SB, sodium benzoate NKH is an inborn error of autosomal recessive inheritance in plasmaglycine ratio greater than 0.08.
    [Show full text]
  • Reconstruction of Pathways Associated with Amino Acid Metabolism in Human Mitochondria
    Article Reconstruction of Pathways Associated with Amino Acid Metabolism in Human Mitochondria Purnima Guda1, Chittibabu Guda1*, and Shankar Subramaniam2,3 1 Gen*NY*sis Center for Excellence in Cancer Genomics and Department of Epidemiology and Biostatistics, State University of New York at Albany, Rensselaer, NY 12144-3456, USA; 2 San Diego Supercomputer Center, University of California at San Diego, La Jolla, CA 92093-0505, USA; 3 Departments of Bioengineering, Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA. We have used a bioinformatics approach for the identification and reconstruction of metabolic pathways associated with amino acid metabolism in human mitochon- dria. Human mitochondrial proteins determined by experimental and computa- tional methods have been superposed on the reference pathways from the KEGG database to identify mitochondrial pathways. Enzymes at the entry and exit points for each reconstructed pathway were identified, and mitochondrial solute carrier proteins were determined where applicable. Intermediate enzymes in the mito- chondrial pathways were identified based on the annotations available from public databases, evidence in current literature, or our MITOPRED program, which pre- dicts the mitochondrial localization of proteins. Through integration of the data derived from experimental, bibliographical, and computational sources, we recon- structed the amino acid metabolic pathways in human mitochondria, which could help better understand the mitochondrial metabolism and its role in human health. Key words: mitochondria, metabolic pathways, amino acid metabolism, human Introduction Reconstruction of the metabolic maps of fully se- potential value to biomedical research areas such as quenced organisms is becoming a task of ma- drug targeting, reconstruction of disease pathways, jor importance in order to help biologists iden- understanding protein interaction networks, and an- tify and analyze the maps of newly sequenced or- notation of new or alternative pathways.
    [Show full text]
  • Genetic Manipulation of Glycine Decarboxylation
    Journal of Experimental Botany, Vol. 54, No. 387, pp. 1523±1535, June 2003 DOI: 10.1093/jxb/erg171 REVIEW ARTICLE Genetic manipulation of glycine decarboxylation Hermann Bauwe1 and UÈ ner Kolukisaoglu Abteilung P¯anzenphysiologie der UniversitaÈt Rostock, Albert-Einstein-Strasse 3, D-18051 Rostock, Germany Received 2 October 2002; Accepted 11 March 2003 Downloaded from https://academic.oup.com/jxb/article/54/387/1523/540368 by guest on 26 September 2021 Abstract complex that occurs in all organisms, prokaryotes and eukaryotes. GDC, together with serine hydroxymethyl- The glycine±serine interconversion, catalysed by gly- transferase (SHMT), is responsible for the inter-conversion cine decarboxylase and serine hydroxymethyltransfer- of glycine and serine, an essential and ubiquitous step of ase, is an important reaction of primary metabolism in primary metabolism. In Escherichia coli, 15% of all all organisms including plants, by providing one-car- carbon atoms assimilated from glucose are estimated to bon units for many biosynthetic reactions. In plants, pass through the glycine±serine pathway (Wilson et al., in addition, it is an integral part of the photorespira- 1993). In eukaryotes, GDC is present exclusively in the tory metabolic pathway and produces large amounts mitochondria, whereas isoforms of SHMT also occur in the of photorespiratory CO within mitochondria. 2 cytosol and, in plants, in plastids. The term `glycine±serine Although controversial, there is signi®cant evidence that this process, by the relocation of glycine decar- interconversion' might suggest that the central importance boxylase within the leaves from the mesophyll to the of this pathway is just the synthesis of serine from glycine and vice versa.
