Metabolic Engineering and Bio-Electrochemical Synthesis in Pseudomonas Putida KT2440 for the Production of P-Hydroxybenzoate and 2-Ketogluconate

Total Page:16

File Type:pdf, Size:1020Kb

Metabolic Engineering and Bio-Electrochemical Synthesis in Pseudomonas Putida KT2440 for the Production of P-Hydroxybenzoate and 2-Ketogluconate Metabolic engineering and bio-electrochemical synthesis in Pseudomonas putida KT2440 for the production of p-hydroxybenzoate and 2-ketogluconate Shiqin Yu Master of Science A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2017 School of Chemical Engineering I Abstract Bio-based chemicals have drawn research interests due to the need for sustainable development. Aromatics and the derived compounds are an important class of chemicals that are mostly derived from fossil resources. Microbial bio-production can produce many compounds from renewable feedstocks to reduce the current heavy dependency on fossil resources. The aromatic compound para-hydroxybenzoate (PHBA) is used to make parabens and high-value polymers (liquid crystal polymer). Biologically, this chemical can be derived from the shikimate pathway, the central pathway for the biosynthesis of aromatic amino acids in bacteria, plants and fungi and some protozoa. In recent years, the gram-negative soil bacterium Pseudomonas putida is becoming an interesting chassis for industrial biotechnology. The production of PHBA in recombinant P. putida KT2440 was engineered by overexpressing the chorismate lyase Ubic from Escherichia coli and a feedback resistant 3-Deoxy-D-arabinoheptulosonate 7-phosphate synthase (AroGD146N). Additionally, the pathways competing for the substrate chorismate (trpE and pheA) and the PHBA degradation pathway (pobA) were eliminated. Finally, deletion of the glucose metabolism repressor hexR led to an increase in erythrose-4-phosphate and NADPH supply. This resulted in a maximum titre of 1.73 g L-1 and a carbon yield of 18.1 % (C-mol C-mol-1) in a non-optimized fed-batch fermentation. This is to date the highest PHBA concentration produced by P. putida using a chorismate lyase route. Large-scale aerobic fermentations are more expensive due to the limiting gas transfer and lead to substrate loss in the form of CO2, whereas anaerobic processes are easier to scale up and achieve high carbon yield. In the case of aromatics, anaerobic production could be beneficial. Microbial electrosynthesis is an emerging technology for biosynthesis of chemicals and fuels by microorganisms in an anaerobic bio-electrochemical system (BES). These systems can provide electrons to electroactive microbes for reductive production processes in the cathode or drain excessive electrons in oxidative production processes in the anode. P. putida was tested for the first time for its ability to perform anoxic metabolism in BES with ferricyanide as the mediator and anode as the electron sink. A dual-phase fermentation was employed, where the cells grew aerobically in the first phase and then performed an anaerobic oxidation process in the second phase. In this way, P. putida KT2440 could electrochemically produce 2-ketogluconate, a sugar acid used for biosynthesis of antioxidant E315 for the food industry under anaerobic conditions from glucose. This would have been impossible without the use of BES. The parental strain II obtained a carbon yield of around 65% (C-mol C-mol-1) and a productivity of 0.56 ± 0.01 -1 -1 mmolproduct gCDW day . Two genetic engineering targets were identified as potential targets for improvement of the productivity, pointing towards the key enzymes in the electron transport chain coupled catalytic reactions: the glucose dehydrogenase (mGCD) and gluconate dehydrogenase (GADH, enzyme complex). Strains were constructed to evaluate their performances in BES. Surprisingly, the double overexpression dehydrogenases strain did not lead to best performance in BES. Real-time RT-qPCR revealed the intrinsic regulation system of mGCD and GADH, in which mGCD was regulated by glucose and gluconate while GADH only regulated by gluconate. By utilizing the self-regulation, the single overexpression -1 mutant (mGCD) achieved a 2-ketogluconate productivity of 1.59 ± 0.01 mmolproduct gCDW day-1, a 300 % increase compared to the wildtype. This work demonstrated that expression of dehydrogenases coupled with the electron transfer chain can significantly improve productivity, and controlled expression level is necessary for the well-being of BES biocatalyst as well as productivity improvement. Different media and carbon sources were investigated for the production of the biomass prior to the BES experiments. Cells grown in terrific broth (TB) or minimal medium with glycerol as sole carbon source showed outstanding performance, and glucose-grown cells gave the worst performance in terms of carbon yield, electron transfer rate or productivity. The TB-grown cells achieved a carbon yield