Clinical Commentary Coordination Training in Individuals With

Total Page:16

File Type:pdf, Size:1020Kb

Clinical Commentary Coordination Training in Individuals With Spinal Cord (2006) 44, 7–10 & 2006 International Spinal Cord Society All rights reserved 1362-4393/06 $30.00 www.nature.com/sc Clinical Commentary Coordination training in individuals with incomplete spinal cord injury: consideration of motor hierarchical structures TH Kakebeeke*,1, SH Roy2 and RH Largo3 1Institute for Clinical Research, Swiss Paraplegic Centre, Nottwil, Switzerland; 2Boston University, NeuroMuscular Research Center, Boston, MA, USA; 3Department of Paediatrics, Growth and Development Centre, University Children’s Hospital, Zurich, Switzerland Study design: Clinical commentary. Objective: To discuss the method ofcoordination training to enhance motor skills in persons after spinal cord injury (SCI). Method: From the literature and clinical experience, we learn that basic motor skills like walking are refined and maintained through the millions ofrepetitions that take place as part of normal development. These coordinated patterns function effectively as a form of training to the system because ofthe presence ofneural pathways that mediate commands between higher and lower levels ofthe central nervous system (CNS). When these pathways are disrupted as a result ofa lesion, the question that arises is whether retraining can be effective. Results/Discussion: The question is directed at the common practice among rehabilitation professionals to prescribe and carry out tireless repetitions of coordinated motor activities in people with SCI lesions. We discuss this fundamental question from the perspective of understanding differences in maturation and function of higher motor centres and lower motor centres. Spinal Cord (2006) 44, 7–10. doi:10.1038/sj.sc.3101783; published online 19 July 2005 Keywords: incomplete spinal cord injury; central pattern generator; supraspinal tract; coordination training Introduction Coordinated movement demands considerable practice training ofbasic motor skills ofthe lower extremities or training.1–4 A child takes about three million steps is an effective strategy for motor relearning in those before the pattern of walking is mature at about 6 years subjects who have an incomplete spinal cord injury ofage. 1 Similarly, in sports, it is estimated that a (SCI). professional basketball player shoots as many as one million baskets before the movement is perfected.1 The importance ofcoordination training is described in Organization of the neuromotor system textbooks on motor learning3 and motor development.4 Our motor system is organized hierarchically, with the The process ofcoordinated learning, according to uppermost level mediated through the primary motor Kottke,2 involves learning to perform a movement with cortex (localized in the gyrus precentralis) and the minimal activation ofagonist muscles while inhibiting lowermost levels mediated through the spinal motor muscles that do not effectively contribute to the desired neurons. In this hierarchical structure, the uppermost activity. In the healthy human motor system, where all components are generally responsible for the initiation the prerequisites for movement are present, training of ofthe movement, whereas the lower level components coordinated activity, such as walking and running, is are responsible for the organization and execution of the effectively achieved through the many repetitions that movement (eg how to make a movement). At the occur as a normal part ofhuman motor development 4 lowermost level, all the motor commands converge on and exploration ofthe environment. In this article, we 5 the motor neuronal pool in the spine. The motor would like to focus on the question of whether the neuronal pool is a prerequisite for all muscle contrac- tions; only after a depolarization of these motor neurons *Correspondence: TH Kakebeeke, Institute for Clinical Research, can a muscle contraction take place. It is for this reason 6 Swiss Paraplegic Center, Nottwil 6207, Switzerland that Sherrington described this path from the motor Coordination training after incomplete SCI TH Kakebeeke et al 8 neuronal pool in the spine to the muscle as ‘the final treadmill training is limited.12,15,16 One reason for this common pathway’. lack of transfer is that the proprioceptive feedback of the moving feet on a stationary surface is lacking.17,18 Maturation Moreover, it was also shown that people with incom- plete paraplegia profited more from treadmill training There is evidence that the corticospinal tract in man than individuals with complete lesions.12,15,16 With this matures predominantly after birth according to a fixed in mind, it becomes very important to establish an exact program. For a review on this topic, we refer the reader diagnosis ofthe SCI immediately afterthe lesion to the article by Forssberg7 on the ontogeny ofhuman because time-consuming therapies appear to be more locomotor control. In this work it was shown that innate appropriate for the incomplete injury.12,15 Furthermore, pattern generators in the spine produce stepping at birth maintaining neuronal circuitries ‘trained’ in incomplete and that during the first years oflifeit is controlled in a SCI should make these circuitries more easily accessible piecewise fashion by higher organization centres so that for eventual regeneration or compensatory plastic infant stepping is transformed to normal plantigrade processes.17,19–21 stepping. During normal development, no additional Most lesions ofthe CNS are incomplete. 