This Article Is from the March 2009 Issue of Published by the American
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Endophytic Fungi: Biological Control and Induced Resistance to Phytopathogens and Abiotic Stresses
pathogens Review Endophytic Fungi: Biological Control and Induced Resistance to Phytopathogens and Abiotic Stresses Daniele Cristina Fontana 1,† , Samuel de Paula 2,*,† , Abel Galon Torres 2 , Victor Hugo Moura de Souza 2 , Sérgio Florentino Pascholati 2 , Denise Schmidt 3 and Durval Dourado Neto 1 1 Department of Plant Production, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418900, Brazil; [email protected] (D.C.F.); [email protected] (D.D.N.) 2 Plant Pathology Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418900, Brazil; [email protected] (A.G.T.); [email protected] (V.H.M.d.S.); [email protected] (S.F.P.) 3 Department of Agronomy and Environmental Science, Frederico Westphalen Campus, Federal University of Santa Maria, Frederico Westphalen 98400000, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-54-99646-9453 † These authors contributed equally to this work. Abstract: Plant diseases cause losses of approximately 16% globally. Thus, management measures must be implemented to mitigate losses and guarantee food production. In addition to traditional management measures, induced resistance and biological control have gained ground in agriculture due to their enormous potential. Endophytic fungi internally colonize plant tissues and have the potential to act as control agents, such as biological agents or elicitors in the process of induced resistance and in attenuating abiotic stresses. In this review, we list the mode of action of this group of Citation: Fontana, D.C.; de Paula, S.; microorganisms which can act in controlling plant diseases and describe several examples in which Torres, A.G.; de Souza, V.H.M.; endophytes were able to reduce the damage caused by pathogens and adverse conditions. -
Nitrogen Containing Volatile Organic Compounds
DIPLOMARBEIT Titel der Diplomarbeit Nitrogen containing Volatile Organic Compounds Verfasserin Olena Bigler angestrebter akademischer Grad Magistra der Pharmazie (Mag.pharm.) Wien, 2012 Studienkennzahl lt. Studienblatt: A 996 Studienrichtung lt. Studienblatt: Pharmazie Betreuer: Univ. Prof. Mag. Dr. Gerhard Buchbauer Danksagung Vor allem lieben herzlichen Dank an meinen gütigen, optimistischen, nicht-aus-der-Ruhe-zu-bringenden Betreuer Herrn Univ. Prof. Mag. Dr. Gerhard Buchbauer ohne dessen freundlichen, fundierten Hinweisen und Ratschlägen diese Arbeit wohl niemals in der vorliegenden Form zustande gekommen wäre. Nochmals Danke, Danke, Danke. Weiteres danke ich meinen Eltern, die sich alles vom Munde abgespart haben, um mir dieses Studium der Pharmazie erst zu ermöglichen, und deren unerschütterlicher Glaube an die Fähigkeiten ihrer Tochter, mich auch dann weitermachen ließ, wenn ich mal alles hinschmeissen wollte. Auch meiner Schwester Ira gebührt Dank, auch sie war mir immer eine Stütze und Hilfe, und immer war sie da, für einen guten Rat und ein offenes Ohr. Dank auch an meinen Sohn Igor, der mit viel Verständnis akzeptierte, dass in dieser Zeit meine Prioritäten an meiner Diplomarbeit waren, und mein Zeitbudget auch für ihn eingeschränkt war. Schliesslich last, but not least - Dank auch an meinen Mann Joseph, der mich auch dann ertragen hat, wenn ich eigentlich unerträglich war. 2 Abstract This review presents a general analysis of the scienthr information about nitrogen containing volatile organic compounds (N-VOC’s) in plants. -
The Two A-Dox Genes of Nicotiana Attenuata: Overlapping but Distinct Functions in Development and Stress Responses
