Yellowstone River Hydrograph Trends, Water Rights and Usage

Total Page:16

File Type:pdf, Size:1020Kb

Yellowstone River Hydrograph Trends, Water Rights and Usage YELLOWSTONE RIVER HYDROGRAPH TRENDS, WATER RIGHTS AND USAGE A Thesis Presented in Partial Fulfillment of the Requirements for the Degree of Master of Science with a Major in Environmental Science in the College of Graduate Studies University of Idaho by Trevor M. Watson June 2014 Major Professor: Dennis Scarnecchia, Ph.D. 11 Authorization to Submit Thesis This thesis of Trevor Watson, submitted for the degree of Master of Science with a Major in Environmental Science and titled "Yellowstone River hydrograph trends, water rights and usage," has been reviewed in final form. Permission, as indicated by the signatures and dates below, is now granted to submit final copies to the College of Graduate Studies for approval. Major Professor: Dennis Scarnecchia, Ph.D. Committee Members: Date: Jan Boll, Ph.D. Date: 'Paul Gessler, Ph.D. a Cosens, LL.M. J.D. Department Administrator: Date: Jan Boll, Ph.D. Discipline's College Dean: Date: Kurt Pregitzer, Ph.D Final Approval and Acceptance Dean of the College of Graduate Studies: Date: Jie Che* Ph.D. iii ABSTRACT The Yellowstone River and its tributaries are an important case study for water struggles in the highly arid western landscape. In the following chapters I: 1) evaluated seven variables used to characterize the volume and timing of discharge in the Yellowstone River and tributaries for long term (1898-2007) and more recent trends (1970-2007) using 18 USGS stream gauge stations, 2) quantified all current (2008) water rights in the greater Yellowstone River Basin, evaluated trends in water use, and conducted a physical inventory of all surface water withdrawals from the Yellowstone River and tributaries, and 3) assessed, in a general way, water management needs in the Yellowstone River Basin as discerned from the results in the previous chapters and in relation to the needs of native fishes and other biota in the river and provided recommendations for improved Montana water management to benefit water users and native fish species. Declines in volume and magnitude of annual and seasonal discharges are present in the basin, more so in areas where there are no water storage facilities. Timing of flows are occurring earlier in the year throughout the basin, leaving less water in the later summer and fall when water demands are the greatest. Rights to water greatly over allocate the water resources in the basin, though some rights can be considered duplicate and non-consumptive. The estimate of water use and the physical inventory reveal issues of potential resource misuse. There are numerous changes in water policy Montana water managers should consider if water is to remain available in the Yellowstone River Basin. iv ACKNOWLEDGEMENTS I would like to express my sincere gratitude to my Major Professor Dennis Scarnechhia for his patience, motivation, enthusiasm, and immense knowledge of my study area. His guidance helped me in all the time of research and writing of this thesis. I also appreciate the assistance of my committee members (Dr. Barbara Cosens, Dr. Jan Boll, and Dr. Paul Gessler). I owe a great deal of gratitude to the field volunteers Ashley Beyer, Emmett Mollman, Melissa Blind, Audrey Blind, Greg Blind, and Evan Mowrer. Without their assistance the countless river miles, inclement weather, and data collection would not have been possible or enjoyable. I also want to acknowledge the support my family has provided through my entire education experience. Most importantly, I would like to extend my gratitude to my wife Jenny. Without her support, encouragement, and understanding I could not have completed this work. I also would like to acknowledge Western Area Power Administration and North Dakota Game and Fish for providing funding for this project. I would like to express my gratitude to employees of Montana Department of Fish, Wildlife and Parks (Matthew Jaeger, Mike Backes, Brad Schmitz, Vic Riggs, Andy Brummond) for their assistance with planning, their expertise of the area, and the use of their equipment to conduct the field work. v DEDICATION This thesis is dedicated to my best friends, Eric Blind, Grandpa Coutts, and my wife Jenny. vi TABLE OF CONTENTS Authorization to Submit Thesis .................................................................................................... ii Abstract ......................................................................................................................................... iii Acknowledgements ....................................................................................................................... iv Dedication ....................................................................................................................................... v List of Figures ............................................................................................................................. viii List of Tables .................................................................................................................................. x Chapter 1- Physical and political water related history in the Yellowstone River Basin........ 1 Introduction................................................................................................................................ 1 Study site .................................................................................................................................... 5 Literature Cited ....................................................................................................................... 21 Chapter 2 – Trends in Yellowstone River Basin water supply as interpreted through hydrologic analysis ....................................................................................................................... 26 Abstract .................................................................................................................................... 26 Introduction.............................................................................................................................. 26 Methods .................................................................................................................................... 