RING-Dependent Tumor Suppression and G2/M Arrest Induced by the TRC8 Hereditary Kidney Cancer Gene

Total Page:16

File Type:pdf, Size:1020Kb

RING-Dependent Tumor Suppression and G2/M Arrest Induced by the TRC8 Hereditary Kidney Cancer Gene Oncogene (2007) 26, 2263–2271 & 2007 Nature Publishing Group All rights reserved 0950-9232/07 $30.00 www.nature.com/onc ORIGINAL ARTICLE RING-dependent tumor suppression and G2/M arrest induced by the TRC8 hereditary kidney cancer gene A Brauweiler1, KL Lorick2, JP Lee1, YC Tsai2, D Chan1, AM Weissman2, HA Drabkin1 and RM Gemmill1 1Division of Medical Oncology, Department of Medicine, University of Colorado at Denver and Health Sciences Center and University of Colorado Cancer Center, Aurora, CO, USA and 2Lab of Protein Dynamics and Signaling, National Cancer Institute, Fort Detrick, Frederick, MD, USA TRC8/RNF139 and von Hippel–Lindau (VHL) both membrane-associatedE3 ubiquitin (Ub) ligase disrupted encode E3 ubiquitin (Ub) ligases mutated in clear-cell by the translocation (Gemmill et al., 2002). The renal carcinomas (ccRCC). VHL, inactivated in nearly targeting subunit of a secondE3 ligase, encodedby 70% of ccRCCs, is a tumor suppressor encoding the the von Hippel–Lindau gene (VHL), is defective in most targeting subunit for a Ub ligase complex that down- sporadic clear-cell renal cell carcinomas (ccRCC) regulates hypoxia-inducible factor-a. TRC8/RNF139 is a (Kaelin, 2005). The best-known targets for the VHL putative tumor suppressor containing a sterol-sensing E3 ligase are the hypoxia-inducible transcription (HIF) domain and a RING-H2 motif essential for Ub ligase factors, HIF-1 and-2 a . The HIF system represents a activity. Here we report that human kidney cells are major pathway for sensing oxygen levels andis directly growth inhibited by TRC8. Inhibition is manifested by linkedto kidney tumorigenesis. G2/M arrest, decreased DNA synthesis and increased A novel oxygen-sensing mechanism involving lipid apoptosis and is dependent upon the Ub ligase activity of homeostasis was recently described in fission yeast the RING domain. Tumor formation in a nude mouse (Hughes et al., 2005; Todd et al., 2006). The sterol model is inhibited by TRC8 in a RING-dependent manner. regulatory element binding protein (SREBP) homolog Expression of TRC8 represses genes involved in choles- in Schizosaccharomyces pombe, Sre1, is activatedby terol and fatty acid biosynthesis that are transcriptionally oxygen limitation while mutations in Sre1 inhibit cell regulated by the sterol response element binding proteins growth under severe hypoxia (Hughes et al., 2005). In (SREBPs). Expression of activated SREBP-1a partially mammalian cells, the SREBP transcription factors are restores the growth of TRC8-inhibited cells. These data responsible for coordinately inducing cholesterol and suggest that TRC8 modulation of SREBP activity fatty acidbiosynthetic enzymes, such as 3-hydroxy-3- comprises a novel regulatory linkbetween growth control methylglutaryl coenzyme A reductase (HMGCR) (Hor- and the cholesterol/lipid homeostasis pathway. ton et al., 2003; Goldstein et al., 2006). Interestingly, Oncogene (2007) 26, 2263–2271. doi:10.1038/sj.onc.1210017; ccRCCs contain abundant lipid inclusions composed of publishedonline 2 October 2006 newly synthesizedcholesterol esters andother neutral lipids (Clayman et al., 1986; Gebhard et al., 1987), Keywords: ubiquitin ligase; SREBP; clear-cell renal suggesting that deregulation of lipid homeostasis is carcinoma; RING-H2 characteristic for these tumors. OverexpressedSREBPs have been foundin a variety of tumor types, including prostate (Ettinger et al., 2004), breast (Martel et al., 2006) andglioblastoma (Ma et al., 2005), andwe have identified similar changes in ccRCCs (Lee et al., Introduction submitted). Only 60–70% of ccRCCs