9 Multi-Dimensional Transfer Functions for Volume Rendering

Total Page:16

File Type:pdf, Size:1020Kb

9 Multi-Dimensional Transfer Functions for Volume Rendering Johnson/Hansen: The Visualization Handbook Page Proof 20.5.2004 12:32pm page 181 9 Multi-Dimensional Transfer Functions for Volume Rendering JOE KNISS, GORDON KINDLMANN, and CHARLES HANSEN Scientific Computing and Imaging Institute School of Computing, University of Utah single boundary, such as thickness. When 9.1 Introduction working with multivariate data, a similar diffi- Direct volume-rendering has proven to be an culty arises with features that can be identified effective and flexible visualization method for only by their unique combination of multiple 3D scalar fields. Transfer functions are funda- data values. A 1D transfer function is simply mental to direct volume-rendering because their not capable of capturing this relationship. role is essentially to make the data visible: by Unfortunately, using multidimensional trans- assigning optical properties like color and fer functions in volume rendering is complicated. opacity to the voxel data, the volume can be Even when the transfer function is only 1D, rendered with traditional computer graphics finding an appropriate transfer function is gen- methods. Good transfer functions reveal the erally accomplished by trial and error. This is one important structures in the data without obscur- of the main challenges in making direct volume- ing them with unimportant regions. To date, rendering an effective visualization tool. Adding transfer functions have generally been limited dimensions to the transfer-function domain only Q1 to 1D domains, meaning that the 1D space of compounds the problem. While this is an on- scalar data value has been the only variable to going research area, many of the proposed which opacity and color are assigned. One methods for transfer-function generation and aspect of direct volume-rendering that has re- manipulation are not easily extended to higher- ceived little attention is the use of multidimen- dimensional transfer functions. In addition, fast sional transfer functions. volume-rendering algorithms that assume the Often, there are features of interest in volume transfer function can be implemented as a data that are difficult to extract and visualize linear lookup table (LUT) can be difficult to with 1D transfer functions. Many medical data- adapt to multidimensional transfer functions sets created from CT or MRI scans contain a due to the linear interpolation imposed on such complex combination of boundaries between LUTs. multiple materials. This situation is problematic This chapter provides a detailed exposition of for 1D transfer functions because of the poten- the multidimensional transfer function concept, tial for overlap between the data-value intervals a generalization of multidimensional transfer spanned by the different boundaries. When one functions for both scalar and multivariate data value is associated with multiple boundar- data, as well as a novel technique for the inter- ies, a 1D transfer function is unable to render active generation of volumetric shadows. To them in isolation. Another benefit of higher resolve the potential complexities in a user inter- dimensional transfer functions is their ability face for multidimensional transfer functions, we to portray subtle variations in properties of a introduce a set of direct manipulation widgets 181 Johnson/Hansen: The Visualization Handbook Page Proof 20.5.2004 12:32pm page 182 182 The Visualization Handbook that make finding and experimenting with trans- for the display of iso-value contours in more fer functions an intuitive, efficient, and informa- smoothly varying data. The previous work tive process. In order to make this process most directly related to our approach for visual- genuinely interactive, we exploit the fast render- izing scalar data facilitates the semiautomatic ing capabilities of modern graphics hardware, generation of both 1D and 2D transfer functions especially 3D texture memory and pixel-textur- [17,29]. Using principles of computer-vision edge ing operations. Together, the widgets and the detection, the semiautomatic method strives to hardware form the basis for new interaction isolate those portions of the transfer function modes that can guide users towards transfer- domain that most reliably correlate with the function settings appropriate for their visualiza- middle of material-interface boundaries. Other tion and data-exploration interests. work closely related to our approach for visual- izing multivariate data uses a 2D transfer func- tion to visualize data derived from multiple MRI 9.2 Previous Work pulse sequences [20]. Scalar volume-rendering research that uses 9.2.1 Transfer Functions multidimensional transfer functions is relatively Even though