of 91 % (C-mol C-mol-1) with a productivity of -1 -1 2.53 ± 0.09 mmolproduct gCDW day , while the glycerol-grown cells achieved highest carbon yield of 98 % (C-mol C-mol-1) with a 9 % lower productivity than that in TB-grown cells. The proteomics analysis suggested the GADH enzyme complex (PP_3382, PP_3383, and PP_3384) overexpression was limited by the subunit PP_3382 biosynthesis. The slight upregulation of PP_3382 in glycerol-grown cells may contribute to its better performance in this condition, suggesting that the aerobic growth condition can be optimized for a better performance in bio-electrochemical production. In summary, using a chorismate lyase route in P. putida is a suitable strategy to produce aromatics. The use of a bio-electrochemical system in combination with metabolic engineering can be used to enable and accelerate anaerobic production with P. putida. In a first attempt, the two approaches showed promising results, paving the way for future application. III Declaration by author This thesis is composed of my original work, and contains no material previously published or written by another person except where due reference has been made in the text. I have clearly stated the contribution by others to jointly-authored works that I have included in my thesis. I have clearly stated the contribution of others to my thesis as a whole, including statistical assistance, survey design, data analysis, significant technical procedures, professional editorial advice, and any other original research work used or reported in my thesis. The content of my thesis is the result of work I have carried out since the commencement of my research higher degree candidature and does not include a substantial part of work that has been submitted to qualify for the award of any other degree or diploma in any university or other tertiary institution. I have clearly stated which parts of my thesis, if any, have been submitted to qualify for another award. I acknowledge that an electronic copy of my thesis must be lodged with the University Library and, subject to the policy and procedures of The University of Queensland, the thesis be made available for research and study in accordance with the Copyright Act 1968 unless a period of embargo has been approved by the Dean of the Graduate School. I acknowledge that copyright of all material contained in my thesis resides with the copyright holder(s) of that material. Where appropriate I have obtained copyright permission from the copyright holder to reproduce material in this thesis. IV Publications during candidature Peer-reviewed papers: 1. Metabolic Engineering of Pseudomonas putida KT2440 for the Production of para- Hydroxy benzoate. Yu, S., Plan, M. R., Winter, G., Krömer, J. O., 2016. Front Bioeng Biotechnol. 4, 90. 2. Anodic respiration of Pseudomonas putida KT2440 in a stirred-tank bioreactor. Hintermayer, S., Yu, S., Krömer, J. O., Weuster-Botz, D., 2016. Biochem Eng J. 115, 1-13. 3. Anoxic metabolism and biochemical production in Pseudomonas putida F1 driven by a bioelectrochemical system. Lai, B., Yu, S., Bernhardt, P. V., Rabaey, K., Virdis, B., Krömer, J. O., 2016. Biotechnol Biofuels. 9, 39. 4. Quantitative analysis of aromatics for synthetic biology using liquid chromatography. Lai, B., Plan, M. R., Averesch, N. J. H., Yu, S., Kracke, F., Lekieffre, N., Bydder, S., Hodson, M. P., Winter, G., Krömer, J. O., 2016. Quantitative analysis of aromatics for synthetic biology using liquid chromatography. J. Biotechnol. 5. Improved performance of Pseudomonas putida in a bioelectrochemical system through overexpression of periplasmic glucose dehydrogenase. Biotechnol Bioeng. Yu, S., Bin, L., Plan, M. P., Hodson, M.P., Lestari E.A., Song H., Krömer. J.O. Submitted to Biotechnol. Bioeng (accepted) Other papers or manuscripts under reviewed or revision are listed in Appendicx I Conference abstracts: Production of Aromatics in Microbes. Yu, S., Averesch N.J.H., Williams,T.C., Winter G., Vickers,C.E., Nielsen, L.K., and Krömer,J.O. ME-11,Kobe, 2016 Electrofermentation As a Tool to Balance Redox in Engineering Pseudomonas Putida. Yu S., Bin L., Krömer,J.O. ME-11, Kobe, 2016 V Publications included in this thesis Metabolic Engineering of Pseudomonas putida KT2440 for the Production of para-Hydroxy benzoate. Yu, S., Plan, M. R., Winter, G., Krömer, J. O., 2016. Front Bioeng Biotechnol. 4, 90.3. – incorporated as Chapter 2. Contributor Statement of contribution Shiqin Yu (Candidate) Designed experiments (90%) Conducted the experiments (95%) Drafted the paper (100%) Analysed the data (80%) Gal Winter Reviewed and edited paper (40%) Jens Kroemer Designed experiments (10%) Analysed the data (20%) Reviewed and edited paper (60%) Manuel R. Plan Conducted the experiments (5%). Improved performance of Pseudomonas putida in a bioelectrochemical system through overexpression of periplasmic glucose dehydrogenase. Biotechnol Bioeng.
