A Discussion of Hemoglobinuria and Hematuria R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Paroxysmal Nocturnal Hemoglobinuria
Paroxysmal nocturnal hemoglobinuria Description Paroxysmal nocturnal hemoglobinuria is an acquired disorder that leads to the premature death and impaired production of blood cells. The disorder affects red blood cells (erythrocytes), which carry oxygen; white blood cells (leukocytes), which protect the body from infection; and platelets (thrombocytes), which are involved in blood clotting. Paroxysmal nocturnal hemoglobinuria affects both sexes equally, and can occur at any age, although it is most often diagnosed in young adulthood. People with paroxysmal nocturnal hemoglobinuria have sudden, recurring episodes of symptoms (paroxysmal symptoms), which may be triggered by stresses on the body, such as infections or physical exertion. During these episodes, red blood cells are prematurely destroyed (hemolysis). Affected individuals may pass dark-colored urine due to the presence of hemoglobin, the oxygen-carrying protein in blood. The abnormal presence of hemoglobin in the urine is called hemoglobinuria. In many, but not all cases, hemoglobinuria is most noticeable in the morning, upon passing urine that has accumulated in the bladder during the night (nocturnal). The premature destruction of red blood cells results in a deficiency of these cells in the blood (hemolytic anemia), which can cause signs and symptoms such as fatigue, weakness, abnormally pale skin (pallor), shortness of breath, and an increased heart rate. People with paroxysmal nocturnal hemoglobinuria may also be prone to infections due to a deficiency of white blood cells. Abnormal platelets associated with paroxysmal nocturnal hemoglobinuria can cause problems in the blood clotting process. As a result, people with this disorder may experience abnormal blood clotting (thrombosis), especially in large abdominal veins; or, less often, episodes of severe bleeding (hemorrhage). -
The Effect of Flood Diuresis on Hemo-Globinuria
THE EFFECT OF FLOOD DIURESIS ON HEMO- GLOBINURIA. BY HERBERT HAESSLERj M.D. (From the Laboratories of The Rockefeller Inatitute for Medical Research.) (Received for publication, November 9, 1921.) The fact is well recognized that a considerable quantity of hemo- globin must be free in the plasma if any is to pass the renal barrier and appear in the urine. The pigment is, like dextrose, a "threshold substance." It readily penetrates into the renal tubules but is absorbed again more or less completely during its course through them. t This being true, diuresis should diminish the chances of absorption by hastening the flow of fluid, and tend to lead to the appearance of the pigment in the urine. Evidence will here be presented that such is the case. Hemoglobinuria, like glycosuria, is much favored by flood diuresis. Method. A concentrated solution of hemoglobin was abruptly thrown into the circulation of rabbits and dogs, followed in some instances by a slower injection of salt solution. The amount of pigment introduced was slightly less than that required to produce hemoglobinuria in the absence of diuresis. The urine was collected at intervals by catheter. All of the animals were males. Individuals were selected with normal kidneys, as indicated by ~e general character of the urine and proven by the autopsy findings. Great care was necessary to prevent hemorrhage during the catheterization of the rabbits, and despite it a few red cells were frequently encountered after- wards in the urine. For this reason the experiments were repeated on dogs, in which the complication can be avoided. -
Urinary System Diseases and Disorders
