M.B., B.S., F.R.C.S. P. J. WITHEROW* M.B., Ch.B., F.R.C.S

Total Page:16

File Type:pdf, Size:1020Kb

M.B., B.S., F.R.C.S. P. J. WITHEROW* M.B., Ch.B., F.R.C.S Postgrad Med J: first published as 10.1136/pgmj.53.622.464 on 1 August 1977. Downloaded from Postgraduate Medical Journal (August 1977) 53, 464-470. Perthes' disease and multiple epiphyseal dysplasia H. E. D. GRIFFITHS P. J. WITHEROW* M.B., B.S., F.R.C.S. M.B., Ch.B., F.R.C.S. Southmead Hospital, Bristol and *Royal Hospitalfor Sick Children, Bristol Summary different modes of inheritance. The first description Five atypical cases were observed amongst ninety of the condition was that of Fairbank (1947), who children with Perthes' disease, ten of whom had reported twenty cases with a slight male preponder- bilateral hip joint involvement. All five were boys, ance. He particularly noted the epiphyseal changes, four being under 4 years of age. Four had bilateral hip reduction in overall height, platyspondyly, stubby joint disease, four presented with hip pain, three fingers and retardation of bone age. Although at that showing some degree of retardation of bone growth. time Fairbank felt that the condition was not In one case the hip disorder was familial, and in four heritable, later reports showed that both autosomal there were bony abnormalities elsewhere. dominant and recessive inheritance occurs. Despite the absence of the classic signs of multiple Other forms of epiphyseal involvement have been epiphyseal dysplasia, a mild form of this condition is a reported. Waugh (1952) described three sisters with Protected by copyright. possible alternative diagnosis for these children. abnormal hips amongst a sibship of eight, but none Racial and familial differences are known in the was stated to have had hip joint symptoms. In prevalence of Perthes' disease which itself may addition, the affected members of this family were represent a dysplasia. The pathogenesis of Perthes' dwarfed and had short digits. Maudsley (1955) disease is still uncertain, although some abnormality reported fourteen cases in three families, those of the blood supply to the proximal femoral epiphysis affected having reduced height and involvement of is postulated. That such a vascular defect may be the epiphyses of the hips, ankles, knees and spine engrafted on to multiple epiphyseal dysplasia is in decreasing order of frequency. Other families possible, with subsequent joint degeneration which with abnormalities of the knee and ankle have been may come to resemble Perthes' disease either clinically described, as also has an association with osteo- or radiologically. A plea is made for the closer study chondritis dissecans (Odman, 1959). Families have of young children presenting with what may seem to be also been reported where the hip alone has been atypical Perthes' disease. affected (Elsbach, 1959). http://pmj.bmj.com/ This last group is similar to or identical with the THE study of Perthes' disease presents problems of cases of 'familial Perthes' disease' described in the aetiology, pathology and diagnosis. The clinical 1940s. In these patients transmission appeared to presentation varies and the outcome is uncertain. be as an autosomal dominant traced by Stephens and Some patients, particularly those afflicted early in Kerby (1946) through five generations. The sex life and those with no symptoms, appear to have a incidence is equal, contrasting with the usual five better prognosis. The authors suspected that in males to one female amongst patients with non- some patients this more favourable outcome might familial Perthes' disease. The proportion of bilateral on September 23, 2021 by guest. be due to their condition being in fact multiple cases was close to 50O%, which again differs strikingly epiphyseal dysplasia rather than true Perthes' from the 10% of bilateral cases usually found disease. amongst most series of patients with Perthes' In this series of ninety children with Perthes' disease. disease, ten were affected bilaterally. Of these patients, one with unilateral and four with bilateral Case reports disease had atypical features including, in some, Case I multiple epiphyseal abnormalities which did not A boy aged 4 years presented with a limp (Fig. 1). seem to fit neatly into any consistent diagnostic Little was thought of this until his father waddled pattern. in-overweight and complaining of hip pain. The Multiple epiphyseal dysplasia is a term covering boy's progress over the next 3 years was unremark- various forms of epiphyseal involvement and having able from the Perthes' disease viewpoint, but Perthes' disease and epiphyseal dysplasia 465 Postgrad Med J: first published as 10.1136/pgmj.53.622.464 on 1 August 1977. Downloaded from within 2 years of onset he began to complain of below the 3rd centile. There was no sign of hypo- pain in his knee, and radiographs showed a defect thyroidism. in his distal femoral epiphysis strongly resembling Four of these five patients presented with pain in osteochondritis dissecans. His father's hip radio- the