volume-rendering as a visualiza- scarce. One paper discusses the use of transfer tion tool is more than ten years old, only re- functions similar to Levoy’s as part of visualiza- cently has research focused on making the space tion in the context of wavelet volume represen- of transfer functions easier to explore. He et al. tation [27]. More recently, the VolumePro [12] generated transfer functions with genetic graphics board uses a 12-bit 1D lookup table algorithms driven either by user selection of for the transfer function, but also allows opacity thumbnail renderings or by some objective modulation by gradient magnitude, effectively image-fitness function. The Design Gallery [23] implementing a separable 2D transfer function creates an intuitive interface to the entire space [28]. Other work involving multidimensional of all possible transfer functions based on auto- transfer functions uses various types of second mated analysis and layout of rendered images. derivatives in order to distinguish features in the A more data-centric approach is the Contour volume according to their shape and curvature Spectrum [1], which visually summarizes the characteristics [15,34]. space of isosurfaces in terms of metrics like Designing color maps for displaying non surface area and mean gradient magnitude, volumetric data is a task similar to finding thereby guiding the choice of iso-value for iso- transfer functions. Previous work has developed surfacing, and also providing information strategies and guidelines for color map creation, useful for transfer-function generation. Another based on visualization goals, types of data, per- recent paper [18] presents a novel transfer- ceptual considerations, and user studies function interface in which small thumbnail ren- [3,32,36]. derings are arranged according to their relation- ship with the spaces of data values, color, and opacity. 9.2.2 Direct Manipulation Widgets The application of these methods is limited to Direct manipulation widgets are geometric the generation of 1D transfer functions, even objects rendered with a visualization and are though 2D transfer functions were introduced designed to provide the user with a 3D interface by Levoy in 1988 [22]. Levoy introduced two [5,14,31,35,38]. For example, a frame widget styles of transfer functions, both 2D and both can be used to select a 2D plane within a using gradient magnitude for the second dimen- volume. Widgets are typically rendered from sion. One transfer function was intended for the basic geometric primitives such as spheres, cy- display of interfaces between materials, the other linders, and cones. Widget construction is often Johnson/Hansen: The Visualization Handbook Page Proof 20.5.2004 12:32pm page 183 Multi-Dimensional Transfer Functions for Volume Rendering 183 guided by a constraint system that binds elem- subsequent Volume-Pro PCI graphics board ents of a widget to one another. Each sub-part [28]. The VolumePro graphics board imple- of a widget represents some functionality of the ments ray casting combined with the shear widget or a parameter to which the user has warp factorization for volume-rendering [19]. access. It features trilinear interpolation with super- sampling, gradient estimation, and shaded volumes, and provides interactive frame rates 9.2.3 Hardware Volume Rendering for scalar volumes with sizes up to 5123. Many volume-rendering techniques based on graphics hardware utilize texture memory to store a 3D dataset. The dataset is then sampled, 9.3 Multidimensional Transfer Functions classified, rendered to proxy geometry, and composited. Classification typically occurs in Transfer-function specification is arguably the hardware as a 1D table lookup. most important task in volume visualization. 2D texture-based techniques slice along the While the transfer function’s role is simply to major axes of the data and take advantage of assign optical properties such as opacity and hardware bilinear interpolation within the slice color to the data being visualized, the value [4]. These methods require three copies of the of the resulting visualization will be largely volume to reside in texture memory, one per dependent on how well these optical properties axis, and they often suffer from artifacts caused capture features of interest. Specifying a good by under-sampling along the slice axis. Trilinear transfer function can be a difficult and tedious interpolation can be attained using 2D textures task for several reasons. First, it is difficult to with specialized hardware extensions available uniquely identify features of interest in the on some commodity graphics cards [6]. This transfer-function domain. Even though a fea- technique allows intermediate slices along the ture of interest may be easily identifiable in the slice axis to be computed in hardware. These spatial domain, the range