URINARY SYSTEM DISEASES AND DISORDERS BERRYHILL & CASHION HS1 2017-2018 - CYSTITIS INFLAMMATION OF THE BLADDER CAUSE=PATHOGENS ENTERING THE URINARY MEATUS CYSTITIS • MORE COMMON IN FEMALES DUE TO SHORT URETHRA • SYMPTOMS=FREQUENT URINATION, HEMATURIA, LOWER BACK PAIN, BLADDER SPASM, FEVER • TREATMENT=ANTIBIOTICS, INCREASE FLUID INTAKE GLOMERULONEPHRITIS • AKA NEPHRITIS • INFLAMMATION OF THE GLOMERULUS • CAN BE ACUTE OR CHRONIC ACUTE GLOMERULONEPHRITIS • USUALLY FOLLOWS A STREPTOCOCCAL INFECTION LIKE STREP THROAT, SCARLET FEVER, RHEUMATIC FEVER • SYMPTOMS=CHILLS, FEVER, FATIGUE, EDEMA, OLIGURIA, HEMATURIA, ALBUMINURIA ACUTE GLOMERULONEPHRITIS • TREATMENT=REST, SALT RESTRICTION, MAINTAIN FLUID & ELECTROLYTE BALANCE, ANTIPYRETICS, DIURETICS, ANTIBIOTICS • WITH TREATMENT, KIDNEY FUNCTION IS USUALLY RESTORED, & PROGNOSIS IS GOOD CHRONIC GLOMERULONEPHRITIS • REPEATED CASES OF ACUTE NEPHRITIS CAN CAUSE CHRONIC NEPHRITIS • PROGRESSIVE, CAUSES SCARRING & SCLEROSING OF GLOMERULI • EARLY SYMPTOMS=HEMATURIA, ALBUMINURIA, HTN • WITH DISEASE PROGRESSION MORE GLOMERULI ARE DESTROYED CHRONIC GLOMERULONEPHRITIS • LATER SYMPTOMS=EDEMA, FATIGUE, ANEMIA, HTN, ANOREXIA, WEIGHT LOSS, CHF, PYURIA, RENAL FAILURE, DEATH • TREATMENT=LOW NA DIET, ANTIHYPERTENSIVE MEDS, MAINTAIN FLUIDS & ELECTROLYTES, HEMODIALYSIS, KIDNEY TRANSPLANT WHEN BOTH KIDNEYS ARE SEVERELY DAMAGED PYELONEPHRITIS • INFLAMMATION OF THE KIDNEY & RENAL PELVIS • CAUSE=PYOGENIC (PUS-FORMING) BACTERIA • SYMPTOMS=CHILLS, FEVER, BACK PAIN, FATIGUE, DYSURIA, HEMATURIA, PYURIA • TREATMENT=ANTIBIOTICS, -
Role of Urinalysis in the Diagnosis of Chronic Kidney Disease (CKD)
Research and Reviews Role of Urinalysis in the Diagnosis of Chronic Kidney Disease (CKD) JMAJ 54(1): 27–30, 2011 Kunitoshi ISEKI*1 Abstract As of the end of Year 2008, 1 out of 450 people was a dialysis patient in Japan, and patients with chronic kidney disease (CKD) at stages 3 and 4 accounted for nearly 10% of the total population. An epidemiological study in Okinawa that used the introduction of dialysis treatment as the outcome revealed that the 10-year cumulative incident rate of end-stage renal disease (ESRD) was about 3% of the participants who were positive (Ն 1ϩ) for both proteinuria and hematuria, while there was hardly any difference between those who were positive for hematuria alone and those who were negative for both proteinuria and hematuria. When the incidence of ESRD (dialysis introduction) was examined in relation to the severity of proteinuria (5 grades ranging from [Ϫ] to [Ն 3ϩ]) as determined by dipstick, the cumulative incidence rate during the 17-year observation period was 16% for proteinuria (Ն 3ϩ) and about 7% for proteinuria (2ϩ). In contrast, among participants who were negative for proteinuria, the rate of dialysis introduction in 10 years is about 1 out of 1 million. The CKD Practice Guide of the Japanese Society of Nephrology recommends referral to a nephrologist when a case meets any of the following 3 criteria: 1) 0.5g/g creatinine or higher, or proteinuria (Ն 2ϩ), 2) an estimated glomerular filtration rate of less than 50ml/min/1.73m2, or 3) positive results (Ն 1ϩ) for both proteinuria and hematuria tests. -
Hematuria in the Child
Hematuria and Proteinuria in the Pediatric Patient Laurie Fouser, MD Pediatric Nephrology Swedish Pediatric Specialty Care Hematuria in the Child • Definition • ³ 1+ on dipstick on three urines over three weeks • 5 RBCs/hpf on three fresh urines over three weeks • Prevalence • 4-6% for microscopic hematuria on a single specimen in school age children • 0.3-0.5% on repeated specimens Sources of Hematuria • Glomerular or “Upper Tract” – Dysmorphic RBCs and RBC casts – Tea or cola colored urine – Proteinuria, WBC casts, renal tubular cells • Non-Glomerular or “Lower Tract” – RBCs have normal morphology – Clots/ Bright red or pink urine The Glomerular Capillary Wall The Glomerular Capillary Wall Glomerular Causes of Hematuria • Benign or self-limiting – Benign Familial Hematuria – Exercise-Induced Hematuria – Fever-Induced Hematuria Glomerular Causes of Hematuria • Acute Glomerular