hip. If these are, in fact, minor manifestations of graphs (Fig. 2) showed shortened femoral necks, multiple epiphyseal dysplasia it is interesting to flattened heads and externally rotated hips. Quite by speculate on the reason for the development of hip accident, the authors discovered that his cousin pain early in childhood. Is there really a common also had Perthes' disease, this girl being the daughter pathogenesis between this and Perthes' disease? of the paternal grandfather's daughter (Fig. 3). In addition to the femoral epiphyseal changes there were abnormalities in the epiphyses of her feet, but Discussion the hands were normal. This girl's mother's hips were The postulated pathology of Perthes' disease and radiologically dysplastic. More recently another the relevance of Trueta's work (1957) in the blood cousin has presented with osteochondritis dissecans supply of the femoral head is well known. of the knee. Paediatric and radiological colleagues Anatomical variations in vasculature of the proximal of the authors have examined these two families femoral epiphysis may account for the appearance and would rather regard their condition as familial of Perthes' disease in certain subjects and such Perthes' disease than as multiple epiphyseal dys- abnormalities or variations may have a heritable plasia. background. There is certainly racial variation in prevalence. Fisher (1972) found that black races Case 2 are less often afflicted than white, although it has The hips of a 3-year-old boy (Fig. 4) showed been said that Perthes' disease is common amongst delay in the appearance of the capital femoral Nigerians. Kemp (1973) has suggested that super- epiphyseal centres. When they did appear at the ficially placed blood vessels supplying the femoral Protected by copyright. age of 7 years they were small and fragmented head may be obliterated by a rise in intra-articular (Fig. 5). He also had minor changes in the proximal pressure such as may occur in the effusion of a non- tibial epiphyses (Fig. 6). specific synovitis of the hip. His views are based upon experimental work with dogs and it is perhaps Case 3 significant that he found some breeds susceptible to This 11-year-old boy presented with an irritable joint changes, e.g. miniature poodles, whilst beagles left hip, and radiography displayed bilateral Perthes'- and Jack Russell terriers were not. In Perthes' disease like changes (Fig. 7). His right hip was symptomless. there may be delayed incorporation of retinacular His height was on the 25th centile and there was vessels into the substance of the femoral neck. It is reversal of the normal carrying angle of the elbow possible that avascularity could be superimposed and he had mild genu varum. Of his two brothers, upon epiphyseal dysplasia in some cases and, indeed, one whose height is on the 50th centile has normal there may be predisposing factors in the relationship of the retinacular vessels to the femoral head and elbows but the other whose height lies on the 10th http://pmj.bmj.com/ centile has similar varus elbows but normal hip neck. radiographs. The available pathological studies on Perthes' disease show frequent fissuring and fibrillation of the articular cartilage often associated with subsidence Case 4 of the subchondral bone (Mizuno et al., 1966). At the age of 30 months this boy appeared with But such changes may well be secondary. It is con- radiological changes in his hips and minimal ceivable that structural failure of the epiphyseal symptoms (Figs 8 and 9). He also had abnormalities cartilage could occur in the hip joint in minor on September 23, 2021 by guest. in the foot, with a dome-shaped talus (Fig. 10), some degrees in epiphyseal dysplasia, although the report metatarsal epiphyseal abnormalities (Fig. 11) and of Hunt et al. (1967) described thickening of the minor irregularity of the distal tibial epiphysis. His articular cartilage. Their material was obtained toes were stubby, but his overall height and weight following through-hip amputation for osteosarcoma were normal. in a child with epiphyseal dysplasia. They described, in addition to the thickened articular cartilage, Case 5 disarray of epiphyseal ossification with bars of This child had an abdominal radiograph after hyaline cartilage extending into the diaphysis. In the swallowing a pin. Abnormal femoral epiphysis were epiphyseal cartilage itself vertical clefts, focal noted at the age of 3 years but he had no hip symp- calcified deposits and irregular matrix staining were toms either then or 1 year later. His family history also noted. was unrevealing, but his height and weight lay well A further feature common to Perthes' disease and 466 H. E. D. Griffiths and P. J. Witherow Postgrad Med J: first published as 10.1136/pgmj.53.622.464 on 1 August 1977. Downloaded from ---- FIG. 1. Perthes'-like changes in the right hip joint at age of 4 years. Protected by copyright. http://pmj.bmj.com/ :~~~~~~~~~~~~~~~~~~~~... 'N:c: $~~~~~~~~~~~~~~~~~~~~~h Di' iilS'°'d. N ~~~~~~~~'i on September 23, 2021 by guest.