29 Results ....................................................................................................................................... 34 Discussion ................................................................................................................................. 44 Literature Cited ....................................................................................................................... 49 Chapter 3 – An inventory and physical observation of water use, historic and current, in the Yellowstone River Basin. ............................................................................................................. 52 Abstract .................................................................................................................................... 52 Introduction.............................................................................................................................. 52 Methods .................................................................................................................................... 54 Results ....................................................................................................................................... 64 Discussion ................................................................................................................................. 81 Literature Cited ....................................................................................................................... 87 Chapter 4: Management needs for water and native fishes in the Yellowstone River Basin: recommendations for moving forward ...................................................................................... 90 Abstract .................................................................................................................................... 90 Introduction.............................................................................................................................. 91 Recommendations .................................................................................................................... 94 Literature Cited ..................................................................................................................... 103 vii Appendices.................................................................................................................................. 106 Appendix 1 .............................................................................................................................. 107 Appendix 2 .............................................................................................................................. 120 Appendix 3 .............................................................................................................................. 122 Appendix 4 .............................................................................................................................. 124 Appendix 5 .............................................................................................................................. 126 Appendix 6 .............................................................................................................................. 136 Appendix 7 .............................................................................................................................
Recommended publications
  • History of Navigation on the Yellowstone River
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1950 History of navigation on the Yellowstone River John Gordon MacDonald The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation MacDonald, John Gordon, "History of navigation on the Yellowstone River" (1950). Graduate Student Theses, Dissertations, & Professional Papers. 2565. https://scholarworks.umt.edu/etd/2565 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. HISTORY of NAVIGATION ON THE YELLOWoTGriE RIVER by John G, ^acUonald______ Ë.À., Jamestown College, 1937 Presented in partial fulfillment of the requirement for the degree of Mas­ ter of Arts. Montana State University 1950 Approved: Q cxajJL 0. Chaiinmaban of Board of Examiners auaue ocnool UMI Number: EP36086 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT Ois8<irtatk>n PuUishing UMI EP36086 Published by ProQuest LLC (2012). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC.
    [Show full text]
  • Soda Butte Creek
    Soda Butte Creek monitoring and sampling schemes Final report for the Greater Yellowstone Network Vital Signs Monitoring Program Susan O’Ney Resource Management Biologist Grand Teton National Park P.O. Drawer 170 Moose, Wyoming 83012 Phone: (307) 739 – 3666 December 2004 SODA BUTTE CREEK and REESE CREEK: VITAL SIGNS MONITORING PROGRAM: FINAL REPORT December 2004 Meredith Knauf Department of Geography and Institute of Arctic and Alpine Research University of Colorado, Boulder Mark W. Williams* Department of Geography and Institute of Arctic and Alpine Research University of Colorado, Boulder *Corresponding Address Mark W. Williams INSTAAR and Dept. of Geography Campus Box 450 Boulder, Colorado 80309-0450 Telephone: (303) 492-8830 E-mail: [email protected] Soda_Butte_Creek_Compiled_with_Appendices .doc 5/17/2005 EXECUTIVE SUMMARY We have put together a final report on the recommendations for the Soda Butte Creek and Reese Creek Vital Signs Monitoring Program. The purpose of the grant was to develop detailed protocols necessary to monitor the ecological health of Soda Butte Creek and Reese Creek in and near Yellowstone National Park. The main objectives was to compile existing information on these creeks into one database, document the current conditions of Soda Butte and Reese Creeks by a one-time synoptic sampling event, and present recommendations for vital signs monitoring programs tailored to each creek’s needs. The database is composed of information from government projects by the United States Geological Survey and the United States Environmental Protection Agency, graduate student master’s theses, academic research, and private contractor reports. The information dates back to 1972 and includes surface water quality, groundwater quality, sediment contamination, vegetation diversity, and macroinvertebrate populations.