have direct defects in the The TRC8/RNF139 gene was identified in a unique VHL pathway andsearches for mutations in other family with the constitutional translocation, components of the VHL complex have proven negative t(3;8)(3p14.2;q24.1), andhereditary renal andthyroid (Clifford et al., 2001). VHL loss alone appears cancer (Cohen et al., 1979; Li et al., 1993; Gemmill et al., insufficient for tumor development, suggesting that 1998). TRC8 encodes an endoplasmic reticulum (ER) alterations in additional genes and/or regulatory path- ways are necessary (Mandriota et al., 2002). One Correspondence: Professor RM Gemmill, Division of Medical candidate is TRC8 (Gemmill et al., 1998, 2002, 2005), Oncology, University of Colorado at Denver and Health Sciences a 60 kDa ER protein with 10 predicted transmembrane Center andUniversity of ColoradoCancer Center, 12801 E. 17th segments anda sterol-sensing domain(Gemmill et al., Avenue, Mail Stop 8117, PO Box 6511, Aurora 80045-0511, CO, USA. E-mail: [email protected] 1998), similar to those foundin SCAP andHMGCR Received19 June 2006; revised16 August 2006; accepted18 August 2006; that confer sterol-sensitivity to the SREBP/lipidhomeo- publishedonline 2 October 2006 static pathway (Goldstein et al., 2006). We have recently RING-dependent tumor suppression by TRC8 A Brauweiler et al 2264 discovered that TRC8 stability is sterol-regulated (Lee ectopic TRC8 expression (Figure 1a). Co-expression of et al., submitted). TRC8 also contains a RING-H2 enhancedgreen fluorescent protein (EGFP) indicated domain in the C-terminus that catalyses in vitro transfection efficiency. Ad-TRC8 infection (multiplicity ubiquitylation reactions (Lorick et al., 1999). In of infection (MOI) of 50, >90% EGFP positive) Drosophila, DTrc8 is a potent growth suppressor and resultedin a five-foldreductionin cell proliferation appears to function in conjunction with, or parallel to, after 48 h comparedto cells infectedwith Ad-EGFP DVhl (Gemmill et al., 2002). Here we demonstrate that alone (Figure 1b). Flow cytometry (SKRC-09 is shown TRC8 is a potent growth suppressor in mammalian in Figure 1c) revealeda large increase in the sub-G1 cells, inducing G2/M arrest, decreased DNA synthesis apoptotic fraction in Ad-TRC8-infected cells compared andincreasedapoptosis. These in vitro effects, along to controls (Figure 1d). These results support a tumor- with in vivo inhibition of tumorigenicity, are dependent suppressive function for TRC8 through inhibition of cell upon the Ub ligase activity of the RING domain. TRC8 proliferation and induction of cell death. inhibits the expression of SREBP-regulatedgenes and To investigate these effects further, we utilizedhuman ectopic expression of activatednuclear SREBP embryonic kidney (HEK293) FlpIn TRex cells (293FI) (nSREBP) partially restores growth to TRC8-inhibited in which TRC8 was placedunder the control of a cells. Our results suggest that TRC8 is a tumor tetracycline-inducible promoter (Figure 2a). Consistent suppressor implicatedin a novel regulatory relationship with the adenovirus results, TRC8 suppressed the linking the cholesterol/lipidbiosynthetic pathway with proliferation of 293FI cells comparedto doxycycline cellular growth control. (dox)-treated control cells (Figure 2b). Flow cytometry demonstrated that TRC8 induced apoptosis and in- creasedcell populations with 4 N DNA content, consistent with G2/M arrest (Figure 2c). Bromodeox- Results yuridine (BrdU) incorporation, indicative of DNA synthesis, was suppressedby TRC8 (Figure 2d).These TRC8 inhibits proliferation of transformed kidney cells data indicate that in 293FI cells, TRC8 blocks Adenovirus infection of three ccRCC cell lines (SKRC- proliferation by inhibiting DNA synthesis, increasing 02, -09 and-17) was usedto assess short-term effects of apoptosis andinducingcell-cycle arrest. Figure 1 TRC8 inhibits growth of RCC cell lines in vitro.