Recommended publications
  • (AMIC) Compared to Microfractures for Chondral Defects of the Talar Shoulder: a Five-Year Follow-Up Prospective Cohort Study
    life Communication Autologous Matrix Induced Chondrogenesis (AMIC) Compared to Microfractures for Chondral Defects of the Talar Shoulder: A Five-Year Follow-Up Prospective Cohort Study Filippo Migliorini 1 , Jörg Eschweiler 1, Nicola Maffulli 2,3,4,5,* , Hanno Schenker 1, Arne Driessen 1 , Björn Rath 1,6 and Markus Tingart 1 1 Department of Orthopedics and Trauma Surgery, University Clinic Aachen, RWTH Aachen University Clinic, 52064 Aachen, Germany; [email protected] (F.M.); [email protected] (J.E.); [email protected] (H.S.); [email protected] (A.D.); [email protected] (B.R.); [email protected] (M.T.) 2 School of Pharmacy and Bioengineering, Keele University School of Medicine, Staffordshire ST4 7QB, UK 3 Barts and the London School of Medicine and Dentistry, London E1 2AD, UK 4 Centre for Sports and Exercise Medicine, Queen Mary University of London, Mile End Hospital, London E1 4DG, UK 5 Department of Orthopedics, Klinikum Wels-Grieskirchen, A-4600 Wels, Austria 6 Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy * Correspondence: [email protected] Abstract: Introduction: Many procedures are available to manage cartilage defects of the talus, Citation: Migliorini, F.; Eschweiler, J.; including microfracturing (MFx) and Autologous Matrix Induced Chondrogenesis (AMIC). Whether Maffulli, N.; Schenker, H.; Driessen, AMIC or MFx are equivalent for borderline sized defects of the talar shoulder is unclear. Thus, the A.; Rath, B.; Tingart, M. Autologous present study compared the efficacy of primary isolated AMIC versus MFx for borderline sized Matrix Induced Chondrogenesis focal unipolar chondral defects of the talar shoulder at midterm follow-up.
    [Show full text]
  • Applications of Chondrocyte-Based Cartilage Engineering: an Overview
    Hindawi Publishing Corporation BioMed Research International Volume 2016, Article ID 1879837, 17 pages http://dx.doi.org/10.1155/2016/1879837 Review Article Applications of Chondrocyte-Based Cartilage Engineering: An Overview Abdul-Rehman Phull,1 Seong-Hui Eo,1 Qamar Abbas,1 Madiha Ahmed,2 and Song Ja Kim1 1 Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongjudaehakro 56, Gongju 32588, Republic of Korea 2Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan Correspondence should be addressed to Song Ja Kim; [email protected] Received 14 May 2016; Revised 24 June 2016; Accepted 26 June 2016 Academic Editor: Magali Cucchiarini Copyright © 2016 Abdul-Rehman Phull et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Chondrocytes are the exclusive cells residing in cartilage and maintain the functionality of cartilage tissue. Series of biocomponents such as different growth factors, cytokines, and transcriptional factors regulate the mesenchymal stem cells (MSCs) differentiation to chondrocytes. The number of chondrocytes and dedifferentiation are the key limitations in subsequent clinical application of the chondrocytes. Different culture methods are being developed to overcome such issues. Using tissue engineering and cell based approaches, chondrocytes offer prominent therapeutic option specifically in orthopedics for cartilage repair and to treat ailments such as tracheal defects, facial reconstruction, and urinary incontinence. Matrix-assisted autologous chondrocyte transplantation/implantation is an improved version of traditional autologous chondrocyte transplantation (ACT) method. An increasing number of studies show the clinical significance of this technique for the chondral lesions treatment.