    [Show full text]
  • WYOMING Adventure Guide from YELLOWSTONE NATIONAL PARK to WILD WEST EXPERIENCES
    WYOMING adventure guide FROM YELLOWSTONE NATIONAL PARK TO WILD WEST EXPERIENCES TravelWyoming.com/uk • VisitTheUsa.co.uk/state/wyoming • +1 307-777-7777 WIND RIVER COUNTRY South of Yellowstone National Park is Wind River Country, famous for rodeos, cowboys, dude ranches, social powwows and home to the Eastern Shoshone and Northern Arapaho Indian tribes. You’ll find room to breathe in this playground to hike, rock climb, fish, mountain bike and see wildlife. Explore two mountain ranges and scenic byways. WindRiver.org CARBON COUNTY Go snowmobiling and cross-country skiing or explore scenic drives through mountains and prairies, keeping an eye out for foxes, coyotes, antelope and bald eagles. In Rawlins, take a guided tour of the Wyoming Frontier Prison and Museum, a popular Old West attraction. In the quiet town of Saratoga, soak in famous mineral hot springs. WyomingCarbonCounty.com CODY/YELLOWSTONE COUNTRY Visit the home of Buffalo Bill, an American icon, at the eastern gateway to Yellowstone National Park. See wildlife including bears, wolves and bison. Discover the Wild West at rodeos and gunfight reenactments. Hike through the stunning Absaroka Mountains, ride a mountain bike on the “Twisted Sister” trail and go flyfishing in the Shoshone River. YellowstoneCountry.org THE WORT HOTEL A landmark on the National Register of Historic Places, The Wort Hotel represents the Western heritage of Jackson Hole and its downtown location makes it an easy walk to shops, galleries and restaurants. Awarded Forbes Travel Guide Four-Star Award and Condé Nast Readers’ Choice Award. WortHotel.com welcome to Wyoming Lovell YELLOWSTONE Powell Sheridan BLACK TO YELLOW REGION REGION Cody Greybull Bu alo Gillette 90 90 Worland Newcastle 25 Travel Tips Thermopolis Jackson PARK TO PARK GETTING TO KNOW WYOMING REGION The rugged Rocky Mountains meet the vast Riverton Glenrock Lander High Plains (high-elevation prairie) in Casper Douglas SALT TO STONE Wyoming, which encompasses 253,348 REGION ROCKIES TO TETONS square kilometres in the western United 25 REGION States.
    [Show full text]
  • Related Magmatism in the Upper Wind River Basin, Wyoming (USA), GEOSPHERE; V
    Research Paper THEMED ISSUE: Cenozoic Tectonics, Magmatism, and Stratigraphy of the Snake River Plain–Yellowstone Region and Adjacent Areas GEOSPHERE The leading wisps of Yellowstone: Post–ca. 5 Ma extension- related magmatism in the upper Wind River Basin, Wyoming (USA), GEOSPHERE; v. 14, no. 1 associated with the Yellowstone hotspot tectonic parabola doi:10.1130/GES01553.1 Matthew E. Brueseke1, Anna C. Downey1, Zachary C. Dodd1, William K. Hart2, Dave C. Adams3, and Jeff A. Benowitz4 12 figures; 2 tables; 1 supplemental file 1Department of Geology, Kansas State University, 108 Thompson Hall, Manhattan, Kansas 66506, USA 2Department of Geology and Environmental Earth Science, Miami University, 118C Shideler Hall, Oxford, Ohio 45056, USA 3Box 155, Teton Village, Wyoming 83025, USA CORRESPONDENCE: brueseke@ ksu .edu 4Geophysical Institute and Geochronology Laboratory, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA CITATION: Brueseke, M.E., Downey, A.C., Dodd, Z.C., Hart, W.K., Adams, D.C., and Benowitz, J.A., 2018, The leading wisps of Yellowstone: Post–ca. 5 Ma ABSTRACT the issue of linking volcanic events to a specific driving mechanism (Fouch, extension-related magmatism in the upper Wind River 2012; Kuehn et al., 2015). Complicating matters, magmatism often continues Basin, Wyoming (USA), associated with the Yellow- The upper Wind River Basin in northwest Wyoming (USA) is located ~80– long after (e.g., millions of years) the upper plate has been translated away stone hotspot tectonic parabola: Geosphere, v. 14, no. 1, p. 74–94, doi:10.1130/GES01553.1. 100 km southeast of the Yellowstone Plateau volcanic field. While the upper from an upwelling plume (Bercovici and Mahoney, 1994; Sleep, 2003; Shervais Wind River Basin is a manifestation of primarily Cretaceous to Eocene Lara- and Hanan, 2008; Jean et al., 2014).