(a) Adenoviral constructs expressing EGFP alone (EGFP) or EGFP with TRC8 were introduced into three ccRCC cell lines (SKRC-02, -09 and -17) using an MOI of 50. Microscopic examination 24 h post- infection confirmed>90% expressedEGFP (not shown). Lysates (48 h) were analysedby Western blot for TRC8 expression using anti-HA antibody Y-11. Tubulin provided a loading control. (b) Cells were platedin triplicate andinfectedwith control or TRC8- encoding adenoviruses (MOI ¼ 50). After 48 h, total viable cells were countedusing trypan-blue exclusion. Cell numbers were normalizedto the EGFP controls. ( c and d) Parallel cultures were analysedby flow cytometry 48 h post-infection. ( c) Cell cycle profile of TRC8-Ad-infected SKRC-09 cells compared to EGFP-Ad-infected controls. (d) Quantitation of apoptotic sub-G1 population (percent of total). Oncogene RING-dependent tumor suppression by TRC8 A Brauweiler et al 2265 et al., 2003). PurifiedGST fusion proteins (Figure 3c) were assayedin reactions containing 32P-labelledUb, E1, ATP andUbe2d2(formerly UbcH5b). Reaction products were analysed by sodium dodecyl sulfate– polyacrylamide gel electrophoresis (SDS-PAGE) and autoradiography (Figure 3b). Wild-type GST-TRC8 generatedprominent ubiquitylation productscontaining Ub multimers up to 3 andsmall amounts of higher molecular weight adducts (lane 2). The positive control GST-AO7 (lane 7), a RING domain-containing protein with well-defined Ub ligase activity, yielded abundant higher molecular weight products (Lorick et al., 1999). In contrast, mutation of the Zn2 þ -coordinating Cys residues in the CAIC and CPMC mutations resulted in nearly total ablation of ubiquitylation activity (lanes 3 and 6). Thus, as expected, direct disruption of the Zn2 þ coordinating sites eliminated ubiquitylation activity for the TRC8 RING domain. The remaining mutations affected amino acids outside the Zn2 þ binding sites and showeddifferential effects on ubiquitylation. LRK (lane 5) lost all activity while SAR (lane 4) retained about 30% of wild-type activity. Growth suppression mediated
Recommended publications
  • Glioblastomas with Copy Number Gains in EGFR and RNF139 Show Increased Expressions of Carbonic Anhydrase Genes Transformed by ENO1
    BBA Clinical 5 (2016) 1–15 Contents lists available at ScienceDirect BBA Clinical journal homepage: www.elsevier.com/locate/bbaclin Glioblastomas with copy number gains in EGFR and RNF139 show increased expressions of carbonic anhydrase genes transformed by ENO1 Marie E. Beckner a,⁎,2, Ian F. Pollack b,c,MaryL.Nordbergd,e, Ronald L. Hamilton f a Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, RM. 3-438, 1501 Kings Highway, Shreveport, LA 71130, United States 1 b Department of Neurological Surgery, University of Pittsburgh School of Medicine, United States c 4th Floor, Children's Hospital of Pittsburgh, UPMC, 4129 Penn Avenue, Pittsburgh, PA 15224, United States d Department of Medicine, Louisiana State University Health, 1501 Kings Highway, Shreveport, LA 71130, United States e The Delta Pathology Group, One Saint Mary Place, Shreveport, LA 71101, United States f Department of Pathology, Division of Neuropathology, S724.1, Scaife Hall, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15261, United States article info abstract Article history: Background: Prominence of glycolysis in glioblastomas may be non-specific or a feature of oncogene-related Received 12 August 2015 subgroups (i.e. amplified EGFR, etc.). Relationships between amplified oncogenes and expressions of metabolic Received in revised form 17 October 2015 genes associated with glycolysis, directly or indirectly via pH, were therefore investigated. Accepted 2 November 2015 Methods: Using multiplex ligation-dependent probe amplification, copy numbers (CN) of 78 oncogenes were Available online 10 November 2015 quantified in 24 glioblastomas. Related expressions of metabolic genes encoding lactate dehydrogenases (LDHA, LDHC), carbonic anhydrases (CA3, CA12), monocarboxylate transporters (SLC16A3 or MCT4, SLC16A4 or Keywords: MCT5), ATP citrate lyase (ACLY), glycogen synthase1 (GYS1), hypoxia inducible factor-1A (HIF1A), and enolase1 Amplified oncogenes Glycolysis (ENO1) were determined in 22 by RT-qPCR.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Article Reference