Recommended publications
  • Mathematics Is a Gentleman's Art: Analysis and Synthesis in American College Geometry Teaching, 1790-1840 Amy K
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2000 Mathematics is a gentleman's art: Analysis and synthesis in American college geometry teaching, 1790-1840 Amy K. Ackerberg-Hastings Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Higher Education and Teaching Commons, History of Science, Technology, and Medicine Commons, and the Science and Mathematics Education Commons Recommended Citation Ackerberg-Hastings, Amy K., "Mathematics is a gentleman's art: Analysis and synthesis in American college geometry teaching, 1790-1840 " (2000). Retrospective Theses and Dissertations. 12669. https://lib.dr.iastate.edu/rtd/12669 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margwis, and improper alignment can adversely affect reproduction. in the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • Ways of Seeing Data: a Survey of Fields of Visualization
    • Ways of seeing data: • A survey of fields of visualization • Gordon Kindlmann • [email protected] Part of the talk series “Show and Tell: Visualizing the Life of the Mind” • Nov 19, 2012 http://rcc.uchicago.edu/news/show_and_tell_abstracts.html 2012 Presidential Election REPUBLICAN DEMOCRAT http://www.npr.org/blogs/itsallpolitics/2012/11/01/163632378/a-campaign-map-morphed-by-money 2012 Presidential Election http://gizmodo.com/5960290/this-is-the-real-political-map-of-america-hint-we-are-not-that-divided 2012 Presidential Election http://www.npr.org/blogs/itsallpolitics/2012/11/01/163632378/a-campaign-map-morphed-by-money 2012 Presidential Election http://www.npr.org/blogs/itsallpolitics/2012/11/01/163632378/a-campaign-map-morphed-by-money 2012 Presidential Election http://www.npr.org/blogs/itsallpolitics/2012/11/01/163632378/a-campaign-map-morphed-by-money Clarifying distortions Tube map from 1908 http://www.20thcenturylondon.org.uk/beck-henry-harry http://briankerr.wordpress.com/2009/06/08/connections/ http://en.wikipedia.org/wiki/Harry_Beck Clarifying distortions http://www.20thcenturylondon.org.uk/beck-henry-harry Harry Beck 1933 http://briankerr.wordpress.com/2009/06/08/connections/ http://en.wikipedia.org/wiki/Harry_Beck Clarifying distortions Clarifying distortions Joachim Böttger, Ulrik Brandes, Oliver Deussen, Hendrik Ziezold, “Map Warping for the Annotation of Metro Maps” IEEE Computer Graphics and Applications, 28(5):56-65, 2008 Maps reflect conventions, choices, and priorities “A single map is but one of an indefinitely large
    [Show full text]
  • B.Casselman,Mathematical Illustrations,A Manual Of
    1 0 0 setrgbcolor newpath 0 0 1 0 360 arc stroke newpath Preface 1 0 1 0 360 arc stroke This book will show how to use PostScript for producing mathematical graphics, at several levels of sophistication. It includes also some discussion of the mathematics involved in computer graphics as well as a few remarks about good style in mathematical illustration. To explain mathematics well often requires good illustrations, and computers in our age have changed drastically the potential of graphical output for this purpose. There are many aspects to this change. The most apparent is that computers allow one to produce graphics output of sheer volume never before imagined. A less obvious one is that they have made it possible for amateurs to produce their own illustrations of professional quality. Possible, but not easy, and certainly not as easy as it is to produce their own mathematical writing with Donald Knuth’s program TEX. In spite of the advances in technology over the past 50 years, it is still not a trivial matter to come up routinely with figures that show exactly what you want them to show, exactly where you want them to show it. This is to some extent inevitable—pictures at their best contain a lot of information, and almost by definition this means that they are capable of wide variety. It is surely not possible to come up with a really simple tool that will let you create easily all the graphics you want to create—the range of possibilities is just too large.
    [Show full text]
  • Stardust: Accessible and Transparent GPU Support for Information Visualization Rendering