22 In animals, coordination training is needed to stimulate the out- walking ability may be regained with less than 50% of growth ofthe corticospinal tract. In a classic investiga- the spinal cord left intact.23 Recent investigations on tion on the onset ofwalking in the Hopi Indian culture incomplete SCI rats showed that even the rubrospinal by Dennis it was shown that a severe restriction of tract is able to reorganize itselfand make new sprouts movement did not influence the onset ofwalking com- and connections after a partial denervation.24 This pared to unrestricted movement in early infancy.8 This provides a basis for hope among individuals with experiment shows us that the development ofwalking incomplete SCI. behaviour is innate. When this basic motor skill has developed, the child refines this motor skill to the ever- changing environment with endless repetitions as also Discussion we learn from Kottke et al1 and Gallahue.4 Critical remarks concerning coordination training for the incomplete SCI lesion CNS lesion It is our recommendation that we cautiously bear in In the case ofa lesion to the CNS, the resulting mind the following when treating the individual with functional deficits are determined by which groups of SCI. Instead offocusing on the corticospinal tract and nerve cells are severed. The site oflesion, either in the trying to train the phylogenetically youngest part ofthe spinal cord or the brain, determines whether it may be motor system first, it may be beneficial to adopt an possible to compensate for the damage, or in the worst approach where we try to influence the motor system case, lose all capability to move voluntarily. Lesions of at the lowest level initially, namely, by influencing the the spinal cord affecting the upper motor neuron CPGs, the phylogenetically older system. From several (UMN) can clearly be distinguished from lesions of group studies,15,21,25 it was highlighted that circuitry in the lower motor neuron (LMN). Generally speaking, the human species is able to learn, especially when this after a lesion to the UMN, muscle contractions are still training is combined with loadbearing. We should possible although the highest cortical control may be consider the fact that the corticospinal tract is not the missing. In contrast, lesions on the level ofthe LMN only tract to project to the motoneurons in the spine. typically result in flaccid paresis. Furthermore, after The reticulo-, vestibulo- and rubrospinal tracts also a lesion ofthe UMN, it may be possible forthe person terminate on these motoneuron pools and these latter to relearn some movements or to compensate for them tracts may be able to compensate for a damaged in such a way that they may be able to return to corticospinal tract. To us, this approach seems more independent functioning. logical because normal motor development in the For those that suffer from severe lesions of the CNS, human proceeds from the lower level to the highest much research has been done on the central pattern level, which is the corticospinal tract. generator (CPG), the foundation level of motor control Also, we should bear in mind that extrapolations in the spine. The question arises: to what extent can we from animal experiments to humans should be done activate the CPG in case ofa spinal cord lesion? with great caution when arguing that treatments that Originally, experiments on CPGs were conducted on influence the corticospinal tract may lead to a break- spinalized cats by Grillner9 and he demonstrated that it through in SCI recovery. Anatomically and function- was possible for these animals to treadmill walk, even on ally, the corticospinal tract in cat and rat differs from a split belt operating at different speeds. Similar CPG those in higher primates and humans. In quadrupeds the studies are being conducted for treadmill walking in front legs have a different function than the arms in spinal man.10–14 Although it is possible to synchronize bipeds.26 A one-to-one transfer from experiments on and improve the EMG signals after treadmill training in mammals that use four limbs for locomotion to the humans with a complete SCI, the ability ofindividuals higher primates that ambulate bipedally is not possible. with SCI to improve their overground walking after Furthermore, one ofthe reasons why so much research Spinal Cord Coordination training after incomplete SCI TH Kakebeeke et al 9 has been done on this tract in rat and mice is that the least the same25,31 or even more2 as compared to the corticospinal tract can be anatomically located very healthy motor system.1,2 Time-consuming therapies, easily. There is a resulting overemphasis on the role of which require numerous repetitions, are bound to have this tract in quadrupedal locomotion.