    [Show full text]
  • Supplemental Table S1: Comparison of the Deleted Genes in the Genome-Reduced Strains
    Supplemental Table S1: Comparison of the deleted genes in the genome-reduced strains Legend 1 Locus tag according to the reference genome sequence of B. subtilis 168 (NC_000964) Genes highlighted in blue have been deleted from the respective strains Genes highlighted in green have been inserted into the indicated strain, they are present in all following strains Regions highlighted in red could not be deleted as a unit Regions highlighted in orange were not deleted in the genome-reduced strains since their deletion resulted in severe growth defects Gene BSU_number 1 Function ∆6 IIG-Bs27-47-24 PG10 PS38 dnaA BSU00010 replication initiation protein dnaN BSU00020 DNA polymerase III (beta subunit), beta clamp yaaA BSU00030 unknown recF BSU00040 repair, recombination remB BSU00050 involved in the activation of biofilm matrix biosynthetic operons gyrB BSU00060 DNA-Gyrase (subunit B) gyrA BSU00070 DNA-Gyrase (subunit A) rrnO-16S- trnO-Ala- trnO-Ile- rrnO-23S- rrnO-5S yaaC BSU00080 unknown guaB BSU00090 IMP dehydrogenase dacA BSU00100 penicillin-binding protein 5*, D-alanyl-D-alanine carboxypeptidase pdxS BSU00110 pyridoxal-5'-phosphate synthase (synthase domain) pdxT BSU00120 pyridoxal-5'-phosphate synthase (glutaminase domain) serS BSU00130 seryl-tRNA-synthetase trnSL-Ser1 dck BSU00140 deoxyadenosin/deoxycytidine kinase dgk BSU00150 deoxyguanosine kinase yaaH BSU00160 general stress protein, survival of ethanol stress, SafA-dependent spore coat yaaI BSU00170 general stress protein, similar to isochorismatase yaaJ BSU00180 tRNA specific adenosine
    [Show full text]
  • Metabolic Engineering and Bio-Electrochemical Synthesis in Pseudomonas Putida KT2440 for the Production of P-Hydroxybenzoate and 2-Ketogluconate
    Metabolic engineering and bio-electrochemical synthesis in Pseudomonas putida KT2440 for the production of p-hydroxybenzoate and 2-ketogluconate Shiqin Yu Master of Science A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2017 School of Chemical Engineering I Abstract Bio-based chemicals have drawn research interests due to the need for sustainable development. Aromatics and the derived compounds are an important class of chemicals that are mostly derived from fossil resources. Microbial bio-production can produce many compounds from renewable feedstocks to reduce the current heavy dependency on fossil resources. The aromatic compound para-hydroxybenzoate (PHBA) is used to make parabens and high-value polymers (liquid crystal polymer). Biologically, this chemical can be derived from the shikimate pathway, the central pathway for the biosynthesis of aromatic amino acids in bacteria, plants and fungi and some protozoa. In recent years, the gram-negative soil bacterium Pseudomonas putida is becoming an interesting chassis for industrial biotechnology. The production of PHBA in recombinant P. putida KT2440 was engineered by overexpressing the chorismate lyase Ubic from Escherichia coli and a feedback resistant 3-Deoxy-D-arabinoheptulosonate 7-phosphate synthase (AroGD146N). Additionally, the pathways competing for the substrate chorismate (trpE and pheA) and the PHBA degradation pathway (pobA) were eliminated. Finally, deletion of the glucose metabolism repressor hexR led to an increase in erythrose-4-phosphate and NADPH supply. This resulted in a maximum titre of 1.73 g L-1 and a carbon yield of 18.1 % (C-mol C-mol-1) in a non-optimized fed-batch fermentation.
    [Show full text]
  • THE CONTRIBUTION of ONE-CARBON METABOLISM to the PATHOGENESIS of FRANCISELLA TULARENSIS by Matthew Jude Brown B.S. in Biological
    THE CONTRIBUTION OF ONE-CARBON METABOLISM TO THE PATHOGENESIS OF FRANCISELLA TULARENSIS by Matthew Jude Brown B.S. in Biological Sciences – Molecular Genetics, University of Rochester, 2008 Submitted to the Graduate Faculty of the School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2013 UNIVERSITY OF PITTSBURGH SCHOOL OF MEDICINE This dissertation was presented by Matthew Jude Brown It was defended on November 5, 2013 and approved by Dr. Bruce McClane, Ph.D. Professor, Department of Microbiology and Molecular Genetics Dr. Saleem Khan, Ph.D. Professor, Department of Microbiology and Molecular Genetics Dr. Robert Shanks, Ph.D. Associate Professor, Department of Microbiology and Molecular Genetics Dr. Carolyn Coyne, Ph.D. Associate Professor, Department of Microbiology and Molecular Genetics Dissertation Advisor: Dr. Gerard Nau, M.D., Ph.D. Assistant Professor, Department of Microbiology and Molecular Genetics ii Copyright © by Matthew Jude Brown 2013 iii THE CONTRIBUTION OF ONE-CARBON METABOLISM TO THE PATHOGENESIS OF FRANCISELLA TULARENSIS Matthew Jude Brown, PhD University of Pittsburgh, 2013 An emerging paradigm shift in bacterial pathogenesis has resulted in renewed interest in metabolism during infection. The acquisition and synthesis of metabolites by pathogens in the host represents a critical obstacle to successful colonization and infection. The value of bacterial metabolic pathways during infection remains poorly characterized for many pathogens and warrants further investigation. One aspect of this, the contribution of one-carbon metabolism to pathogenic fitness was assessed. This metabolic pathway primarily transfers single carbons and contributes to the synthesis of amino acids, DNA, and proteins.