    Article The tumor suppressor gene TRC8/RNF139 is disrupted by a constitutional balanced translocation t(8;22)(q24.13;q11.21) in a young girl with dysgerminoma GIMELLI, Stefania, et al. Abstract BACKGROUND: RNF139/TRC8 is a potential tumor suppressor gene with similarity to PTCH, a tumor suppressor implicated in basal cell carcinomas and glioblastomas. TRC8 has the potential to act in a novel regulatory relationship linking the cholesterol/lipid biosynthetic pathway with cellular growth control and has been identified in families with hereditary renal (RCC) and thyroid cancers. Haploinsufficiency of TRC8 may facilitate development of clear cell-RCC in association with VHL mutations, and may increase risk for other tumor types. We report a paternally inherited balanced translocation t(8;22) in a proposita with dysgerminoma. METHODS: The translocation was characterized by FISH and the breakpoints cloned, sequenced, and compared. DNA isolated from normal and tumor cells was checked for abnormalities by array-CGH. Expression of genes TRC8 and TSN was tested both on dysgerminoma and in the proposita and her father. RESULTS: The breakpoints of the translocation are located within the LCR-B low copy repeat on chromosome 22q11.21, containing the palindromic AT-rich repeat (PATRR) involved in recurrent and non-recurrent [...] Reference GIMELLI, Stefania, et al. The tumor suppressor gene TRC8/RNF139 is disrupted by a constitutional balanced translocation t(8;22)(q24.13;q11.21) in a young girl with dysgerminoma. Molecular Cancer, 2009, vol. 8, p. 52 DOI : 10.1186/1476-4598-8-52 PMID : 19642973 Available at: http://archive-ouverte.unige.ch/unige:5661 Disclaimer: layout of this document may differ from the published version.
    [Show full text]
  • Protein Quality Control in the ER: Balancing the Ubiquitin Chequebook Coverdesign By: Jasper Claessen
    Protein quality control in the ER: balancing the ubiquitin chequebook Coverdesign by: Jasper Claessen Copyright © 2012 Jasper Claessen. No part of this thesis may be reproduced, stored, or transmitted in any form or by any means, without permission of the au- thor. The research described in this thesis was conducted at the Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, USA, under the supervision of Prof. Dr. H.L. Ploegh. Printed by Gildeprint B.V., Enschede, the Netherlands ISBN: 978-94-6108-316-6 Protein quality control in the ER: balancing the ubiquitin chequebook Kwaliteits-kontrole voor eiwitten in het ER: het opmaken van de ubiquitine balans (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof.dr. G.J. van der Zwaan, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op donderdag 5 juli des ochtends te 10.30 uur door Jasper Henri Laurens Claessen geboren op 21 mei 1984 te Hardenberg Promotiecommissie Promotoren: Prof. Dr. H.L. Ploegh Prof. Dr. E.J.H.J. Wiertz Overige leden: Prof. Dr. J. Klumperman Prof. Dr. I. Braakman Prof. Dr. J. Boonstra Prof. Dr. A. Heck Dr. M. Maurice Dr. F. Reggiori Table of contents Chapter 1: General Introduction Page 9 Chapter 2: The Transmembrane Domain of a Page 41 Tail-anchored Protein Determines Its Degradative Fate through Dislocation from the Endoplasmic Reticulum Chapter 3: Enzymatic Blockade of the Ubiquitin-Proteasome
    [Show full text]