Steppuhn et al. BMC Plant Biology 2010, 10:171 http://www.biomedcentral.com/1471-2229/10/171 RESEARCH ARTICLE Open Access The two a-dox genes of Nicotiana attenuata: overlapping but distinct functions in development and stress responses Anke Steppuhn2†, Emmanuel Gaquerel1†, Ian T Baldwin1* Abstract Background: Plant fatty acid a-dioxygenases (a-DOX) are oxylipin-forming enzymes induced by biotic and abiotic stresses, which also participate in developmental processes. In Nicotiana attenuata, herbivory strongly induces the expression of an a-dox1 gene. To determine its role, we silenced its expression using Agrobacterium-mediated plant transformation with an inverted repeat construct. More than half of the transformed lines showed a severe dwarf growth phenotype that was very similar to the phenotype of tomato plants mutated at a second a-dox isoform. This led us to identify the corresponding a-dox2 gene in N. attenuata and examine the regulation of both a-dox genes as well as the consequences of their silencing in plant development and anti-herbivore defense. Results: The transformed lines exhibiting a dwarf growth phenotype are co-silenced for both a-dox genes resulting in a nearly complete suppression of a-DOX activity, which is associated with increases in ABA, JA and anthocyanin levels, all metabolic signatures of oxidative stress. The other lines, only silenced for a-dox1, developed similarly to wild-type plants, exhibited a 40% reduction of a-DOX activity resulting in a 50% reduction of its main product in planta (2-HOT) and showed no signs of oxidative stress. In contrast to a-dox1, the expression of a-dox2 gene is not induced by wounding or elicitors in the oral secretions of Manduca sexta. -
Use of Several Natural Products from Selected Nicotiana Species to Prevent Black Shank Disease in Tobacco* By
Beiträge zur Tabakforschung International/ Contributions to Tobacco Research Volume 27 @ No. 3 @ July 2016 DOI: 10.1515/cttr-2016-0013 Use of Several Natural Products from Selected Nicotiana Species to Prevent Black Shank Disease in Tobacco* by Antoaneta B. Kroumova, Ivan Artiouchine, and George J. Wagner Kentucky Tobacco Research and Development Center (KTRDC), College of Agriculture, University of Kentucky, Lexington, KY, USA SUMMARY tion by both races by 50–60% and delayed the disease by 6–10 days. Phylloplanin was least suppressive in both Black shank is a major annual disease threat to all types of tobacco cultivars. We consider sclareol to be the best tobacco worldwide. It is caused by the fungus Phytoph- candidate for future studies due to its antifungal properties thora parasitica var. nicotianae (PPN). The major tobacco and availability. cis-Abienol, despite its good antifungal growing areas in US - Kentucky, Tennessee and North activity, is not feasible for large-scale use due to the Carolina can experience devastating losses, reaching in production and stability limitations. [Beitr. Tabakforsch. some fields up to 100%. Thus far, the main approaches to Int. 27 (2016) 113–125] control this disease have been creation of resistant varieties, fungicide treatments, and crop rotation. Some fungicides are reported to have negative effects on the environment. ZUSAMMENFASSUNG The goal of this work was to test the antifungal activity of several natural products that are synthesized by certain Die Stängelgrundfäule stellt jährlich eine der größten Nicotiana species, and secreted to the leaf surface. We Bedrohungen für alle Sorten von Tabak weltweit dar. Sie hypothesized that phylloplanin, cis-abienol, labdenediol wird durch den Pilz Phytophthora parasitica var. -
Heterochrony of Floral and Mating System Characters Between Nicotiana Longiflora and N