    [Show full text]
  • Chapter 3 – Community Profile
    Chapter 3: COMMUNITY PROFILE The Physical Environment, Socio-Economics and History of Fremont County Natural and technological hazards impact citizens, property, the environment and the economy of Fremont County. These hazards expose Fremont County residents, businesses and industries to financial and emotional costs. The risk associated with hazards increases as more people move into areas. This creates a need to develop strategies to reduce risk and loss of lives and property. Identifying risks posed by these hazards, and developing strategies to reduce the impact of a hazard event can assist in protecting life and property of citizens and communities. Physical / Environment Geology Much of Fremont County is made up of the 8,500 square mile Wind River Basin. This basin is typical of other large sedimentary and structural basins in the Rocky Mountain West. These basins were formed during the Laramide Orogeny from 135 to 38 million years ago. Broad belts of folded and faulted mountain ranges surround the basin. These ranges include the Wind River Range on the west, the Washakie Range and Owl Creeks and southern Big Horn Mountains on the north, the Casper Arch on the east, and the Granite Mountains on the south. The center of the basin is occupied by relatively un-deformed rocks of more recent age. Formations of every geologic age exist in Fremont County. These create an environment of enormous geologic complexity and diversity. The geology of Fremont County gives us our topography, mineral resources, many natural hazards and contributes enormously to our cultural heritage. Topography Fremont County is characterized by dramatic elevation changes.
    [Show full text]
  • Wind/Bighorn River Basin Plan Executive Summary
    WIND/BIGHORN RIVER BASIN PLAN EXECUTIVE SUMMARY PREPARED FOR THE: Wyoming Water Development Commission BY: BRS, Inc. IN ASSOCIATION WITH: MHW, Lidstone and Associates, TriHydro Corporation Donnell and Allred Inc., Water Rights Services LLC October 2003 Acknowledgements The BRS team would like to acknowledge the assistance of several individuals, groups and agencies that contributed to the Wind/Big Horn Basin planning process. The Wind/Big Horn River Basin Advisory Group The Wyoming Water Development Office River Planning Staff The Wyoming Resources Data System The Wyoming State Engineer’s Office The Wyoming Department of Environmental Quality The Wyoming State Geological Survey The University of Wyoming Spatial Data and Visualization Center The Wyoming Game and Fish Department The Wind River Indian Reservation The Wyoming Department of State Parks and Cultural Resources The U.S. Department of the Interior, Bureau of Land Management The U.S. Department of the Interior, Geological Survey The U.S. Department of the Interior, Bureau of Reclamation As well as those who gave presentations to the Wind/Big Horn Basin Advisory Group. Barry Lawrence, Wyoming Water Development Commission Greg Kerr, University of Wyoming Dave Taylor, Wyoming State Parks Dave Wilson, Wyoming State Parks Todd Stevenson, Wyoming State Parks John Lawson, U.S. Bureau of Reclamation John Barnes, State Engineer’s Office Steve Yekel, Wyoming Game and Fish Robin Gray, Wyoming Resources Data System Roger Bower, Wyoming Business Council Bob Baker, Mayor of the Town of Dubois Chuck Harnish, Department of Environmental Quality Reg Phillips, Dubois/Crowheart Conservation District Jan Curtis, Wyoming State Climatologist Myron Brooks, U.S. Geological Survey Ron Vore, Wyoming Water Development Commission Phil Ogle, Wyoming Water Development Commission Jeri Trebelcock, Popo Agie Conservation District Joe Deromendi, Wyoming Game and Fish Department Lee Craig, Park County Executive Director, FSA/USDA Dr.