  • High-Resolution Acgh and Expression Profiling Identifies a Novel Genomic
    Open Access Research2007ChinetVolume al. 8, Issue 10, Article R215 High-resolution aCGH and expression profiling identifies a novel genomic subtype of ER negative breast cancer Suet F Chin¤*, Andrew E Teschendorff¤*†, John C Marioni¤†§, Yanzhong Wang*, Nuno L Barbosa-Morais†, Natalie P Thorne†§, Jose L Costa#, Sarah E Pinder¥, Mark A van de Wiel**††, Andrew R Green¶, Ian O Ellis¶, Peggy L Porter‡‡, Simon Tavar醧, James D Brenton‡, Bauke Ylstra# and Carlos Caldas*¥ Addresses: *Breast Cancer Functional Genomics, Cancer Research UK Cambridge Research Institute and Department of Oncology University of Cambridge, Li Ka-Shing Centre, Robinson Way, Cambridge CB2 0RE, UK. †Computational Biology Group, Cancer Research UK Cambridge Research Institute and Department of Oncology University of Cambridge, Li Ka-Shing Centre, Robinson Way, Cambridge CB2 0RE, UK. ‡Functional Genomics of Drug Resistance, Cancer Research UK Cambridge Research Institute and Department of Oncology University of Cambridge, Li Ka-Shing Centre, Robinson Way, Cambridge CB2 0RE, UK. §Computational Biology Group, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK. ¶Histopathology, Nottingham City Hospital NHS Trust and University of Nottingham, Nottingham NG5 1PB, UK. ¥Cambridge Breast Unit, Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, UK. #Department of Pathology, VU University Medical Center, PO Box 7057, 1007MB Amsterdam, The Netherlands. **Department of Biostatistics, VU University Medical Center, PO Box 7057, 1007MB Amsterdam, The Netherlands. ††Department of Mathematics, Vrije Universiteit, Amsterdam, Netherlands. ‡‡Division of Human Biology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
    [Show full text]
  • UC Riverside UC Riverside Previously Published Works
    UC Riverside UC Riverside Previously Published Works Title Identifying potential cancer driver genes by genomic data integration. Permalink https://escholarship.org/uc/item/9m3339bm Journal Scientific reports, 3(1) ISSN 2045-2322 Authors Chen, Yong Hao, Jingjing Jiang, Wei et al. Publication Date 2013-12-18 DOI 10.1038/srep03538 Peer reviewed eScholarship.org Powered by the California Digital Library University of California OPEN Identifying potential cancer driver genes SUBJECT AREAS: by genomic data integration CANCER GENOMICS Yong Chen1,2, Jingjing Hao2, Wei Jiang2, Tong He3, Xuegong Zhang2, Tao Jiang2,4 & Rui Jiang2 COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 1National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, 2MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST/Department of Automation, Tsinghua University, Beijing 3 Received 100084, China, School of Applied Mathematics, Central University of Finance and Economics, Beijing 102206, China, 4 17 September 2013 Department of Computer Science and Engineering, University of California, Riverside, CA 92521, USA. Accepted 2 December 2013 Cancer is a genomic disease associated with a plethora of gene mutations resulting in a loss of control over vital cellular functions. Among these mutated genes, driver genes are defined as being causally linked to Published oncogenesis, while passenger genes are thought to be irrelevant for cancer development. With increasing 18 December 2013 numbers of large-scale genomic datasets available, integrating these genomic data to identify driver genes from aberration regions of cancer genomes becomes an important goal of cancer genome analysis and investigations into mechanisms responsible for cancer development. A computational method, MAXDRIVER, is proposed here to identify potential driver genes on the basis of copy number aberration Correspondence and (CNA) regions of cancer genomes, by integrating publicly available human genomic data.