HETEROCHRONY OF FLORAL AND MATING SYSTEM CHARACTERS BETWEEN NICOTIANA LONGIFLORA AND N. PLUMBAGINIFOLIA A Thesis presented to the Faculty of the Graduate School at the University of Missouri-Columbia In Partial Fulfillment of the Requirements for the Degree Master of Arts by JACOB W. SOULE Dr. Timothy P. Holtsford, Thesis Supervisor MAY 2007 The undersigned, appointed by the dean of the Graduate School, have examined the thesis entitled HETEROCHRONY OF FLORAL AND MATING SYSTEM CHARACTERS BETWEEN NICOTIANA LONGIFLORA AND N. PLUMBAGINIFOLIA presented by Jacob W. Soule, a candidate for the degree of Master of Arts, and hereby certify that, in their opinion, it is worthy of acceptance. Professor Timothy P. Holtsford Professor J. Chris Pires Professor Bruce A. McClure ACKNOWLEDGEMENTS This thesis would not have been possible without my advisor Dr. Tim Holtsford. His insight and thoughtful comments helped me to bring this to completion. He helped me focus my project into something worthwhile. I had a lot of help from my lab mates Rainee Kaczorowski, Sherry Ellberg, Dulce Figueroa-Castro and Chris Lee; their discussions helped me to get past many difficulties for which I am grateful, as well as for their willing help with watering and care of plants. I would like to thank Paul Walker for his enthusiastic help with lab work and for the hours he spent measuring flowers for plastochron calibrations. The terrific feedback given to me by my committee members Dr. J. Chris Pires and Dr. Bruce A. McClure greatly improved the final product. Finally, I never would have made it through this without the love and support of my parents, Robert and Judith Soule, and of my fiancée Danielle A. -
Floristic Quality Assessment Report
FLORISTIC QUALITY ASSESSMENT IN INDIANA: THE CONCEPT, USE, AND DEVELOPMENT OF COEFFICIENTS OF CONSERVATISM Tulip poplar (Liriodendron tulipifera) the State tree of Indiana June 2004 Final Report for ARN A305-4-53 EPA Wetland Program Development Grant CD975586-01 Prepared by: Paul E. Rothrock, Ph.D. Taylor University Upland, IN 46989-1001 Introduction Since the early nineteenth century the Indiana landscape has undergone a massive transformation (Jackson 1997). In the pre-settlement period, Indiana was an almost unbroken blanket of forests, prairies, and wetlands. Much of the land was cleared, plowed, or drained for lumber, the raising of crops, and a range of urban and industrial activities. Indiana’s native biota is now restricted to relatively small and often isolated tracts across the State. This fragmentation and reduction of the State’s biological diversity has challenged Hoosiers to look carefully at how to monitor further changes within our remnant natural communities and how to effectively conserve and even restore many of these valuable places within our State. To meet this monitoring, conservation, and restoration challenge, one needs to develop a variety of appropriate analytical tools. Ideally these techniques should be simple to learn and apply, give consistent results between different observers, and be repeatable. Floristic Assessment, which includes metrics such as the Floristic Quality Index (FQI) and Mean C values, has gained wide acceptance among environmental scientists and decision-makers, land stewards, and restoration ecologists in Indiana’s neighboring states and regions: Illinois (Taft et al. 1997), Michigan (Herman et al. 1996), Missouri (Ladd 1996), and Wisconsin (Bernthal 2003) as well as northern Ohio (Andreas 1993) and southern Ontario (Oldham et al. -
How Does Genome Size Affect the Evolution of Pollen Tube Growth Rate, a Haploid Performance Trait?