    [Show full text]
  • Comparative Anatomy of the Lower Respiratory Tract of the Gray Short-Tailed Opossum (Monodelphis Domestica) and North American Opossum (Didelphis Virginiana)
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2001 Comparative Anatomy of the Lower Respiratory Tract of the Gray Short-tailed Opossum (Monodelphis domestica) and North American Opossum (Didelphis virginiana) Lee Anne Cope University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Animal Sciences Commons Recommended Citation Cope, Lee Anne, "Comparative Anatomy of the Lower Respiratory Tract of the Gray Short-tailed Opossum (Monodelphis domestica) and North American Opossum (Didelphis virginiana). " PhD diss., University of Tennessee, 2001. https://trace.tennessee.edu/utk_graddiss/2046 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Lee Anne Cope entitled "Comparative Anatomy of the Lower Respiratory Tract of the Gray Short-tailed Opossum (Monodelphis domestica) and North American Opossum (Didelphis virginiana)." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Animal Science. Robert W. Henry, Major Professor We have read this dissertation and recommend its acceptance: Dr. R.B. Reed, Dr. C. Mendis-Handagama, Dr. J. Schumacher, Dr. S.E. Orosz Accepted for the Council: Carolyn R.
    [Show full text]
  • Autologous Matrix-Induced Chondrogenesis and Generational Development of Autologous Chondrocyte Implantation
    Autologous Matrix-Induced Chondrogenesis and Generational Development of Autologous Chondrocyte Implantation Hajo Thermann, MD, PhD,* Christoph Becher, MD,† Francesca Vannini, MD, PhD,‡ and Sandro Giannini, MD‡ The treatment of osteochondral defects of the talus is still controversial. Matrix-guided treatment options for covering of the defect with a scaffold have gained increasing popularity. Cellular-based autologous chondrocyte implantation (ACI) has undergone a generational development overcoming the surgical drawbacks related to the use of the periosteal flap over time. As ACI is associated with high costs and limited in availability, autologous matrix-induced chondrogenesis, a single-step procedure combining microfracturing of the subchondral bone to release bone marrow mesenchymal stem cells in combination with the coverage of an acellular matrix, has gained increasing popularity. The purposes of this report are to present the arthroscopic approach of the matrix-guided autologous matrix-induced chondrogenesis technique and generational development of ACI in the treatment of chondral and osteochon- dral defects of the talus. Oper Tech Orthop 24:210-215 C 2014 Elsevier Inc. All rights reserved. KEYWORDS cartilage, defect, ankle, talus, AMIC, ACI Introduction Cartilage repair may be obtained by cartilage replacement: (OATS, mosaicplasty) or with techniques aimed to generate a hondral and osteochondral lesions are defects of the newly formed cartilage such as microfracture or autologous Ccartilaginous surface and underlying subchondral bone of chondrocyte implantation (ACI).9-17 the talar dome. These defects are often caused by a single or Arthroscopic debridement and bone marrow stimulation multiple traumatic events, mostly inversion or eversion ankle using the microfracture technique has proven to be an 1,2 sprains in young, active patients.