    [Show full text]
  • Inbred Mouse Strains Expression in Primary Immunocytes Across
    Downloaded from http://www.jimmunol.org/ by guest on September 28, 2021 Daphne is online at: average * The Journal of Immunology published online 29 September 2014 from submission to initial decision 4 weeks from acceptance to publication Sara Mostafavi, Adriana Ortiz-Lopez, Molly A. Bogue, Kimie Hattori, Cristina Pop, Daphne Koller, Diane Mathis, Christophe Benoist, The Immunological Genome Consortium, David A. Blair, Michael L. Dustin, Susan A. Shinton, Richard R. Hardy, Tal Shay, Aviv Regev, Nadia Cohen, Patrick Brennan, Michael Brenner, Francis Kim, Tata Nageswara Rao, Amy Wagers, Tracy Heng, Jeffrey Ericson, Katherine Rothamel, Adriana Ortiz-Lopez, Diane Mathis, Christophe Benoist, Taras Kreslavsky, Anne Fletcher, Kutlu Elpek, Angelique Bellemare-Pelletier, Deepali Malhotra, Shannon Turley, Jennifer Miller, Brian Brown, Miriam Merad, Emmanuel L. Gautier, Claudia Jakubzick, Gwendalyn J. Randolph, Paul Monach, Adam J. Best, Jamie Knell, Ananda Goldrath, Vladimir Jojic, J Immunol http://www.jimmunol.org/content/early/2014/09/28/jimmun ol.1401280 Koller, David Laidlaw, Jim Collins, Roi Gazit, Derrick J. Rossi, Nidhi Malhotra, Katelyn Sylvia, Joonsoo Kang, Natalie A. Bezman, Joseph C. Sun, Gundula Min-Oo, Charlie C. Kim and Lewis L. Lanier Variation and Genetic Control of Gene Expression in Primary Immunocytes across Inbred Mouse Strains Submit online. Every submission reviewed by practicing scientists ? is published twice each month by http://jimmunol.org/subscription http://www.jimmunol.org/content/suppl/2014/09/28/jimmunol.140128 0.DCSupplemental Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2014 by The American Association of Immunologists, Inc.
    [Show full text]
  • Table S1. 103 Ferroptosis-Related Genes Retrieved from the Genecards
    Table S1. 103 ferroptosis-related genes retrieved from the GeneCards. Gene Symbol Description Category GPX4 Glutathione Peroxidase 4 Protein Coding AIFM2 Apoptosis Inducing Factor Mitochondria Associated 2 Protein Coding TP53 Tumor Protein P53 Protein Coding ACSL4 Acyl-CoA Synthetase Long Chain Family Member 4 Protein Coding SLC7A11 Solute Carrier Family 7 Member 11 Protein Coding VDAC2 Voltage Dependent Anion Channel 2 Protein Coding VDAC3 Voltage Dependent Anion Channel 3 Protein Coding ATG5 Autophagy Related 5 Protein Coding ATG7 Autophagy Related 7 Protein Coding NCOA4 Nuclear Receptor Coactivator 4 Protein Coding HMOX1 Heme Oxygenase 1 Protein Coding SLC3A2 Solute Carrier Family 3 Member 2 Protein Coding ALOX15 Arachidonate 15-Lipoxygenase Protein Coding BECN1 Beclin 1 Protein Coding PRKAA1 Protein Kinase AMP-Activated Catalytic Subunit Alpha 1 Protein Coding SAT1 Spermidine/Spermine N1-Acetyltransferase 1 Protein Coding NF2 Neurofibromin 2 Protein Coding YAP1 Yes1 Associated Transcriptional Regulator Protein Coding FTH1 Ferritin Heavy Chain 1 Protein Coding TF Transferrin Protein Coding TFRC Transferrin Receptor Protein Coding FTL Ferritin Light Chain Protein Coding CYBB Cytochrome B-245 Beta Chain Protein Coding GSS Glutathione Synthetase Protein Coding CP Ceruloplasmin Protein Coding PRNP Prion Protein Protein Coding SLC11A2 Solute Carrier Family 11 Member 2 Protein Coding SLC40A1 Solute Carrier Family 40 Member 1 Protein Coding STEAP3 STEAP3 Metalloreductase Protein Coding ACSL1 Acyl-CoA Synthetase Long Chain Family Member 1 Protein