Manuscript bioRxiv preprint doi: https://doi.org/10.1101/462663; this version postedClick April here18, 2019. to The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv aaccess/download;Manuscript;PTGR.genome.evolution.15April20 license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Effects of genome size on pollen performance 2 3 4 5 How does genome size affect the evolution of pollen tube growth rate, a haploid 6 performance trait? 7 8 9 10 11 John B. Reese1,2 and Joseph H. Williams2 12 Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 13 37996, U.S.A. 14 15 16 17 1Author for correspondence: 18 John B. Reese 19 Tel: 865 974 9371 20 Email: [email protected] 21 1 bioRxiv preprint doi: https://doi.org/10.1101/462663; this version posted April 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 22 ABSTRACT 23 Premise of the Study – Male gametophytes of most seed plants deliver sperm to eggs via a 24 pollen tube. Pollen tube growth rates (PTGRs) of angiosperms are exceptionally rapid, a pattern 25 attributed to more effective haploid selection under stronger pollen competition. Paradoxically, 26 whole genome duplication (WGD) has been common in angiosperms but rare in gymnosperms. -
Plant Mating Systems in Nicotiana Longiflora and N
MATING SYSTEMS IN NICOTIANA LONGIFLORA AND N. PLUMBAGINIFOLIA: THE EFFECT OF INTERSPECIFIC INTERACTIONS ______________________________________________________________ A Dissertation Presented to The Faculty of the Graduate School University of Missouri-Columbia ______________________________________________________________ In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosphy _______________________________________________________________ By DULCE M. FIGUEROA-CASTRO Dr. Timothy Holtsford, Dissertation Supervisor MAY 2008 The undersigned, appointed by the Dean of the Graduate School, have examined the dissertation entitled PLANT MATING SYSTEMS IN NICOTIANA LONGIFLORA AND N. PLUMBAGINIFOLIA: THE EFFECT OF INTERSPECIFIC INTERACTIONS Presented by Dulce M. Figueroa-Castro A candidate for the degree of Doctor of Philosophy And hereby certify that in their opinion it is worthy of acceptance. _________________________________________________________ Dr. Timothy Holtsford _________________________________________________________ Dr. Karen Cone _________________________________________________________ Dr. Reginald Cocroft _________________________________________________________ Dr. Christopher Pires _________________________________________________________ Dr. Bruce McClure To my mom, for her unconditional support and lovely heart, which constituted the fuel that kept me going every minute of this journey. Let your light and love show me the path… mi muñequita linda… To my dad, for teaching me about constancy and hard work, -
How Does Genome Size Affect the Evolution of Pollen Tube Growth Rate, a Haploid Performance Trait?
bioRxiv preprint doi: https://doi.org/10.1101/462663; this version posted November 5, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Effects of genome size on pollen performance 2 3 4 5 6 How does genome size affect the evolution of pollen tube growth rate, a haploid 7 performance trait? 8 9 10 11 12 John B. Reese1,2 and Joseph H. Williams1 13 Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 14 37996, U.S.A. 15 16 17 18 1Author for correspondence: 19 John B. Reese 20 Tel: 865 974 9371 21 Email: [email protected] 22 23 24 1 bioRxiv preprint doi: https://doi.org/10.1101/462663; this version posted November 5, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 25 ABSTRACT 26 Premise of the Study - Male gametophytes of seed plants deliver sperm to eggs via a pollen 27 tube. Pollen tube growth rate (PTGR) may evolve rapidly due to pollen competition and haploid 28 selection, but many angiosperms are currently polyploid and all have polyploid histories. 29 Polyploidy should initially accelerate PTGR via “genotypic effects” of increased gene dosage 30 and heterozygosity on metabolic rates, but “nucleotypic effects” of genome size on cell size 31 should reduce PTGR. -
Alternative Methods of Control for Phytophthora Nicotianae of Tobacco