Recommended publications
  • Tonic and Rhythmic Spinal Activity Underlying Locomotion
    Send Orders for Reprints to [email protected] Current Pharmaceutical Design, 2017, 23, 1-11 1 REVIEW ARTICLE Tonic and Rhythmic Spinal Activity Underlying Locomotion Yury P. Ivanenkoa,*, Victor S. Gurfinkelb, Victor A. Selionovc, Irina A. Solopovac, Francesca Sylos-Labinid, Pierre A Guertine and Francesco Lacquanitia,d,f aLaboratory of Neuromotor Physiology, Santa Lucia Foundation, 00179 Rome, Italy; bBiomedical Engineering Department, Oregon Health and Science University, Portland, Oregon, USA; cLaboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Moscow 127994, Russia; dCentre of Space Bio-medicine, University of Rome Tor Vergata, 00133 Rome, Italy, City, Country; eDepartment of Psychiatry and Neurosciences, Laval University, Québec City, Canada G1V 4G2; fDepartment of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy Abstract: In recent years, many researches put significant efforts into understanding and assessing the functional state of the spinal locomotor circuits in humans. Various techniques have been developed to stimulate the spinal A R T I C L E H I S T O R Y cord circuitries, which may include both diffuse and quite specific tuning effects. Overall, the findings indicate that tonic and rhythmic spinal activity control are not separate phenomena but are closely integrated to properly initiate and sustain stepping. The spinal cord does not simply transmit information to and from the brain. Its Received: November 2, 2016 Accepted: January 20, 2017 physiologic state determines reflex, postural and locomotor control and, therefore, may affect the recovery of the locomotor function in individuals with spinal cord and brain injuries. This review summarizes studies that exam- ine the rhythmogenesis capacity of cervical and lumbosacral neuronal circuitries in humans and its importance in DOI: 10.2174/1381612823666170125 developing central pattern generator-modulating therapies.
    [Show full text]
  • The Spinal Control of Backward Locomotion
    Research Articles: Systems/Circuits The spinal control of backward locomotion https://doi.org/10.1523/JNEUROSCI.0816-20.2020 Cite as: J. Neurosci 2020; 10.1523/JNEUROSCI.0816-20.2020 Received: 8 April 2020 Revised: 16 November 2020 Accepted: 18 November 2020 This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data. Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published. Copyright © 2020 the authors 1 Title: The spinal control of backward locomotion 2 Abbreviated title: The spinal control of backward locomotion 3 4 Author names: 1Jonathan Harnie, 1Johannie Audet, 2Alexander N. Klishko, 1Adam Doelman, 5 2,#Boris I. Prilutsky and 1,#Alain Frigon 6 7 Affiliations: 1Department of Pharmacology-Physiology, Faculty of Medicine and Health 8 Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada, J1H 5N4. 2School of 9 Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA, 30332. 10 # Equally contributing senior authors 11 Corresponding author: 12 Alain Frigon, PhD 13 Email: [email protected] 14 Number of pages: 45 pages of text + 1 table and 9 figures 15 Number of tables and figures: 1 table + 9 figures 16 Number of words: abstract (235), introduction (757), and discussion (2050) 17 Conflict of interest statement: The authors declare no competing financial interests. 18 19 Acknowledgments 20 We thank Philippe Drapeau (Université de Montréal) from the Rossignol and Drew labs for 21 developing the data collection and analysis software.