    [Show full text]
  • Yellowstone River - Cumulative Effects Analysis
    Yellowstone River - Cumulative Effects Analysis Project Objectives 1. Evaluate the cumulative hydraulic, biological, and socioeconomic impacts of human activity on the Yellowstone River. 2. Develop recommended management practices and position statements. Project Extent • Gardiner MT to the Missouri River confluence (565 River Miles) Yellowstone River Cumulative Effects Assessment Montana’s Involvement • Yellowstone River Conservation District Council (YRCDC) • Technical Advisory Committee (TAC) • Resource Advisory Committee (RAC) • 2004 Cost-Share Agreement with Corps of Engineers • YRCDC – Local Leadership and Participation Primary Project Components • Hydrology • Avian • Hydraulics - Floodplain • Fisheries • Channel Geomorphology • Land Use Trends • Riparian • Socioeconomics • Wetlands • Lidar Topographic Mapping • Water Quality • Cumulative Effects Analysis Hydrology A Comparison of Pre-Development and Modern Stream Flows Main Results: • Natural streamflows have been affected by human development. • Primary influences are flow alterations on the Bighorn River and irrigation withdrawals. • The Yellowstone River has responded to these flow alterations. Bighorn River Watershed 22,885 square miles (33%) of total Yellowstone River watershed Yellowtail Dam/ Bighorn Reservoir Buffalo Bill Reservoir Boysen Reservoir Bighorn River Flow Alterations Yellowtail Dam: Built mid-1960s • 1,331,725 acre-feet of storage in Bighorn Reservoir • Flood control targets including preventing flows at the confluence of the Yellowstone River from exceeding 25,000
    [Show full text]
  • Bighorn River Basin, Wyoming
    Environmental and Recreational Water Use Analysis for the Wind – Bighorn River Basin, Wyoming Wind – Bighorn River Basin Plan Update Prepared for: Wyoming Water Development Commission 6920 Yellowstone Rd Cheyenne, Wyoming 82009 Prepared by: Western EcoSystems Technology, Inc. 415 W. 17th St., Suite 200 Cheyenne, Wyoming 82001 September 7, 2017 Draft Pre-Decisional Document - Privileged and Confidential - Not For Distribution Wind – Bighorn River Basin Plan Update EXECUTIVE SUMMARY In 2010, the Wyoming Water Development Commission (WWDC) requested a study to develop more robust and consistent methods for defining environmental and recreational (E&R) water uses for the River Basin Planning program. The study outlined that recreational and environmental uses needed to be identified and mapped, in a way that would assess their interactions with traditional water uses throughout the state of Wyoming. Harvey Economics completed the study in 2012, with a report and handbook being produced to identify a consistent viewpoint and accounting process for E&R water demands and to help guide river basin planning efforts in moving forward. The methods developed in the handbook were implemented on the Wind-Bighorn River Basin (Basin), and the results of the Basin plan update are provided in this report. In addition to the handbook guidelines, Western Ecosystems Technology, Inc. coordinated with the WWDC to further the analysis through the development of three models: 1) protection, 2) environmental, and 3) recreation. The Basin is located in central and northwestern Wyoming. Approximately 80% of Yellowstone National Park (YNP) is included in the Basin. Elevations in the Basin are variable as the Wind River and Bighorn Mountains funnel water from alpine areas to lower river corridors.
    [Show full text]
  • Environmental Geochemistry in Yellowstone National Park—Natural and Anthropogenic Anomalies and Their Potential Impact on the Environment
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Publications of the US Geological Survey US Geological Survey 2007 Environmental Geochemistry in Yellowstone National Park—Natural and Anthropogenic Anomalies and Their Potential Impact on the Environment Maurice A. Chaffee U.S. Geological Survey Robert R. Carlson U.S. Geological Survey Harley D. King U.S. Geological Survey Follow this and additional works at: https://digitalcommons.unl.edu/usgspubs Part of the Earth Sciences Commons Chaffee, Maurice A.; Carlson, Robert R.; and King, Harley D., "Environmental Geochemistry in Yellowstone National Park—Natural and Anthropogenic Anomalies and Their Potential Impact on the Environment" (2007). Publications of the US Geological Survey. 68. https://digitalcommons.unl.edu/usgspubs/68 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications of the US Geological Survey by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Environmental Geochemistry in Yellowstone National Park—Natural K and Anthropogenic Anomalies and Their Potential Impact on the Environment By Maurice A. Chaffee, Robert R. Carlson, and Harley D. King Chapter K of Integrated Geoscience Studies in the Greater Yellowstone Area— Volcanic, Tectonic, and Hydrothermal Processes in the Yellowstone Geoecosystem Edited by Lisa A. Morgan Professional Paper 1717 U.S. Department of the Interior U.S. Geological
    [Show full text]
  • Fly Fishing the Yellowstone Area: Hatch Charts and Angling Quality Charts
    Fly Fishing the Yellowstone Area: Hatch Charts and Angling Quality Charts This document compiles the general hatch charts, angling quality by timeframe charts, and fishery- specific hatch and fly suggestion charts provided on the how-to portion of the Parks’ Fly Shop website (www.parksflyshop.com) in an easy-to-print (and view) format. Please visit this website for much more information on fly fishing the Yellowstone area and southern Montana. I hope you find this information helpful. If you’re considering booking a fly fishing trip in Yellowstone or Montana, we would appreciate your business. Regards, Walter Wiese Head Guide, Parks’ Fly Shop (http://www.parksflyshop.com) www.flywalter.com [email protected] (406) 223-8204 This work is copyright Walter Wiese, 2018. You may distribute this document however you please, including for commercial purposes, in print or digital formats, with the following caveats: you may not alter it, you may not claim it as your own work, you must distribute the entire document if you choose to distribute any of it, and you must include this introduction and my contact information above. Table of Contents Here are some notes on how this document is organized… ................................................................... 3 General Hatch Charts .................................................................................................................................. 5 Where Should I Fish?...............................................................................................................................