Recommended publications
  • Part One Amino Acids As Building Blocks
    Part One Amino Acids as Building Blocks Amino Acids, Peptides and Proteins in Organic Chemistry. Vol.3 – Building Blocks, Catalysis and Coupling Chemistry. Edited by Andrew B. Hughes Copyright Ó 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-32102-5 j3 1 Amino Acid Biosynthesis Emily J. Parker and Andrew J. Pratt 1.1 Introduction The ribosomal synthesis of proteins utilizes a family of 20 a-amino acids that are universally coded by the translation machinery; in addition, two further a-amino acids, selenocysteine and pyrrolysine, are now believed to be incorporated into proteins via ribosomal synthesis in some organisms. More than 300 other amino acid residues have been identified in proteins, but most are of restricted distribution and produced via post-translational modification of the ubiquitous protein amino acids [1]. The ribosomally encoded a-amino acids described here ultimately derive from a-keto acids by a process corresponding to reductive amination. The most important biosynthetic distinction relates to whether appropriate carbon skeletons are pre-existing in basic metabolism or whether they have to be synthesized de novo and this division underpins the structure of this chapter. There are a small number of a-keto acids ubiquitously found in core metabolism, notably pyruvate (and a related 3-phosphoglycerate derivative from glycolysis), together with two components of the tricarboxylic acid cycle (TCA), oxaloacetate and a-ketoglutarate (a-KG). These building blocks ultimately provide the carbon skeletons for unbranched a-amino acids of three, four, and five carbons, respectively. a-Amino acids with shorter (glycine) or longer (lysine and pyrrolysine) straight chains are made by alternative pathways depending on the available raw materials.
    [Show full text]
  • Yeast Genome Gazetteer P35-65
    gazetteer Metabolism 35 tRNA modification mitochondrial transport amino-acid metabolism other tRNA-transcription activities vesicular transport (Golgi network, etc.) nitrogen and sulphur metabolism mRNA synthesis peroxisomal transport nucleotide metabolism mRNA processing (splicing) vacuolar transport phosphate metabolism mRNA processing (5’-end, 3’-end processing extracellular transport carbohydrate metabolism and mRNA degradation) cellular import lipid, fatty-acid and sterol metabolism other mRNA-transcription activities other intracellular-transport activities biosynthesis of vitamins, cofactors and RNA transport prosthetic groups other transcription activities Cellular organization and biogenesis 54 ionic homeostasis organization and biogenesis of cell wall and Protein synthesis 48 plasma membrane Energy 40 ribosomal proteins organization and biogenesis of glycolysis translation (initiation,elongation and cytoskeleton gluconeogenesis termination) organization and biogenesis of endoplasmic pentose-phosphate pathway translational control reticulum and Golgi tricarboxylic-acid pathway tRNA synthetases organization and biogenesis of chromosome respiration other protein-synthesis activities structure fermentation mitochondrial organization and biogenesis metabolism of energy reserves (glycogen Protein destination 49 peroxisomal organization and biogenesis and trehalose) protein folding and stabilization endosomal organization and biogenesis other energy-generation activities protein targeting, sorting and translocation vacuolar and lysosomal