    [Show full text]
  • Scienti®C Review Gait After Spinal Cord Injury and the Central Pattern
    Spinal Cord (1999) 37, 531 ± 537 ã 1999 International Medical Society of Paraplegia All rights reserved 1362 ± 4393/99 $12.00 http://www.stockton-press.co.uk/sc Scienti®c Review Gait after spinal cord injury and the central pattern generator for locomotion MM Pinter1 and MR Dimitrijevic*,1,2 1Ludwig Boltzmann Institute for Restorative Neurology and Neuromodulation, Neurological Hospital Maria Theresien SchloÈssel, Vienna, Austria; 2Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas, TX 77030, USA Keywords: gait; CPG; spinal cord injury Introduction The clinical outcome of traumatic spinal cord injury stimulation of the isolated lumbar cord by means of (SCI) mainly depends upon the severity of the lesion, a train of electrical stimuli.9 the recovery processes and neurorehabilitation pro- grams. The percentage of SCI subjects who recover Neurocontrol of locomotion in SCI subjects ambulation can range between 15 ± 45% while the rest will remain wheelchair-bound.1±3 However, even As a result of SCI, gait in humans is altered, and among those subjects who are clinically complete usually possible without or with assistive devices. there are very few who can perform stepping move- Instead of developing a broad range of speeds, an ments,4,5 and rhythmic myoclonic movements.6 This ambulatory SCI subject is often only capable of very clinical fact can be interpreted as: (1) evidence that slow gait. Studies of gait performance after SCI show humans do not possess a neuronal assembly system that the disturbing
    [Show full text]
  • Dopaminergic Modulation of Spinal Circuits for Walking in the Adult Mouse
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2018-09-06 Dopaminergic modulation of spinal circuits for walking in the adult mouse Mayr, Kyle Andrew Mayr, K. A. (2018). Dopaminergic modulation of spinal circuits for walking in the adult mouse (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/32925 http://hdl.handle.net/1880/107749 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Dopaminergic modulation of spinal circuits for walking in the adult mouse by Kyle Andrew Mayr A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN NEUROSCIENCE CALGARY, ALBERTA SEPTEMBER, 2018 © Kyle Mayr 2018 Abstract Walking is a stereotyped rhythmic behavior that consists of alternating contractions of flexor and extensor muscles, as well as the left and right hindlimbs. The basic rhythmic pattern underlying locomotion is generated by a central pattern generator network within the lumbar spinal cord. The role of many neurotransmitters and modulators have been studied extensively, but dopamine’s (DA) role in modulating movement at the level of the lumbar spinal cord, is still not fully understood, especially in adult mice.
    [Show full text]
  • Thesis.Pdf (5.344Mb)
    SENSORIMOTOR BEHAVIOUR IN RATS AFTER LESIONS OF DORSAL SPINAL PATHWAYS Submitted to the College of Graduate Studies and Research of the University of Saskatchewan for partial completion of the Doctor of Philosophy degree in the Department of Veterinary Biomedical Sciences at the University of Saskatchewan and pertaining to Behavioural Neuroscience by SRIKANTH G. KANAGAL © Copyright Srikanth G. Kanagal, August, 2008 All rights reserved PERMISSION TO USE In agreement with the outlines set out by the College of Graduate Studies and Research at the University of Saskatchewan, I allow the University of Saskatchewan Libraries to make this thesis available to all interested parties. Also in accordance with the College of Graduate Studies and Research, I allow this thesis to be copied “in any manner, in whole or in part, for scholarly purposes”. This thesis may not, however, be reproduced or used in any manner for financial gain with my written consent. Any scholarly use of this thesis, in part or in whole, must acknowledge both myself and the University of Saskatchewan. Any requests for copying or using this thesis, in any form or capacity, should be made to: Head of Department of Veterinary Biomedical Sciences University of Saskatchewan Saskatoon, Saskatchewan S7N 5B4 i ABSTRACT To investigate the roles of different dorsal spinal pathways in controlling movements in rats, I performed lesions of specific spinal pathways and measured the behaviour abilities of rats using different sensorimotor behavioural tests. The first experiment was designed to understand the contribution of sensory pathways traveling in the dorsal funiculus during locomotion and skilled movements using sensitive behavioural tests.