    [Show full text]
  • Cytosolic 10-Formyltetrahydrofolate Dehydrogenase Regulates Glycine Metabolism in Mouse Liver Natalia I
    www.nature.com/scientificreports OPEN Cytosolic 10-formyltetrahydrofolate dehydrogenase regulates glycine metabolism in mouse liver Natalia I. Krupenko1,2, Jaspreet Sharma1, Peter Pediaditakis1, Baharan Fekry1,5, Kristi L. Helke3, Xiuxia Du4, Susan Sumner1,2 & Sergey A. Krupenko1,2* ALDH1L1 (10-formyltetrahydrofolate dehydrogenase), an enzyme of folate metabolism highly expressed in liver, metabolizes 10-formyltetrahydrofolate to produce tetrahydrofolate (THF). This reaction might have a regulatory function towards reduced folate pools, de novo purine biosynthesis, and the fux of folate-bound methyl groups. To understand the role of the enzyme in cellular metabolism, Aldh1l1−/− mice were generated using an ES cell clone (C57BL/6N background) from KOMP repository. Though Aldh1l1−/− mice were viable and did not have an apparent phenotype, metabolomic analysis indicated that they had metabolic signs of folate defciency. Specifcally, the intermediate of the histidine degradation pathway and a marker of folate defciency, formiminoglutamate, was increased more than 15-fold in livers of Aldh1l1−/− mice. At the same time, blood folate levels were not changed and the total folate pool in the liver was decreased by only 20%. A two-fold decrease in glycine and a strong drop in glycine conjugates, a likely result of glycine shortage, were also observed in Aldh1l1−/− mice. Our study indicates that in the absence of ALDH1L1 enzyme, 10-formyl-THF cannot be efciently metabolized in the liver. This leads to the decrease in THF causing reduced generation of glycine from serine and impaired histidine degradation, two pathways strictly dependent on THF. Folate coenzymes participate in numerous biochemical reactions of one-carbon transfer1. Te network of folate utilizing reactions is referred to as one-carbon metabolism with more than two dozen enzymes participating in folate conversions.
    [Show full text]
  • The Complete Genome Sequence of the Gram-Positive Bacterium Bacillus Subtilis
    articles The complete genome sequence of the Gram-positive bacterium Bacillus subtilis F. Kunst1, N. Ogasawara2, I. Moszer3, A. M. Albertini4, G. Alloni4, V. Azevedo5, M. G. Bertero3,4, P. Bessie` res5, A. Bolotin5, S. Borchert6, R. Borriss7, L. Boursier3, A. Brans8, M. Braun9, S. C. Brignell10,S.Bron11, S. Brouillet3,12, C. V. Bruschi13, B. Caldwell14, V. Capuano5, N. M. Carter10, S.-K. Choi15, J.-J. Codani16, I. F. Connerton17, N. J. Cummings17, R. A. Daniel18, F. Denizot19, K. M. Devine20,A.Du¨sterho¨ ft9, S. D. Ehrlich5, P.T. Emmerson21, K. D. Entian6, J. Errington18, C. Fabret19, E. Ferrari14, D. Foulger18, C. Fritz9, M. Fujita22, Y.Fujita23,S.Fuma24, A. Galizzi4, N. Galleron5, S.-Y.Ghim15, P.Glaser3, A. Goffeau25, E. J. Golightly26, G. Grandi27, G. Guiseppi19,B.J.Guy10, K. Haga28, J. Haiech19, C. R. Harwood10,A.He´naut29, H. Hilbert9, S. Holsappel11, S. Hosono30, M.-F. Hullo3, M. Itaya31, L. Jones32, B. Joris8, D. Karamata33, Y.Kasahara2, M. Klaerr-Blanchard3, C. Klein6, Y.Kobayashi30, P.Koetter6, G. Koningstein34, S. Krogh20, M. Kumano24, K. Kurita24, A. Lapidus5, S. Lardinois8, J. Lauber9, V. Lazarevic33, S.-M. Lee35, A. Levine36, H. Liu28, S. Masuda30, C. Maue¨ l33,C.Me´digue3,12, N. Medina36, R. P. Mellado37, M. Mizuno30, D. Moestl9, S. Nakai2, M. Noback11, D. Noone20, M. O’Reilly20, K. Ogawa24, A. Ogiwara38, B. Oudega34, S.-H. Park15, V. Parro37,T.M.Pohl39, D. Portetelle40, S. Porwollik7, A. M. Prescott18, E. Presecan3, P. Pujic5, B. Purnelle25, G. Rapoport1, M. Rey26, S. Reynolds33, M. Rieger41, C. Rivolta33, E. Rocha3,12,B.Roche36, M.
    [Show full text]