    [Show full text]
  • ( 12 ) United States Patent
    US010167477B2 (12 ) United States Patent ( 10 ) Patent No. : US 10 , 167, 477 B2 Pharkya (45 ) Date of Patent : Jan . 1 , 2019 ( 54 ) MICROORGANISMS AND METHODS FOR 5 , 143, 834 A 9 / 1992 Glassner et al . 5 , 168 ,055 A 12 / 1992 Datta et al. THE PRODUCTION OF ANILINE 5 , 168 ,056 A 12 / 1992 Frost .. .. 435 / 472 5 , 173 ,429 A 12/ 1992 Gaddy et al. (71 ) Applicant: Genomatica , Inc. , San Diego , CA (US ) 5 , 182 , 199 A 1 / 1993 Hartley 5 , 192 ,673 A 3 / 1993 Jain et al . (72 ) Inventor : Priti Pharkya, San Diego , CA (US ) 5 , 403 , 721 A 4 / 1995 Ward , Jr . et al. 5 ,413 , 922 A 5 / 1995 Matsuyama et al. 5 ,416 , 020 A 5 / 1995 Severson et al . (73 ) Assignee : GENOMATICA , INC . , San Diego, CA 5 ,457 , 040 A 10 / 1995 Jarry et al . (US ) 5 ,478 , 952 A 12 / 1995 Schwartz 5 ,487 ,987 A 1 / 1996 Frost et al. ( * ) Notice : Subject to any disclaimer, the term of this 5 , 504 ,004 A 4 / 1996 Guettler et al. patent is extended or adjusted under 35 5 , 521 ,075 A 5 / 1996 Guettler et al . U . S . C . 154 ( b ) by 0 days. 5 ,573 , 931 A 11/ 1996 Guettler et al. 5 ,616 , 496 A 4 / 1997 Frost et al. 5 ,686 ,276 A 11 / 1997 Lafend et al . ( 21 ) Appl. No. : 15 /914 , 308 5 ,700 , 934 A 12 / 1997 Wolters et al. 5 ,770 ,435 A 6 / 1998 Donnelly et al . (22 ) Filed : Mar. 7 , 2018 5 , 807 , 722 A 9 / 1998 Gaddy et al .
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Production of Muconic Acid in Plants T ⁎ Aymerick Eudesa,B, , Roland Berthomieua,C, Zhangying Haoa,B, Nanxia Zhaoa,D, ⁎ Veronica Teixeira Benitesa,E, Edward E.K
    Metabolic Engineering 46 (2018) 13–19 Contents lists available at ScienceDirect Metabolic Engineering journal homepage: www.elsevier.com/locate/meteng Production of muconic acid in plants T ⁎ Aymerick Eudesa,b, , Roland Berthomieua,c, Zhangying Haoa,b, Nanxia Zhaoa,d, ⁎ Veronica Teixeira Benitesa,e, Edward E.K. Baidooa,e, Dominique Loquéa,b,f,g, a Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA b Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA c Ecole Polytechnique, Université Paris-Saclay, Palaiseau 91120, France d Department of Bioengineering, Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA 94720, USA e Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA f Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA g Université Lyon 1, INSA de Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, 10 rue Raphaël Dubois, F-69622, Villeurbanne, France ARTICLE INFO ABSTRACT Keywords: Muconic acid (MA) is a dicarboxylic acid used for the production of industrially relevant chemicals such as Muconic acid adipic acid, terephthalic acid, and caprolactam. Because the synthesis of these polymer precursors generates Salicylic acid toxic intermediates by utilizing petroleum-derived chemicals and corrosive catalysts, the development of al- Catechol ternative strategies for the bio-based production of MA has garnered significant interest. Plants produce organic Shikimate carbon skeletons by harvesting carbon dioxide and energy from the sun, and therefore represent advantageous Plastid hosts for engineered metabolic pathways towards the manufacturing of chemicals.