    [Show full text]
  • Studies on Brain and Spinal Cord Tumors
    Studies on Brain and Spinal Cord Tumors Chapter 1 Osteochondroma of the Spine Iraj Lotfinia Professor of Neurosurgery, Tabriz Universsity of medical science, Tabriz, Iran. Fax: 00984113340830; Email: [email protected] Abstract Osteochondroma (OC) is the most common benign tumor of the bones, and it remains the most common precursor for secondary chondrosarcoma, which often occurs in the long bones’ metaphyseal areas. Rarely, it is also found in the spine. This tumor comprises a cartilage capped bone projection and is observed in both solitary and multiple forms. In many cases, the lesion can be definitively diagnosed according to radiological characteristics, but the rarity of these lesions in the spine, gradual onset of symptoms, and the frequent lack of observation of lesions in plain radiography may delay the diagnosis or cause misdiagnosis. These lesions are be- nign and do not risk the patient’s life; however, they rarely may be found to be a malignant degeneration that transformed into chondrosarcoma. When the lesion has led to clinical symptoms or has faced the patient with cosmetic challenges, or when definitive diagnosis is unknown, treatment is required. The primary treatment is the surgical removal of the lesion. Timely diagnosis and complete resection of the le- sion using surgery lead to complete recovery and prevent recurrence. 1. Introduction According to the World Health Organization’s (WHO’s) definition in 2002, osteocar- tilaginous exostosis are benign bone neoplasms covered by a cartilaginous cap created at the outer surface of the bone by endochondral ossification [1]. Osteochondroma (OC) is the most common benign primary tumor of the bone.
    [Show full text]
  • 16 Cartilage
    Cartilage Cartilage serves as a rigid yet lightweight and flexible supporting tissue. It forms the framework for the respiratory passages to prevent their collapse, provides smooth "bearings" at joints, and forms a cushion between the vertebrae, acting as a shock absorber for the spine. Cartilage is important in determining the size and shape of bones and provides the growing areas in many bones. Its capacity for rapid growth while maintaining stiffness makes cartilage suitable for the embryonic skeleton. About 75% of the water in cartilage is bound to proteoglycans, and these compounds are important in the transport of fluids, electrolytes, and nutrients throughout the cartilage matrix. Although adapted to provide support, cartilage contains only the usual elements of connective tissue cells, fibers, and ground substance. It is the ground substance that gives cartilage its firm consistency and ability to withstand compression and shearing forces. Collagen and elastic fibers embedded in the ground substance impart tensile strength and elasticity. Together, the fibers and ground substance form the matrix of cartilage. Cartilage differs from other connective tissues in that it lacks nerves, blood and lymphatic vessels and is nourished entirely by diffusion of materials from blood vessels in adjacent tissues. Although relatively rigid, the cartilage matrix has high water content and is freely permeable, even to fairly large particles. Classification of cartilage into hyaline, elastic, and fibrous types is based on differences in the abundance and type of fibers in the matrix. Hyaline Cartilage Hyaline cartilage is the most common type of cartilage and forms the costal cartilages, articular cartilages of joints, and cartilages of the nose, larynx, trachea, and bronchi.
    [Show full text]
  • The Epiphyseal Plate: Physiology, Anatomy, and Trauma*
    3 CE CREDITS CE Article The Epiphyseal Plate: Physiology, Anatomy, and Trauma* ❯❯ Dirsko J. F. von Pfeil, Abstract: This article reviews the development of long bones, the microanatomy and physiology Dr.med.vet, DVM, DACVS, of the growth plate, the closure times and contribution of different growth plates to overall growth, DECVS and the effect of, and prognosis for, traumatic injuries to the growth plate. Details on surgical Veterinary Specialists of Alaska Anchorage, Alaska treatment of growth plate fractures are beyond the scope of this article. ❯❯ Charles E. DeCamp, DVM, MS, DACVS athologic conditions affecting epi­ foramen. Growth factors and multipotent Michigan State University physeal (growth) plates in imma­ stem cells support the formation of neo­ ture animals may result in severe natal bone consisting of a central marrow P 2 orthopedic problems such as limb short­ cavity surrounded by a thin periosteum. ening, angular limb deformity, or joint The epiphysis is a secondary ossifica­ incongruity. Understanding growth plate tion center in the hyaline cartilage forming anatomy and physiology enables practic­ the joint surfaces at the proximal and distal At a Glance ing veterinarians to provide a prognosis ends of the bones. Secondary ossification Bone Formation and assess indications for surgery. Injured centers can appear in the fetus as early Page E1 animals should be closely observed dur­ as 28 days after conception1 (TABLE 1). Anatomy of the Growth ing the period of rapid growth. Growth of the epiphysis arises from two Plate areas: (1) the vascular reserve zone car­ Page E2 Bone Formation tilage, which is responsible for growth of Physiology of the Growth Bone is formed by transformation of con­ the epiphysis toward the joint, and (2) the Plate nective tissue (intramembranous ossifica­ epiphyseal plate, which is responsible for Page E4 tion) and replacement of a cartilaginous growth in bone length.3 The epiphyseal 1 Growth Plate Closure model (endochondral ossification).