    [Show full text]
  • Interaction Mapping of Endoplasmic Reticulum Ubiquitin Ligases Identifies Modulators of Innate Immune Signalling
    RESEARCH ARTICLE Interaction mapping of endoplasmic reticulum ubiquitin ligases identifies modulators of innate immune signalling Emma J Fenech1†, Federica Lari1, Philip D Charles2, Roman Fischer2, Marie Lae´ titia-The´ ze´ nas2, Katrin Bagola1‡, Adrienne W Paton3, James C Paton3, Mads Gyrd-Hansen1, Benedikt M Kessler2,4, John C Christianson1,5,6* 1Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; 2TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of Oxford, Oxford, United Kingdom; 3Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia; 4Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; 5Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Botnar Research Centre, Oxford, United Kingdom; 6Oxford Centre for Translational Myeloma Research, University of Oxford, Botnar Research Centre, Oxford, United Kingdom *For correspondence: [email protected]. Abstract Ubiquitin ligases (E3s) embedded in the endoplasmic reticulum (ER) membrane uk regulate essential cellular activities including protein quality control, calcium flux, and sterol Present address: †Department homeostasis. At least 25 different, transmembrane domain (TMD)-containing E3s are predicted to of Molecular Genetics, be ER-localised, but for most their organisation and cellular
    [Show full text]
  • Constitutional T (8; 22)(Q24; Q11. 2) That Mimics the Variant Burkitt-Type Translocation in Philadelphia Chromosome-Positive Chronic Myeloid Leukemia
    Kobe University Repository : Kernel Constitutional t(8;22)(q24;q11.2) that mimics the variant Burkitt-type タイトル translocation in Philadelphia chromosome-positive chronic myeloid Title leukemia 著者 Kawamoto, Shinichiro / Yamamoto, Katsuya / Toyoda, Masanori / Author(s) Yakushijin, Kimikazu / Matsuoka, Hiroshi / Minami, Hironobu 掲載誌・巻号・ページ International Journal of Hematology,105(2):226-229 Citation 刊行日 2017-02 Issue date 資源タイプ Journal Article / 学術雑誌論文 Resource Type 版区分 author Resource Version 権利 © The Japanese Society of Hematology 2016. The original publication Rights is available at www.springerlink.com DOI 10.1007/s12185-016-2100-5 JaLCDOI URL http://www.lib.kobe-u.ac.jp/handle_kernel/90005660 PDF issue: 2021-10-07 Title: Constitutional t(8;22)(q24;q11.2) that mimics the variant Burkitt-type translocation in Philadelphia chromosome-positive chronic myeloid leukemia Author names; Shinichiro Kawamoto, Katsuya Yamamoto, Masanori Toyoda, Kimikazu Yakushijin, Hiroshi Matsuoka, Hironobu Minami Running title: CML in CP with constitutional translocation t(8;22) Type of manuscript:Case report Department of Medical Oncology/Hematology, Kobe University Hospital, Kobe, Japan Corresponding author: Shinichiro Kawamoto, M.D., PhD., Address: Chuoh-ku Kusunokicho 7-5-2, Kobe City 650-0017, Hyogo, Japan TEL:+81-78-382-5111 FAX:+81-78-382-5821 E-mail: [email protected] Text word count: 1408 Number of figures: 2 1 Abstract Constitutional translocations that coincide with t(9;22)(q34;q11.2) might result in unnecessary treatments to chronic myeloid leukemia (CML) patients, because the diagnosis of CML with additional chromosomal abnormalities indicates an accelerated phase (AP) according to the standard criteria.