    [Show full text]
  • 2003 Fish with Cover
    Yellowstone Fisheries & Aquatic Sciences Annual Report 2003 Thorofare Creek, October 2003. ellowstone National Park’s Yellowstone Lake is whirling behavior, abnormal feeding, and increased home to the premier surviving inland cutthroat vulnerability to predation, was first detected in Yellowstone Y trout fishery in North America. Two significant Lake in 1998, and in the Firehole River in 2000. This threats to the native Yellowstone cutthroat trout, discovered devastating disease further threatens already declining over a five-year period during the 1990s, irreversibly Yellowstone cutthroat trout populations. Although whirling altered the future of this thriving and diverse ecosystem. disease is currently believed to be concentrated in the Without swift, continuing action, negative effects on this northern regions of the Yellowstone Lake watershed, several trout population—a keystone energy source for numerous other tributaries have already been identified as at high risk. mammal and bird species and a recreational focus for In addition to native trout preservation, aquatics visitors—have the potential to produce ecosystemwide program goals include restoration of isolated but genetically consequences. pure westslope cutthroat trout, monitoring to track aquatic Predatory, non-native lake trout were likely illegally ecosystem health and expedite early warnings for other introduced to the lake in 1988 and not discovered until invasive exotic species, and encouragement of public 1994. They can consume 50–90 Yellowstone cutthroat trout involvement in various fisheries programs. per capita annually. Without heightened and maintained The stakes are high, raising the bar for innovative management efforts, they have the potential to decimate management and fundraising. The increased magnitude the Yellowstone Lake fishery in our lifetime.
    [Show full text]
  • OUT HERE, WE HAVE a STORY to TELL. This Map Will Lead You on a Historic Journey Following the Movements of Lt
    OUT HERE, WE HAVE A STORY TO TELL. This map will lead you on a historic journey following the movements of Lt. Col. Custer and the 7th Calvary during the days, weeks and months leading up to, and immediately following, the renowned Battle of Little Bighorn were filled with skirmishes, political maneuvering and emotional intensity – for both sides. Despite their resounding victory, the Plains Indians’ way of life was drastically, immediately and forever changed. Glendive Stories of great heroism and reticent defeat continue to reverberate through MAKOSHIKA STATE PARK 253 the generations. Yet the mystique remains today. We invite you to follow the Wibaux Trail to The Little Bighorn, to stand where the warriors and the soldiers stood, 94 to feel the prairie sun on your face and to hear their stories in the wind. 34 Miles to Theodore Terry Roosevelt Fallon National Park 87 12 Melstone Ingomar 94 PIROGUE Ismay ISLAND 12 12 Plevna Harlowton 1 Miles City Baker Roundup 12 89 12 59 191 Hysham 12 4 10 2 12 14 13 11 9 3 94 Rosebud Lavina Forsyth 15 332 447 16 R MEDICINE E ER 39 IV ROCKS IV R R 5 E NE U STATE PARK Broadview 87 STO 17 G OW Custer ON L T NORTH DAKOTA YE L 94 6 59 Ekalaka CUSTER GALLATIN NF 18 7 332 R E 191 IV LAKE Colstrip R MONTANA 19 Huntley R 89 Big Timber ELMO E D Billings W 447 O 90 384 8 P CUSTER Reed Point GALLATIN Bozeman Laurel PICTOGRAPH Little Bighorn Battlefield NATIONAL 90 CAVES Hardin 20 447 FOREST Columbus National Monument Ashland Crow 212 Olive Livingston 90 Lame Deer WA Agency RRIO SOUTH DAKOTA R TRA 212 IL 313 Busby
    [Show full text]