    [Show full text]
  • Nucleophile Specificity in Anthranilate Synthase, Aminodeoxychorismate Synthase, Isochorismate Synthase, and Salicylate Synthase Kristin T
    Biochemistry 2010, 49, 2851–2859 2851 DOI: 10.1021/bi100021x Nucleophile Specificity in Anthranilate Synthase, Aminodeoxychorismate Synthase, Isochorismate Synthase, and Salicylate Synthase Kristin T. Ziebart and Michael D. Toney* Department of Chemistry, University of California, Davis, California 95616 Received January 7, 2010; Revised Manuscript Received February 15, 2010 ABSTRACT: Anthranilate synthase (AS), aminodeoxychorismate synthase (ADCS), isochorismate synthase (IS), and salicylate synthase (SS) are structurally homologous chorismate-utilizing enzymes that carry out the first committed step in the formation of tryptophan, folate, and the siderophores enterobactin and mycobactin, respectively. Each enzyme catalyzes a nucleophilic substitution reaction, but IS and SS are uniquely able to employ water as a nucleophile. Lys147 has been proposed to be the catalytic base that activates water for nucleophilic attack in IS and SS reactions; in AS and ADCS, glutamine occupies the analogous position. To probe the role of Lys147 as a catalytic base, the K147Q IS, K147Q SS, Q147K AS, and Q147K ADCS mutants were prepared and enzyme reactions were analyzed by high-performance liquid chromatography. Q147K AS employs water as a nucleophile to a small extent, and the cognate activities of K147Q IS and K147Q SS were reduced ∼25- and ∼50-fold, respectively. Therefore, Lys147 is not solely responsible for activation of water as a nucleophile. Additional factors that contribute to water activation are proposed. A change in substrate preference for K147Q SS pyruvate lyase activity indicates Lys147 partially controls SS reaction specificity. Finally, we demonstrate that AS, ADCS, IS, and SS do not possess choris- mate mutase promiscuous activity, contrary to several previous reports.
    [Show full text]
  • A Mathematical Model of Glutathione Metabolism Michael C Reed*1, Rachel L Thomas1, Jovana Pavisic1,2, S Jill James3, Cornelia M Ulrich4 and H Frederik Nijhout2
    Theoretical Biology and Medical Modelling BioMed Central Research Open Access A mathematical model of glutathione metabolism Michael C Reed*1, Rachel L Thomas1, Jovana Pavisic1,2, S Jill James3, Cornelia M Ulrich4 and H Frederik Nijhout2 Address: 1Department of Mathematics, Duke University, Durham, NC 27708, USA, 2Department of Biology, Duke University, Durham, NC 27708, USA, 3Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AK 72205, USA and 4Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA Email: Michael C Reed* - [email protected]; Rachel L Thomas - [email protected]; Jovana Pavisic - [email protected]; S Jill James - [email protected]; Cornelia M Ulrich - [email protected]; H Frederik Nijhout - [email protected] * Corresponding author Published: 28 April 2008 Received: 27 November 2007 Accepted: 28 April 2008 Theoretical Biology and Medical Modelling 2008, 5:8 doi:10.1186/1742-4682-5-8 This article is available from: http://www.tbiomed.com/content/5/1/8 © 2008 Reed et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Glutathione (GSH) plays an important role in anti-oxidant defense and detoxification reactions. It is primarily synthesized in the liver by the transsulfuration pathway and exported to provide precursors for in situ GSH synthesis by other tissues. Deficits in glutathione have been implicated in aging and a host of diseases including Alzheimer's disease, Parkinson's disease, cardiovascular disease, cancer, Down syndrome and autism.
    [Show full text]
  • Genetic Characterisaton of Rhodococcus Rhodochrous ATCC
    The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Genetic characterization of Rhodococcus rhodochrous ATCC BAA-870 with emphasis on nitrile hydrolysing enzymes n ow Joni Frederick A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the Departmentty of of MolecularCape and T Cell Biology, Universitysi of Cape Town er UnivSupervisor: Professor B. T. Sewell Co-supervisor: Professor D. Brady February 2013 Keywords Nitrile hydrolysis Biocatalysis Rhodococcus rhodochrous ATCC BAA-870 Genome sequencing Nitrilase Nitrile hydratase n ow ty of Cape T si er Univ ii Keywords Abstract Rhodococcus rhodochrous ATCC BAA-870 (BAA-870) had previously been isolated on selective media for enrichment of nitrile hydrolysing bacteria. The organism was found to have a wide substrate range, with activity against aliphatics, aromatics, and aryl aliphatics, and enantioselectivity towards beta substituted nitriles and beta amino nitriles, compounds that have potential applications in the pharmaceutical industry. This makes R. rhodochrous ATCC BAA-870 potentially a versatile biocatalyst for the synthesis of a broad range of compounds with amide and carboxylic acid groups that can be derived from structurally related nitrile precursors. The selectivity of biocatalysts allows for high product yields and better atom economyn than non- selective chemical methods of performing this reaction, suchow as acid or base hydrolysis.