    [Show full text]
  • Osteochondroma: Ignore Or Investigate?
    r e v b r a s o r t o p . 2 0 1 4;4 9(6):555–564 www.rbo.org.br Updating Article ଝ Osteochondroma: ignore or investigate? a b,c,∗ Antônio Marcelo Gonc¸alves de Souza , Rosalvo Zósimo Bispo Júnior a School of Medicine, Federal University of Pernambuco (UFPE), Recife, PE, Brazil b School of Medicine, Federal University of Paraíba (UFPB), João Pessoa, PB, Brazil c University Center of João Pessoa (UNIPÊ), João Pessoa, PB, Brazil a r a t i b s c t l e i n f o r a c t Article history: Osteochondromas are bone protuberances surrounded by a cartilage layer. They generally Received 23 August 2013 affect the extremities of the long bones in an immature skeleton and deform them. They usu- Accepted 31 October 2013 ally occur singly, but a multiple form of presentation may be found. They have a very charac- Available online 27 October 2014 teristic appearance and are easily diagnosed. However, an atypical site (in the axial skeleton) and/or malignant transformation of the lesion may sometimes make it difficult to iden- Keywords: tify osteochondromas immediately by means of radiographic examination. In these cases, Osteochondroma/etiology imaging examinations that are more refined are necessary. Although osteochondromas Osteochondroma/physiopathology do not directly affect these patients’ life expectancy, certain complications may occur, with Osteochondroma/diagnosis varying degrees of severity. Bone neoplasms © 2014 Sociedade Brasileira de Ortopedia e Traumatologia. Published by Elsevier Editora Ltda. All rights reserved. Osteocondroma: ignorar ou investigar? r e s u m o Palavras-chave: Osteocondromas são protuberâncias ósseas envolvidas por uma camada de cartilagem.
    [Show full text]
  • Adult Chondrogenesis and Spontaneous Cartilage Repair in the Skate, Leucoraja Erinacea Aleksandra Marconi1, Amy Hancock-Ronemus2,3, J Andrew Gillis1,3*
    RESEARCH ARTICLE Adult chondrogenesis and spontaneous cartilage repair in the skate, Leucoraja erinacea Aleksandra Marconi1, Amy Hancock-Ronemus2,3, J Andrew Gillis1,3* 1Department of Zoology, University of Cambridge, Cambridge, United Kingdom; 2Charles River Laboratories, Wilmington, Massachusetts, United States; 3Marine Biological Laboratory, Woods Hole, Massachusetts, United States Abstract Mammalian articular cartilage is an avascular tissue with poor capacity for spontaneous repair. Here, we show that embryonic development of cartilage in the skate (Leucoraja erinacea) mirrors that of mammals, with developing chondrocytes co-expressing genes encoding the transcription factors Sox5, Sox6 and Sox9. However, in skate, transcriptional features of developing cartilage persist into adulthood, both in peripheral chondrocytes and in cells of the fibrous perichondrium that ensheaths the skeleton. Using pulse-chase label retention experiments and multiplexed in situ hybridization, we identify a population of cycling Sox5/6/9+ perichondral progenitor cells that generate new cartilage during adult growth, and we show that persistence of chondrogenesis in adult skates correlates with ability to spontaneously repair cartilage injuries. Skates therefore offer a unique model for adult chondrogenesis and cartilage repair and may serve as inspiration for novel cell-based therapies for skeletal pathologies, such as osteoarthritis. Introduction Hyaline cartilage is a skeletal tissue that consists of a single cell type (the chondrocyte) embedded *For correspondence: [email protected] within a homogeneous, collagenous extracellular matrix (reviewed in Gillis, 2018). In mammals, hya- line cartilage is predominantly an embryonic tissue, making up the anlage of the axial (chondrocra- Competing interests: The nial, vertebral and rib) and appendicular (limb) endoskeleton. The vast majority of mammalian authors declare that no hyaline cartilage is replaced by bone during the process of endochondral ossification, with cartilage competing interests exist.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Inability of Low Oxygen Tension to Induce Chondrogenesis in Human Infrapatellar Fat Pad Mesenchymal Stem Cells