    [Show full text]
  • Spinal Cholinergic Interneurons Differentially Control Motoneuron
    www.nature.com/scientificreports OPEN Spinal cholinergic interneurons diferentially control motoneuron excitability and alter the locomotor Received: 22 November 2017 Accepted: 19 January 2018 network operational range Published: xx xx xxxx Maria Bertuzzi & Konstantinos Ampatzis While cholinergic neuromodulation is important for locomotor circuit operation, the specifc neuronal mechanisms that acetylcholine employs to regulate and fne-tune the speed of locomotion are largely unknown. Here, we show that cholinergic interneurons are present in the zebrafsh spinal cord and diferentially control the excitability of distinct classes of motoneurons (slow, intermediate and fast) in a muscarinic dependent manner. Moreover, we reveal that m2-type muscarinic acetylcholine receptors (mAChRs) are present in fast and intermediate motoneurons, but not in the slow motoneurons, and that their activation decreases neuronal fring. We also reveal a strong correlation between the muscarinic receptor confguration on motoneurons and the ability of the animals to locomote at diferent speeds, which might serve as a plasticity mechanism to alter the operational range of the locomotor networks. These unexpected fndings provide new insights into the functional fexibility of motoneurons and how they execute locomotion at diferent speeds. Neural networks in the spinal cord are responsible for the generation and execution of movements1–4. Tese spinal cord networks in zebrafsh are organized in distinct functional microcircuit modules5,6 with defned oper- ational ranges, whose sequential activation increases the speed of locomotion5. Te activity of the spinal neuronal circuits is regulated by a range of neuromodulatory systems7 to adjust the fnal motor output. One such prom- inent neuromodulatory system is the cholinergic system8,9.
    [Show full text]
  • Role of DSCAM in the Development of Neural Control of Movement and Locomotion
    International Journal of Molecular Sciences Review Role of DSCAM in the Development of Neural Control of Movement and Locomotion Maxime Lemieux 1, Louise Thiry 1, Olivier D. Laflamme 1 and Frédéric Bretzner 1,2,* 1 Centre de Recherche du Centre Hospitalier Universitaire de Québec, CHUL-Neurosciences P09800, 2705 boul. Laurier, Québec, QC G1V 4G2, Canada; [email protected] (M.L.); [email protected] (L.T.); olivierdlafl[email protected] (O.D.L.) 2 Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Québec, QC G1V 4G2, Canada * Correspondence: [email protected] Abstract: Locomotion results in an alternance of flexor and extensor muscles between left and right limbs generated by motoneurons that are controlled by the spinal interneuronal circuit. This spinal locomotor circuit is modulated by sensory afferents, which relay proprioceptive and cutaneous inputs that inform the spatial position of limbs in space and potential contacts with our environment respectively, but also by supraspinal descending commands of the brain that allow us to navigate in complex environments, avoid obstacles, chase prey, or flee predators. Although signaling path- ways are important in the establishment and maintenance of motor circuits, the role of DSCAM, a cell adherence molecule associated with Down syndrome, has only recently been investigated in the context of motor control and locomotion in the rodent. DSCAM is known to be involved in lamination and delamination, synaptic targeting, axonal guidance, dendritic and cell tiling, axonal fasciculation and branching, programmed cell death, and synaptogenesis, all of which can impact the establishment of motor circuits during development, but also their maintenance through adulthood.