Disease – Poststreptococcal/ Postinfectious – Henoch-Schönlein Purpura – Sickle Cell Disease – Hemolytic Uremic Syndrome Glomerular Causes of Hematuria • Chronic Glomerular Disease – IgA Nephropathy – Henoch-Schönlein Purpura or other Vasculitis – Alport Syndrome – SLE or other Collagen Vascular Disease – Proliferative Glomerulonephritis Non-Glomerular Hematuria • Extra-Renal • UTI • Benign urethralgia +/- meatal stenosis • Calculus • Vesicoureteral Reflux, Hydronephrosis • Foreign body • Rhabdomyosarcoma • AV M • Coagulation disorder Non-Glomerular Hematuria • Intra-Renal • Hypercalciuria • Polycystic Kidney Disease • Reflux Nephropathy with Renal Dysplasia • -
Hematuria Is a Risk Factor Towards End-Stage Renal
Nephrology and Renal Diseases Research Article Hematuria is a risk factor towards end-stage renal disease - A propensity score analysis Tomoko Shima* Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan Abstract Background: It remains unclear whether microscopic hematuria accelerates the progression of chronic kidney disease (CKD). Since the risk of microscopic hematuria was expected very weak, we employed a propensity score analysis. Methods: A retrospective CKD cohort of 803 participants in a single institution was analyzed. The degree of microscopic hematuria was scaled as 0, 0.5, 1, 2, 3 for negative, ±, 1+, 2+, 3+ in the urinary qualitative analysis by dipstick, respectively. Time-averaged microscopic hematuria (TA-MH) was calculated by trapezoidal rule. The propensity score was estimated using 23 baseline covariates by multivariate binary logistic regression for the threshold of TA-MH at ≥ 0.5 or ≥ 1.0. Kaplan-Meier analysis after propensity score matching was also examined. Results: The incidence rate of end-stage renal disease (ESRD) was 33.9 per 1,000 person-years over median follow-up of 4.3 years. A Cox regression analysis stratified by quintile on the propensity scores showed that TA-MH ≥ 0.5 was a risk for ESRD (HR 1.72, 95% CI 1.08-2.75, p = 0.023) but not TA-MH ≥ 1.0 (HR 1.34, 95% CI 0.76-2.40, p = 0.315). Kaplan-Meier analysis after propensity score matching reproduced the similar results (TA-MH ≥ 0.5, HR 1.80, 95% CI 1.03-3.12, p = 0.046; TA-MH ≥ 1.0, HR 1.73, 95% CI 0.84-3.54, p = 0.145). -
Urine Specific Gravity
Please purchase PDFcamp Printer on http://www.verypdf.com/ to remove this watermark. Urine Specific Gravity Urine Specific Gravity (SG) Specific gravity (SG) is a measurement of the kidneys' ability to concentrate urine. The test compares the density of urine against the density of distilled water, which has an SG of 1.000. Because urine is a solution of minerals, salts, and compounds dissolved in water, the SG is a measure of the density of the dissolved chemicals in the specimen. As a measurement of specimen density, SG is influenced by both the number of particles present and the size of the particles. Osmolality is a more exact measurement and may be needed in certain circumstances. Please purchase PDFcamp Printer on http://www.verypdf.com/ to remove this watermark. • The range of urine SG depends on the state of hydration and varies with urine volume and the load of solids to be excreted under standardized conditions; when fluid intake is restricted or increased, SG measures the concentrating and diluting functions of the kidney. Loss of these functions is an indication of renal dysfunction. Please purchase PDFcamp Printer on http://www.verypdf.com/ to remove this watermark. • Reference Values • Normal • 1.005-1.030 (usually between 1.010 and 1.025) • Concentrated urine: 1.025-1.030+ • Dilute urine: 1.001-1.010 • Infant < 2 years old: 1.001-1.018 Please purchase PDFcamp Printer on http://www.verypdf.com/ to remove this watermark. • Procedure • Test SG with the use of a multiple-test dipstick that has a separate reagent area for SG. -
Blood Or Protein in the Urine: How Much of a Work up Is Needed?