    [Show full text]
  • Crystal Structure of Chorismate Synthase: a Novel FMN-Binding Protein Fold and Functional Insights
    doi:10.1016/j.jmb.2003.12.072 J. Mol. Biol. (2004) 336, 903–915 Crystal Structure of Chorismate Synthase: A Novel FMN-binding Protein Fold and Functional Insights Hyung Jun Ahn, Hye-Jin Yoon, Byung Il Lee and Se Won Suh* Department of Chemistry Chorismate synthase catalyzes the conversion of 5-enolpyruvylshikimate College of Natural Sciences 3-phosphate to chorismate in the shikimate pathway, which represents Seoul National University an attractive target for discovering antimicrobial agents and herbicides. Seoul 151-0742, South Korea Chorismate serves as a common precursor for the synthesis of aromatic amino acids and many aromatic compounds in microorganisms and plants. Chorismate synthase requires reduced FMN as a cofactor but the catalyzed reaction involves no net redox change. Here, we have deter- mined the crystal structure of chorismate synthase from Helicobacter pylori in both FMN-bound and FMN-free forms. It is a tetrameric enzyme, with each monomer possessing a novel “b-a-b sandwich fold”. Highly con- served regions, including several flexible loops, cluster together around the bound FMN to form the active site. The unique FMN-binding site is formed largely by a single subunit, with a small contribution from a neighboring subunit. The isoalloxazine ring of the bound FMN is signifi- cantly non-planar. Our structure illuminates the essential functional roles played by the cofactor. q 2004 Elsevier Ltd. All rights reserved. Keywords: aroC; chorismate synthase; FMN-binding protein; Helicobacter *Corresponding author pylori; shikimate
    [Show full text]
  • Chapter 2: Literature Review
    Chapter 2: Literature Review 2.1 A historical perspective on the study of glycine conjugation The urinary excretion of hippurate after ingestion of benzoate was first observed by Alexander Ure in 1841 (Ure, 1841). This credits Ure with the first discovery of a biotransformation reaction, a finding that started the whole field of drug metabolism research. However, interest in glycine conjugation faded significantly after this great discovery, probably because very few pharmaceuticals are metabolised by conjugation to glycine (Badenhorst et al., 2013, Knights et al., 2007). This explains why, now more than 170 years later, the significance of glycine conjugation in metabolism is still not clearly understood. As mentioned in Chapter 1, GLYAT conjugates several endogenous and xenobiotic organic acids to glycine. Acylglycines from endogenous sources include butyrylglycine, hexanoylglycine, and isovalerylglycine. The xenobiotic acylglycines include hippurate, salicylurate, and methylhippurate (Bartlett and Gompertz, 1974, Nandi et al., 1979, Schachter and Taggart, 1954, Mawal and Qureshi, 1994). It seems as though this unusual range of metabolites formed by GLYAT has contributed to the lack of understanding of the glycine conjugation pathway. Some historical perspective sheds light on this situation. Initial studies of glycine conjugation were similar to Ure’s original experiments. Benzoic acid was ingested by human or animal test subjects, followed by detection and quantification of hippurate in the urine. This led to several interesting observations such as the decreased synthesis of hippurate in individuals with schizophrenia and in hepatitis patients (Quastel and Wales, 1938, Probstein and Londe, 1940, Wong, 1945, Saltzman and Caraway, 1953). In 1953 Schachter and Taggart showed that the synthesis of hippurate from benzoate and glycine is dependent on benzoyl-CoA, a high-energy form of benzoate (Schachter and Taggart, 1953).