    [Show full text]
  • Initiating Or Blocking Locomotion in Spinal Cats by Applying Noradrenergic Drugs to Restricted Lumbar Spinal Segments
    The Journal of Neuroscience, November 15, 2000, 20(22):8577–8585 Initiating or Blocking Locomotion in Spinal Cats by Applying Noradrenergic Drugs to Restricted Lumbar Spinal Segments Judith Marcoux and Serge Rossignol Centre de Recherche en Sciences Neurologiques, Faculte´deMe´ decine, Universite´ de Montre´ al, Montre´ al, Que´ bec, Canada H3T 1J4 After an acute low thoracic spinal transection (T13), cats can be jections of clonidine in one or two lumbar segments from L3 to L5 made to walk with the hindlimbs on a treadmill with clonidine, an could also induce locomotion; (3) after an intravenous injection of ␣2-noradrenergic agonist. Because previous studies of neonatal clonidine, locomotion was blocked by microinjections of yohim- rat spinal cord in vitro suggest that the most important lumbar bine in segments L3, L4, or L5 but not if the injection was in L6; segments for rhythmogenesis are L1–L2, we investigated the role (4) locomotion was also blocked in all cases by additional spinal of various lumbar segments in the initiation of walking move- transections at L3 or L4. These results show that it is possible to ments on a treadmill of adult cats spinalized (T13), 5–6 d earlier. initiate walking in the adult spinal cat with a pharmacological The locomotor activities were evaluated from electromyographic stimulation of a restricted number of lumbar segments and also and video recordings. The results show that: (1) localized topical that the integrity of the L3–L4 segments is necessary to sustain application of clonidine in restricted baths over either the L3–L4 the locomotor activity.
    [Show full text]
  • Prominent Role of the Spinal Central Pattern Generator in the Recovery of Locomotion After Partial Spinal Cord Injuries
    3976 • The Journal of Neuroscience, April 9, 2008 • 28(15):3976–3987 Behavioral/Systems/Cognitive Prominent Role of the Spinal Central Pattern Generator in the Recovery of Locomotion after Partial Spinal Cord Injuries Gre´gory Barrie`re, Hugues Leblond, Janyne Provencher, and Serge Rossignol Multidisciplinary Team in Locomotor Rehabilitation of the Canadian Institutes of Health Research and Groupe de Recherche sur le Syste`me Nerveux Central, Canada Research Chair on the Spinal Cord, Department of Physiology, University of Montreal, Montreal, Quebec, Canada H3T 1J4 The re-expression of hindlimb locomotion after complete spinal cord injuries (SCIs) is caused by the presence of a spinal central pattern generator (CPG) for locomotion. After partial SCI, however, the role of this spinal CPG in the recovery of hindlimb locomotion in the cat remains mostly unknown. In the present work, we devised a dual-lesion paradigm to determine its possible contribution after partial SCI. After a partial section of the left thoracic segment T10 or T11, cats gradually recovered voluntary quadrupedal locomotion. Then, a complete transection was performed two to three segments more caudally (T13–L1) several weeks after the first partial lesion. Cats that received intensive treadmill training after the partial lesion expressed bilateral hindlimb locomotion within hours of the complete lesion. Untrained cats however showed asymmetrical hindlimb locomotion with the limb on the side of the partial lesion walking well before the other hindlimb. Thus, the complete spinalization revealed that the spinal CPG underwent plastic changes after the partial lesions, which wereshapedbylocomotortraining.Overtime,withfurthertreadmilltraining,theasymmetrydisappearedandabilaterallocomotionwas reinstated. Therefore, although remnant intact descending pathways must contribute to voluntary goal-oriented locomotion after partial SCI, the recovery and re-expression of the hindlimb locomotor pattern mostly results from intrinsic changes below the lesion in the CPG and afferent inputs.