    Eurographics Conference on Visualization (EuroVis) 2017 Volume 36 (2017), Number 3 J. Heer, T. Ropinski and J. van Wijk (Guest Editors) Stardust: Accessible and Transparent GPU Support for Information Visualization Rendering Donghao Ren1, Bongshin Lee2, and Tobias Höllerer1 1University of California, Santa Barbara, United States 2Microsoft Research, Redmond, United States Abstract Web-based visualization libraries are in wide use, but performance bottlenecks occur when rendering, and especially animating, a large number of graphical marks. While GPU-based rendering can drastically improve performance, that paradigm has a steep learning curve, usually requiring expertise in the computer graphics pipeline and shader programming. In addition, the recent growth of virtual and augmented reality poses a challenge for supporting multiple display environments beyond regular canvases, such as a Head Mounted Display (HMD) and Cave Automatic Virtual Environment (CAVE). In this paper, we introduce a new web-based visualization library called Stardust, which provides a familiar API while leveraging GPU’s processing power. Stardust also enables developers to create both 2D and 3D visualizations for diverse display environments using a uniform API. To demonstrate Stardust’s expressiveness and portability, we present five example visualizations and a coding playground for four display environments. We also evaluate its performance by comparing it against the standard HTML5 Canvas, D3, and Vega. Categories and Subject Descriptors (according to ACM CCS):
    [Show full text]
  • Scientific Visualization
    Report from Dagstuhl Seminar 11231 Scientific Visualization Edited by Min Chen1, Hans Hagen2, Charles D. Hansen3, and Arie Kaufman4 1 University of Oxford, GB, [email protected] 2 TU Kaiserslautern, DE, [email protected] 3 University of Utah, US, [email protected] 4 SUNY – Stony Brook, US, [email protected] Abstract This report documents the program and the outcomes of Dagstuhl Seminar 11231 “Scientific Visualization”. Seminar 05.–10. June, 2011 – www.dagstuhl.de/11231 1998 ACM Subject Classification I.3 Computer Graphics, I.4 Image Processing and Computer Vision, J.2 Physical Sciences and Engineering, J.3 Life and Medical Sciences Keywords and phrases Scientific Visualization, Biomedical Visualization, Integrated Multifield Visualization, Uncertainty Visualization, Scalable Visualization Digital Object Identifier 10.4230/DagRep.1.6.1 1 Executive Summary Min Chen Hans Hagen Charles D. Hansen Arie Kaufman License Creative Commons BY-NC-ND 3.0 Unported license © Min Chen, Hans Hagen, Charles D. Hansen, and Arie Kaufman Scientific Visualization (SV) is the transformation of abstract data, derived from observation or simulation, into readily comprehensible images, and has proven to play an indispensable part of the scientific discovery process in many fields of contemporary science. This seminar focused on the general field where applications influence basic research questions on one hand while basic research drives applications on the other. Reflecting the heterogeneous structure of Scientific Visualization and the currently unsolved problems in the field, this seminar dealt with key research problems and their solutions in the following subfields of scientific visualization: Biomedical Visualization: Biomedical visualization and imaging refers to the mechan- isms and techniques utilized to create and display images of the human body, organs or their components for clinical or research purposes.
    [Show full text]
  • Semantic Foundation of Diagrammatic Modelling Languages
    Universität Leipzig Fakultät für Mathematik und Informatik Institut für Informatik Johannisgasse 26 04103 Leipzig Semantic Foundation of Diagrammatic Modelling Languages Applying the Pictorial Turn to Conceptual Modelling Diplomarbeit im Studienfach Informatik vorgelegt von cand. inf. Alexander Heußner Leipzig, August 2007 betreuender Hochschullehrer: Prof. Dr. habil. Heinrich Herre Institut für Medizininformatik, Statistik und Epidemologie (I) Härtelstrasse 16–18 04107 Leipzig Abstract The following thesis investigates the applicability of the picto- rial turn to diagrammatic conceptual modelling languages. At its heart lies the question how the “semantic gap” between the for- mal semantics of diagrams and the meaning as intended by the modelling engineer can be bridged. To this end, a pragmatic ap- proach to the domain of diagrams will be followed, starting from pictures as the more general notion. The thesis consists of three parts: In part I, a basic model of cognition will be proposed that is based on the idea of conceptual spaces. Moreover, the most central no- tions of semiotics and semantics as required for the later inves- tigation and formalization of conceptual modelling will be intro- duced. This will allow for the formalization of pictures as semi- otic entities that have a strong cognitive foundation. Part II will try to approach diagrams with the help of a novel game-based F technique. A prototypical modelling attempt will reveal basic shortcomings regarding the underlying formal foundation. It will even become clear that these problems are common to all current conceptualizations of the diagram domain. To circumvent these difficulties, a simple axiomatic model will be proposed that allows to link the findings of part I on conceptual modelling and formal languages with the newly developed con- cept of «abstract logical diagrams».