University of Kentucky UKnowledge Theses and Dissertations--Plant Pathology Plant Pathology 2013 Alternative Methods of Control for Phytophthora nicotianae of Tobacco Anna M. Holdcroft University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Holdcroft, Anna M., "Alternative Methods of Control for Phytophthora nicotianae of Tobacco" (2013). Theses and Dissertations--Plant Pathology. 5. https://uknowledge.uky.edu/plantpath_etds/5 This Master's Thesis is brought to you for free and open access by the Plant Pathology at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Plant Pathology by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained and attached hereto needed written permission statements(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine). I hereby grant to The University of Kentucky and its agents the non-exclusive license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless a preapproved embargo applies. I retain all other ownership rights to the copyright of my work. -
Open Tgbentleydissertation2014.Pdf
The Pennsylvania State University The Graduate School The Huck Institute of the Life Sciences PLANT VOLATILES FROM AN ECOLOGICAL PERSPECTIVE: INTERACTIONS WITH HERBIVORES AND POLLINATORS IN SOLANUM AND NICOTIANA A Dissertation in Ecology by Thomas Granville Bentley 2014 Thomas Granville Bentley Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2014 The dissertation of Thomas Granville Bentley was reviewed and approved* by the following: Mark C. Mescher Associate Professor of Entomology Dissertation Advisor Chair of Committee Consuelo M. De Moraes Professor of Entomology Andrew G. Stephenson Distinguished Professor of Biology David A. Mortensen Professor of Weed and Applied Plant Ecology David Eissenstat Professor of Woody Plant Ecology Chair of the Intercollegiate Graduate Degree Program in Ecology *Signatures are on file in the Graduate School iii ABSTRACT Plant volatiles mediate many important interactions, including plant-predator interactions, plant-herbivore interactions, plant-pollinator interactions, and plant-plant interactions. Plant volatiles can attract predators to prey, repel ovipositing herbivores, attract pollinators, coordinate a plant’s defenses, communicate with other plants, and act as foraging cues. As our knowledge of the diversity and complexity of plant volatile signaling grows, we should view plant volatiles from an ecological perspective informed by signaling theory. This theoretical framework will provide insight into the evolutionary pressures involved in plant volatile communications. This approach will also generate predictions about features that may be found in plant volatile signaling, including mimicry, costly signaling, aposematic signaling, and kin selection. This dissertation investigates three plant communication systems with this approach. In one study, I studied the effects of inbreeding on floral volatile signaling and pollinator interactions in horsenettle. -
Phytophthora Nicotianae
DOTTORATO DI RICERCA IN “GESTIONE FITOSANITARIA ECO- COMPATIBILE IN AMBIENTI AGRO- FORESTALI E URBANI” XXII Ciclo (S.S.D. AGR/12) UNIVERSITÀ DEGLI STUDI DI PALERMO Dipartimento DEMETRA Sede consorziata UNIVERSITÀ “MEDITERRANEA” DI REGGIO CALABRIA Dipartimento GESAF Intraspecific variability in the Oomycete plant pathogen Phytophthora nicotianae Dottorando Dott. Marco Antonio Mammella Coordinatore Prof. Stefano Colazza Tutor Prof. Leonardo Schena Co-tutor Dott. Frank Martin Prof.ssa Antonella Pane Contents Preface I General abstract II Chapter I – General Introduction 1 I.1 Introduction to Oomycetes and Phytophthora 2 I.1.1 Biology and genetics of Phytophthora nicotianae 3 I.2 Phytophthora nicotianae diseases 4 I.2.1 Black shank of tobacco 5 I.2.2 Root rot of citrus 6 I.3 Population genetics of Phytophthora 8 I.3.1 Forces acting on natural populations 8 I.3.1.1 Selection 8 I.3.1.2 Reproductive system 9 I.3.1.3 Mutation 10 I.3.1.4 Gene flow and migration 11 I.3.1.5 Genetic drift 11 I.3.2 Genetic structure of population in the genus Phytophthora spp. 12 I.3.2.1 Phytophthora infestans 12 I.3.2.2 Phytophthora ramorum 14 I.3.2.3 Phytophthora cinnamomi 15 I.4 Marker for population studies 17 I.4.1 Mitochondrial DNA 18 I.4.2 Nuclear marker 19 I.4.2.1 Random amplified polymorphic DNA (RAPD) 19 I.4.2.2 Restriction fragment length polymorphisms (RFLP) 20 I.4.2.3 Amplified fragment length polymorphisms (AFLP) 21 I.4.2.4 Microsatellites 22 I.4.2.5 Single nucleotide polymorphisms (SNPs) 23 I.4.2.5.1 Challenges using nuclear sequence markers 24 I.5