    fcell-09-703038 July 20, 2021 Time: 15:26 # 1 ORIGINAL RESEARCH published: 26 July 2021 doi: 10.3389/fcell.2021.703038 Inability of Low Oxygen Tension to Induce Chondrogenesis in Human Infrapatellar Fat Pad Mesenchymal Stem Cells Samia Rahman1, Alexander R. A. Szojka1, Yan Liang1, Melanie Kunze1, Victoria Goncalves1, Aillette Mulet-Sierra1, Nadr M. Jomha1 and Adetola B. Adesida1,2* 1 Laboratory of Stem Cell Biology and Orthopedic Tissue Engineering, Division of Orthopedic Surgery and Surgical Research, Department of Surgery, University of Alberta, Edmonton, AB, Canada, 2 Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alberta Hospital, Edmonton, AB, Canada Objective: Articular cartilage of the knee joint is avascular, exists under a low oxygen tension microenvironment, and does not self-heal when injured. Human infrapatellar fat pad-sourced mesenchymal stem cells (IFP-MSC) are an arthroscopically accessible source of mesenchymal stem cells (MSC) for the repair of articular cartilage defects. Human IFP-MSC exists physiologically under a low oxygen tension (i.e., 1–5%) Edited by: microenvironment. Human bone marrow mesenchymal stem cells (BM-MSC) exist Yi Zhang, physiologically within a similar range of oxygen tension. A low oxygen tension of Central South University, China 2% spontaneously induced chondrogenesis in micromass pellets of human BM-MSC. Reviewed by: Dimitrios Kouroupis, However, this is yet to be demonstrated in human IFP-MSC or other adipose tissue- University of Miami, United States sourced MSC. In this study, we explored the potential of low oxygen tension at 2% to Dhirendra Katti, Indian Institute of Technology Kanpur, drive the in vitro chondrogenesis of IFP-MSC.
    [Show full text]
  • Bone Cartilage Dense Fibrous CT (Tendons & Nonelastic Ligaments) Dense Elastic CT (Elastic Ligaments)
    Chapter 6 Content Review Questions 1-8 1. The skeletal system consists of what connective tissues? Bone Cartilage Dense fibrous CT (tendons & nonelastic ligaments) Dense elastic CT (elastic ligaments) List the functions of these tissues. Bone: supports the body, protects internal organs, provides levers on which muscles act, store minerals, and produce blood cells. Cartilage provides a model for bone formation and growth, provides a smooth cushion between adjacent bones, and provides firm, flexible support. Tendons attach muscles to bones and ligaments attach bone to bone. 2. Name the major types of fibers and molecules found in the extracellular matrix of the skeletal system. Collagen Proteoglycans Hydroxyapatite Water Minerals How do they contribute to the functions of tendons, ligaments, cartilage and bones? The collagen fibers of tendons and ligaments make these structures very tough, like ropes or cables. Collagen makes cartilage tough, whereas the water-filled proteoglycans make it smooth and resistant. As a result, cartilage is relatively rigid, but springs back to its original shape if it is bent or slightly compressed, and it is an excellent shock absorber. The extracellular matrix of bone contains collagen and minerals, including calcium and phosphate. Collagen is a tough, ropelike protein, which lends flexible strength to the bone. The mineral component gives the bone compression (weight-bearing) strength. Most of the mineral in the bone is in the form of hydroxyapatite. 3. Define the terms diaphysis, epiphysis, epiphyseal plate, medullary cavity, articular cartilage, periosteum, and endosteum. Diaphysis – the central shaft of a long bone. Epiphysis – the ends of a long bone. Epiphyseal plate – the site of growth in bone length, found between each epiphysis and diaphysis of a long bone and composed of cartilage.
    [Show full text]