    [Show full text]
  • Volume Rendering
    Volume Rendering 1.1. Introduction Rapid advances in hardware have been transforming revolutionary approaches in computer graphics into reality. One typical example is the raster graphics that took place in the seventies, when hardware innovations enabled the transition from vector graphics to raster graphics. Another example which has a similar potential is currently shaping up in the field of volume graphics. This trend is rooted in the extensive research and development effort in scientific visualization in general and in volume visualization in particular. Visualization is the usage of computer-supported, interactive, visual representations of data to amplify cognition. Scientific visualization is the visualization of physically based data. Volume visualization is a method of extracting meaningful information from volumetric datasets through the use of interactive graphics and imaging, and is concerned with the representation, manipulation, and rendering of volumetric datasets. Its objective is to provide mechanisms for peering inside volumetric datasets and to enhance the visual understanding. Traditional 3D graphics is based on surface representation. Most common form is polygon-based surfaces for which affordable special-purpose rendering hardware have been developed in the recent years. Volume graphics has the potential to greatly advance the field of 3D graphics by offering a comprehensive alternative to conventional surface representation methods. The object of this thesis is to examine the existing methods for volume visualization and to find a way of efficiently rendering scientific data with commercially available hardware, like PC’s, without requiring dedicated systems. 1.2. Volume Rendering Our display screens are composed of a two-dimensional array of pixels each representing a unit area.
    [Show full text]
  • Efficiently Using Graphics Hardware in Volume Rendering Applications
    Efficiently Using Graphics Hardware in Volume Rendering Applications Rudiger¨ Westermann, Thomas Ertl Computer Graphics Group Universitat¨ Erlangen-Nurnber¨ g, Germany Abstract In this paper we are dealing with the efficient generation of a visual representation of the information present in volumetric data OpenGL and its extensions provide access to advanced per-pixel sets. For scalar-valued volume data two standard techniques, the operations available in the rasterization stage and in the frame rendering of iso-surfaces, and the direct volume rendering, have buffer hardware of modern graphics workstations. With these been developed to a high degree of sophistication. However, due to mechanisms, completely new rendering algorithms can be designed the huge number of volume cells which have to be processed and and implemented in a very particular way. In this paper we extend to the variety of different cell types only a few approaches allow the idea of extensively using graphics hardware for the rendering of parameter modifications and navigation at interactive rates for real- volumetric data sets in various ways. First, we introduce the con- istically sized data sets. To overcome these limitations we provide cept of clipping geometries by means of stencil buffer operations, a basis for hardware accelerated interactive visualization of both and we exploit pixel textures for the mapping of volume data to iso-surfaces and direct volume rendering on arbitrary topologies. spherical domains. We show ways to use 3D textures for the ren- Direct volume rendering tries to convey a visual impression of dering of lighted and shaded iso-surfaces in real-time without ex- the complete 3D data set by taking into account the emission and tracting any polygonal representation.
    [Show full text]
  • Inviwo — a Visualization System with Usage Abstraction Levels
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL X, NO. Y, MAY 2019 1 Inviwo — A Visualization System with Usage Abstraction Levels Daniel Jonsson,¨ Peter Steneteg, Erik Sunden,´ Rickard Englund, Sathish Kottravel, Martin Falk, Member, IEEE, Anders Ynnerman, Ingrid Hotz, and Timo Ropinski Member, IEEE, Abstract—The complexity of today’s visualization applications demands specific visualization systems tailored for the development of these applications. Frequently, such systems utilize levels of abstraction to improve the application development process, for instance by providing a data flow network editor. Unfortunately, these abstractions result in several issues, which need to be circumvented through an abstraction-centered system design. Often, a high level of abstraction hides low level details, which makes it difficult to directly access the underlying computing platform, which would be important to achieve an optimal performance. Therefore, we propose a layer structure developed for modern and sustainable visualization systems allowing developers to interact with all contained abstraction levels. We refer to this interaction capabilities as usage abstraction levels, since we target application developers with various levels of experience. We formulate the requirements for such a system, derive the desired architecture, and present how the concepts have been exemplary realized within the Inviwo visualization system. Furthermore, we address several specific challenges that arise during the realization of such a layered architecture, such as communication between different computing platforms, performance centered encapsulation, as well as layer-independent development by supporting cross layer documentation and debugging capabilities. Index Terms—Visualization systems, data visualization, visual analytics, data analysis, computer graphics, image processing. F 1 INTRODUCTION The field of visualization is maturing, and a shift can be employing different layers of abstraction.