Blood or Protein in the Urine: How much of a work up is needed? Diego H. Aviles, M.D. Disclosure • In the past 12 months, I have not had a significant financial interest or other relationship with the manufacturers of the products or providers of the services discussed in my presentation • This presentation will not include discussion of pharmaceuticals or devices that have not been approved by the FDA Screening Urinalysis • Since 2007, the AAP no longer recommends to perform screening urine dipstick • Testing based on risk factors might be a more effective strategy • Many practices continue to order screening urine dipsticks Outline • Hematuria – Definition – Causes – Evaluation • Proteinuria – Definition – Causes – Evaluation • Cases You are about to leave when… • 10 year old female seen for 3 day history URI symptoms and fever. Urine dipstick showed 2+ for blood and no protein. Questions? • What is the etiology for the hematuria? • What kind of evaluation should be pursued? • Is this an indication of a serious renal condition? • When to refer to a Pediatric Nephrologist? Hematuria: Definition • Dipstick > 1+ (large variability) – RBC vs. free Hgb – RBC lysis common • > 5 RBC/hpf in centrifuged urine • Can be – Microscopic – Macroscopic Hematuria: Epidemiology • Microscopic hematuria occurs 4-6% with single urine evaluation • 0.1-0.5% of school children with repeated testing • Gross hematuria occurs in 1/1300 Localization of Hematuria • Kidney – Brown or coke-colored urine – Cellular casts • Lower tract – Terminal gross hematuria – (Blood -
An Unusual Cause of Glomerular Hematuria and Acute Kidney Injury in a Chronic Kidney Disease Patient During Warfarin Therapy Clara Santos, Ana M
11617 14/5/13 12:11 Página 400 http://www.revistanefrologia.com casos clínicos © 2013 Revista Nefrología. Órgano Oficial de la Sociedad Española de Nefrología An unusual cause of glomerular hematuria and acute kidney injury in a chronic kidney disease patient during warfarin therapy Clara Santos, Ana M. Gomes, Ana Ventura, Clara Almeida, Joaquim Seabra Department of Nephrology. Centro Hospitalar Vila Nova de Gaia. Vila Nova de Gaia (Portugal) Nefrologia 2013;33(3):400-3 doi:10.3265/Nefrologia.pre2012.Oct.11617 ABSTRACT Un caso inusual de hematuria glomerular y fracaso renal agudo en un paciente con enfermedad renal crónica Warfarin is a well-established cause of gross hematuria. durante terapia con warfarina However, impaired kidney function does not occur RESUMEN except in the rare instance of severe blood loss or clot La warfarina es una causa muy conocida de hematuria ma- formation that obstructs the urinary tract. It has been croscópica. Sin embargo, el deterioro de la función renal no ocurre salvo en el caso inusual de gran pérdida de sangre o recently described an entity called warfarin-related formación de coágulos que obstruyen el tracto urinario. Re- nephropathy, in which acute kidney injury is caused by cientemente se ha descrito una entidad denominada nefro- glomerular hemorrhage and renal tubular obstruction patía relacionada con la warfarina en la que el fracaso renal by red blood cell casts. We report a patient under agudo es provocado por hemorragia glomerular y obstruc- warfarin treatment with chronic kidney disease, ción tubular renal por cilindros de glóbulos rojos. Exponemos macroscopic hematuria and acute kidney injury. -
Hematuria: Blood in the Urine
Hematuria: Blood in the Urine National Kidney and Urologic Diseases Information Clearinghouse What is hematuria? Hematuria is blood in the urine. Two types of blood in the urine exist. Blood that can be seen in the urine is called gross hematu- U.S. Department of Health and ria. Blood that cannot be seen in the urine, Human Services except when examined with a microscope, is called microscopic hematuria. NATIONAL INSTITUTES OF HEALTH What are the symptoms of Kidneys hematuria? Most people with microscopic hematuria do not have symptoms. People with gross hematuria have urine that is pink, red, or cola-colored due to the presence of red blood cells (RBCs). Even a small amount of Bladder blood in the urine can cause urine to change Ureters color. In most cases, people with gross hematuria do not have other symptoms. However, people with gross hematuria