    [Show full text]
  • Sheet1 Page 1 Gene Symbol Gene Description Entrez Gene ID
    Sheet1 RefSeq ID ProbeSets Gene Symbol Gene Description Entrez Gene ID Sequence annotation Seed matches location(s) Ago-2 binding specific enrichment (replicate 1) Ago-2 binding specific enrichment (replicate 2) OE lysate log2 fold change (replicate 1) OE lysate log2 fold change (replicate 2) Probability Pulled down in Karginov? NM_005646 202813_at TARBP1 Homo sapiens TAR (HIV-1) RNA binding protein 1 (TARBP1), mRNA. 6894 TR(1..5130)CDS(1..4866) 4868..4874,5006..5013 3.73 2.53 -1.54 -0.44 1 Yes NM_001665 203175_at RHOG Homo sapiens ras homolog gene family, member G (rho G) (RHOG), mRNA. 391 TR(1..1332)CDS(159..734) 810..817,782..788,790..796,873..879 3.56 2.78 -1.62 -1 1 Yes NM_002742 205880_at PRKD1 Homo sapiens protein kinase D1 (PRKD1), mRNA. 5587 TR(1..3679)CDS(182..2920) 3538..3544,3202..3208 4.15 1.83 -2.55 -0.42 1 Yes NM_003068 213139_at SNAI2 Homo sapiens snail homolog 2 (Drosophila) (SNAI2), mRNA. 6591 TR(1..2101)CDS(165..971) 1410..1417,1814..1820,1610..1616 3.5 2.79 -1.38 -0.31 1 Yes NM_006270 212647_at RRAS Homo sapiens related RAS viral (r-ras) oncogene homolog (RRAS), mRNA. 6237 TR(1..1013)CDS(46..702) 871..877 3.82 2.27 -1.54 -0.55 1 Yes NM_025188 219923_at,242056_at TRIM45 Homo sapiens tripartite motif-containing 45 (TRIM45), mRNA. 80263 TR(1..3584)CDS(589..2331) 3408..3414,2437..2444,3425..3431,2781..2787 3.87 1.89 -0.62 -0.09 1 Yes NM_024684 221600_s_at,221599_at C11orf67 Homo sapiens chromosome 11 open reading frame 67 (C11orf67), mRNA.
    [Show full text]
  • Molecular Cancer Biomed Central
    Molecular Cancer BioMed Central Research Open Access The tumor suppressor gene TRC8/RNF139 is disrupted by a constitutional balanced translocation t(8;22)(q24.13;q11.21) in a young girl with dysgerminoma Stefania Gimelli1,2, Silvana Beri3, Harry A Drabkin4, Claudio Gambini5, Andrea Gregorio5, Patrizia Fiorio6, Orsetta Zuffardi1,7, Robert M Gemmill4, Roberto Giorda3 and Giorgio Gimelli*6 Address: 1Biologia Generale e Genetica Medica, Università di Pavia, 27100 Pavia, Italy, 2Department of Genetic Medicine and Development, University of Geneva Medical School, and University Hospitals, 1211 Geneva, Switzerland, 3IRCCS E. Medea, 23842 Bosisio Parini (LC), Italy, 4Division of Hematology/Oncology, Dept of Medicine and Hollings Cancer Center, 96 Jonathan Lucas St., Medical University of S. Carolina, Charleston, SC 29425, USA, 5U.O di Istologia ed Anatomia Patologica, Istituto G. Gaslini, 16147 Genova, Italy, 6Laboratorio di Citogenetica, Istituto G. Gaslini, 16147 Genova, Italy and 7Fondazione IRCCS Policlinico San Matteo, Pavia 27100, Italy Email: Stefania Gimelli - [email protected]; Silvana Beri - [email protected]; Harry A Drabkin - [email protected]; Claudio Gambini - [email protected]; Andrea Gregorio - [email protected]; Patrizia Fiorio - [email protected]; Orsetta Zuffardi - [email protected]; Robert M Gemmill - [email protected]; Roberto Giorda - [email protected]; Giorgio Gimelli* - [email protected] * Corresponding author Published: 30 July 2009 Received: 8 June 2009 Accepted: 30 July 2009 Molecular Cancer 2009, 8:52 doi:10.1186/1476-4598-8-52 This article is available from: http://www.molecular-cancer.com/content/8/1/52 © 2009 Gimelli et al; licensee BioMed Central Ltd.
    [Show full text]