    [Show full text]
  • Beyond Infinity
    Copyright Copyright © 2017 by Eugenia Cheng Hachette Book Group supports the right to free expression and the value of copyright. The purpose of copyright is to encourage writers and artists to produce the creative works that enrich our culture. The scanning, uploading, and distribution of this book without permission is a theft of the author’s intellectual property. If you would like permission to use material from the book (other than for review purposes), please contact [email protected]. Thank you for your support of the author’s rights. Basic Books Hachette Book Group 1290 Avenue of the Americas, New York, NY 10104 www.basicbooks.com First published in Great Britain by Profile Books LTD, 3 Holford Yard, Bevin Way, London WC1X 9HD, www.profilebooks.com. First Trade Paperback Edition: April 2018 Published by Basic Books, an imprint of Perseus Books, LLC, a subsidiary of Hachette Book Group, Inc. The Basic Books name and logo is a trademark of the Hachette Book Group. The Hachette Speakers Bureau provides a wide range of authors for speaking events. To find out more, go to www.hachettespeakersbureau.com or call (866) 376-6591. The publisher is not responsible for websites (or their content) that are not owned by the publisher. Library of Congress Control Number: 2017931084 ISBNs: 978-0-465-09481-3 (hardcover), 978-0-465-09482-0 (e-book), 978-1- 5416-4413-7 (paperback) E3-20180327-JV-PC Cover Title Page Copyright Dedication Prologue part one | THE JOURNEY 1 What Is Infinity? 2 Playing with Infinity 3 What Infinity Is Not 4 Infinity
    [Show full text]
  • A Survey of Algorithms for Volume Visualization
    A Survey of Algorithms for Volume Visualization T. Todd Elvins Advanced Scientific Visualization Laboratory San Diego Supercomputer Center "... in 10 years, all rendering will be volume rendering." Jim Kajiya at SIGGRAPH '91 Many computer graphics programmers are working in the area is given in [Fren89]. Advanced topics in medical volume of scientific visualization. One of the most interesting and fast- visualization are covered in [Hohn90][Levo90c]. growing areas in scientific visualization is volume visualization. Volume visualization systems are used to create high-quality Furthering scientific insight images from scalar and vector datasets defined on multi- dimensional grids, usually for the purpose of gaining insight into a This section introduces the reader to the field of volume scientific problem. Most volume visualization techniques are visualization as a subfield of scientific visualization and discusses based on one of about five foundation algorithms. These many of the current research areas in both. algorithms, and the background necessary to understand them, are described here. Pointers to more detailed descriptions, further Challenges in scientific visualization reading, and advanced techniques are also given. Scientific visualization uses computer graphics techniques to help give scientists insight into their data [McCo87] [Brod91]. Introduction Insight is usually achieved by extracting scientifically meaningful information from numerical descriptions of complex phenomena The following is an introduction to the fast-growing field of through the use of interactive imaging systems. Scientists need volume visualization for the computer graphics programmer. these systems not only for their own insight, but also to share their Many computer graphics techniques are used in volume results with their colleagues, the institutions that support the visualization.
    [Show full text]
  • Arxiv:2001.11604V2 [Cs.PL] 6 Sep 2020 of Trigger Conditions, Having an in Situ Infrastructure That Simplifies Results They Desire
    DIVA: A Declarative and Reactive Language for in situ Visualization Qi Wu* Tyson Neuroth† Oleg Igouchkine‡ University of California, Davis, University of California, Davis, University of California, Davis, United States United States United States Konduri Aditya§ Jacqueline H. Chen¶ Kwan-Liu Ma|| Indian Institute of Science, India Sandia National Laboratories, University of California, Davis, United States United States ABSTRACT for many applications. VTK [61] also partially adopted this ap- The use of adaptive workflow management for in situ visualization proach, however, VTK is designed for programming unidirectional and analysis has been a growing trend in large-scale scientific simu- visualization pipelines, and provides limited support for highly dy- lations. However, coordinating adaptive workflows with traditional namic dataflows. Moreover, the synchronous dataflow model is procedural programming languages can be difficult because system somewhat difficult to use and does not always lead to modular pro- flow is determined by unpredictable scientific phenomena, which of- grams for large scale applications when control flows become com- ten appear in an unknown order and can evade event handling. This plicated [19]. Functional reactive programming (FRP) [19,24,48,53] makes the implementation of adaptive workflows tedious and error- further improved this model by directly treating time-varying values prone. Recently, reactive and declarative programming paradigms as first-class primitives. This allowed programmers to write reac- have been recognized as well-suited solutions to similar problems in tive programs using dataflows declaratively (as opposed to callback other domains. However, there is a dearth of research on adapting functions), hiding the mechanism that controls those flows under these approaches to in situ visualization and analysis.
    [Show full text]