    [Show full text]
  • Activity-Dependent Spinal Cord Plasticity in Health and Disease
    P1: GDL April 25, 2001 12:32 Annual Reviews AR121-26 Annu. Rev. Neurosci. 2001. 24:807–43 Copyright c 2001 by Annual Reviews. All rights reserved ACTIVITY-DEPENDENT SPINAL CORD PLASTICITY IN HEALTH AND DISEASE Jonathan R Wolpaw and Ann M Tennissen Laboratory of Nervous System Disorders, Wadsworth Center, New York State Department of Health and State University of New York, Albany, New York 12201-0509; e-mail: [email protected], [email protected] Key Words spinal cord injury, rehabilitation, memory, learning, conditioning, behavior ■ Abstract Activity-dependent plasticity occurs in the spinal cord throughout life. Driven by input from the periphery and the brain, this plasticity plays an important role in the acquisition and maintenance of motor skills and in the effects of spinal cord injury and other central nervous system disorders. The responses of the isolated spinal cord to sensory input display sensitization, long-term potentiation, and related phenomena that contribute to chronic pain syndromes; they can also be modified by both classical and operant conditioning protocols. In animals with transected spinal cords and in humans with spinal cord injuries, treadmill training gradually modifies the spinal cord so as to improve performance. These adaptations by the isolated spinal cord are specific to the training regimen and underlie new approaches to restoring function after spinal cord injury. Descending inputs from the brain that occur during normal development, as a re- sult of supraspinal trauma, and during skill acquisition change the spinal cord. The early development of adult spinal cord reflex patterns is driven by descending activity; disor- ders that disrupt descending activity later in life gradually change spinal cord reflexes.
    [Show full text]
  • Proquest Dissertations
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may t>e from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistsict print, colored or poor quality illustrations and photographs, print Meedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will b e noted. Also, if unauthorized copyright material had to t>e removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced t)y sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black arxf white photographic prints are available for any photographs or illustrations appearing in this copy tor an additional charge. Contact UMI directly to order. Bell & Howell Information and Learning 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA UIVLI800-521-0600 THE RECOVERY OF FUNCTION AFTER SPINAL CORD CONTUSION INJURY IN RATS: SKELETAL MUSCLE, NEURAL, AND BEHAVIORAL ADAPTATIONS WITH AND WITHOUT EXERCISE DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Karen J.
    [Show full text]
  • Spinal Locomotion in Cats Following Spinal Cord Injury: a Prospective Study
    animals Article Spinal Locomotion in Cats Following Spinal Cord Injury: A Prospective Study Ângela Martins 1,2,3,4,* ,Cátia Marina Silva 1,2,Débora Gouveia 2,4, Ana Cardoso 2, Tiago Coelho 2, Óscar Gamboa 5, Eduardo Marcelino 1,3 and António Ferreira 3,5 1 Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1300-477 Lisboa, Portugal; [email protected] (C.M.S.); [email protected] (E.M.) 2 Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-583 Setúbal, Portugal; [email protected] (D.G.); [email protected] (A.C.); [email protected] (T.C.) 3 CIISA—Centro Interdisciplinar-Investigação em Saúde Animal, Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal; [email protected] 4 Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1300-477 Lisboa, Portugal 5 Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal; [email protected] * Correspondence: [email protected] Simple Summary: Functional neurorehabilitation promotes neural reorganization by stimulating subjects without deep pain perception, leading to a faster recovery when compared to spontaneous recovery, and achieving fewer compensatory errors, or even deviations to neuropathic or adaptive pain pathways, such as spasticity. The present study demonstrates the importance of intensive and repetition-based functional neurorehabilitation, which is essential for subjects classified as grade 0 according to the modified Frankel scale. Abstract: This article aimed to evaluate the safety and efficacy of intensive neurorehabilitation in Citation: Martins, Â.; Silva, C.M.; paraplegic cats, with no deep pain perception (grade 0 on the modified Frankel scale), with more than Gouveia, D.; Cardoso, A.; Coelho, T.; three months of injury.
    [Show full text]