    [Show full text]
  • Molecular Targets for Antifungals in Amino Acid and Protein Biosynthetic Pathways
    Amino Acids https://doi.org/10.1007/s00726-021-03007-6 REVIEW ARTICLE Molecular targets for antifungals in amino acid and protein biosynthetic pathways Aleksandra Kuplińska1 · Kamila Rząd1 Received: 1 March 2021 / Accepted: 17 May 2021 © The Author(s) 2021 Abstract Fungi cause death of over 1.5 million people every year, while cutaneous mycoses are among the most common infections in the world. Mycoses vary greatly in severity, there are long-term skin (ringworm), nail or hair infections (tinea capitis), recurrent like vaginal candidiasis or severe, life-threatening systemic, multiorgan infections. In the last few years, increas- ing importance is attached to the health and economic problems caused by fungal pathogens. There is a growing need for improvement of the availability of antifungal drugs, decreasing their prices and reducing side efects. Searching for novel approaches in this respect, amino acid and protein biosynthesis pathways appear to be competitive. The route that leads from amino acid biosynthesis to protein folding and its activation is rich in enzymes that are descriptive of fungi. Blocking the action of those enzymes often leads to avirulence or growth inhibition. In this review, we want to trace the principal processes of fungi vitality. We present the data of genes encoding enzymes involved in amino acid and protein biosynthesis, potential molecular targets in antifungal chemotherapy, and describe the impact of inhibitors on fungal organisms. Keywords Antifungal targets · Amino acid biosynthesis · Protein biosynthesis · Candida · Aspergillus · Plant pathogens Introduction is approximately 30–55% and 50–100% for aspergillosis (Brown et al. 2012; Verweij et al. 2016; Haidar and Singh Invasive fungal mycoses may afect over 300 million peo- 2018).
    [Show full text]
  • Supplementary Informations SI2. Supplementary Table 1
    Supplementary Informations SI2. Supplementary Table 1. M9, soil, and rhizosphere media composition. LB in Compound Name Exchange Reaction LB in soil LBin M9 rhizosphere H2O EX_cpd00001_e0 -15 -15 -10 O2 EX_cpd00007_e0 -15 -15 -10 Phosphate EX_cpd00009_e0 -15 -15 -10 CO2 EX_cpd00011_e0 -15 -15 0 Ammonia EX_cpd00013_e0 -7.5 -7.5 -10 L-glutamate EX_cpd00023_e0 0 -0.0283302 0 D-glucose EX_cpd00027_e0 -0.61972444 -0.04098397 0 Mn2 EX_cpd00030_e0 -15 -15 -10 Glycine EX_cpd00033_e0 -0.0068175 -0.00693094 0 Zn2 EX_cpd00034_e0 -15 -15 -10 L-alanine EX_cpd00035_e0 -0.02780553 -0.00823049 0 Succinate EX_cpd00036_e0 -0.0056245 -0.12240603 0 L-lysine EX_cpd00039_e0 0 -10 0 L-aspartate EX_cpd00041_e0 0 -0.03205557 0 Sulfate EX_cpd00048_e0 -15 -15 -10 L-arginine EX_cpd00051_e0 -0.0068175 -0.00948672 0 L-serine EX_cpd00054_e0 0 -0.01004986 0 Cu2+ EX_cpd00058_e0 -15 -15 -10 Ca2+ EX_cpd00063_e0 -15 -100 -10 L-ornithine EX_cpd00064_e0 -0.0068175 -0.00831712 0 H+ EX_cpd00067_e0 -15 -15 -10 L-tyrosine EX_cpd00069_e0 -0.0068175 -0.00233919 0 Sucrose EX_cpd00076_e0 0 -0.02049199 0 L-cysteine EX_cpd00084_e0 -0.0068175 0 0 Cl- EX_cpd00099_e0 -15 -15 -10 Glycerol EX_cpd00100_e0 0 0 -10 Biotin EX_cpd00104_e0 -15 -15 0 D-ribose EX_cpd00105_e0 -0.01862144 0 0 L-leucine EX_cpd00107_e0 -0.03596182 -0.00303228 0 D-galactose EX_cpd00108_e0 -0.25290619 -0.18317325 0 L-histidine EX_cpd00119_e0 -0.0068175 -0.00506825 0 L-proline EX_cpd00129_e0 -0.01102953 0 0 L-malate EX_cpd00130_e0 -0.03649016 -0.79413596 0 D-mannose EX_cpd00138_e0 -0.2540567 -0.05436649 0 Co2 EX_cpd00149_e0
    [Show full text]