that Urethra includes blood clots in the urine may have pain. The urinary tract What is the urinary tract? the two kidneys process about 200 quarts The urinary tract is the body’s drainage of blood to produce about 1 to 2 quarts of system for removing wastes and extra water. urine, composed of wastes and extra water. The urinary tract includes two kidneys, two The urine flows from the kidneys to the ureters, a bladder, and a urethra. The kid- bladder through tubes called ureters. The neys are two bean-shaped organs, each about bladder stores urine until releasing it through the size of a fist. They are located near the urination. When the bladder empties, urine middle of the back, just below the rib cage, flows out of the body through a tube called one on each side of the spine. -
Usefulness of Medi Test Combi 9 in the Diagnosis of Hemoglobinuria in Limited Recourse Setting
Bodi JM, et al. J Nephrol Renal Ther 2021, 7: 044 DOI: 10.24966/NRT-7313/100044 HSOA Journal of Nephrology & Renal Therapy Research Article 10Division of Nephrology, Department of Internal Medicine, University Hos- pitals of Kinshasa, School of Medicine, University of Kinshasa, Democratic Usefulness of Medi Test Republic of Congo Combi 9 in the Diagnosis of Abstract Hemoglobinuria in Limited Background: Detection of hemoglobin in fresh urine remains a challenge in resource limited setting since quantitative measurements Recourse Setting of hemoglobinuria is not always technically feasible. This study aimed to evaluate the performance of 3 types of dipstick for the 1 2 Joseph Mabiala Bodi *, Mamie Ngole , Célestin Ndosimao diagnosis of hemoglobinuria in children suffering Blackwater fever. Nsibu1, Roland Loway Longenge1, Mamygloire Manzi Monkoti1, Thideline Manknga Mabela1, Vicky Niangi Mayifuila1, Michel Methods: In a case-control study, 129 patients (43 inpatients with Ntetani Aloni3, Pierre Zalagile Akilimali4, Pierre Manianga dark urine versus 86 outpatients with clear urine) were screened Tshibassu5, Patrick Kalambayi Kayembe4, Ahmeddin Hassan for hemoglobinuria. A spot urine sample from each subject was Omar6, Kenji Hirayama7, Jan Verhaegen8, Aimé Lumaka9, Pros- tested both with 3 dipsticks (Medi Test Combi 9, as well as 9 per Lukusa Tshilobo9, Ernest Kiswaya Sumaili10 and Nazaire and 10 parameters Cypress) and a spectrophotometer using 3, Mangani Nseka10 3′ dimethylbenzidine reagent. The performance of dipstick was compared and -
Clinical Significance of Biochemical Detection in Urine the Importance Of
Clinical significance of biochemical detection in urine The Importance of Urinalysis for Veterinary use In addition to the external excretion of metabolic products, sick pet urine also contains other pathogens as well as physical particles and cellular components. The physical , biochemical and cellular analysis of pet urine allows a comprehensive pathological assessment for pet various diseases. Due to their special body structure, pets such as cats, dogs etc. are prone to suffer from diseases of the urinary tract, which can endanger the health of pets. Urinalysis testing allows a profound diagnosis of pet diseases such as: • Kidney disease • Liver diseases • Diabetes mellitus • Anemia • Inflammation of urinary tract In addition, periodic physical examination is an important measure to maintain the health of pets, and early regular urine examinations also provides a wide range of comprehensive health information for pets. Ⅰ. Uric acid base reaction Clinical significance: The clinical significance of urine acid-base changes. The change of urine pH will affect the type of crystal formation in urine is as follows: 1. Pathological acid urine is found in animals, such as carnivores, suckling animals, and starved animals. Pathological acid urine is found in fever, acidosis (diabetes, uremia, etc.). Oral acid salts, such as phosphate, ammonium chloride, and sodium chloride, can cause artificial acid urine. 2. Alkaline urine is present in herbivores. Pathologically alkaline urine is present in cystitis, urinary retention (bacterial breakdown of urea into ammonia), and alkalosis. Artificially alkaline urine can be produced by alkaline salts, such as sodium bicarbonate, sodium citrate, and sodium lactate. Ⅱ.Urine protein Clinical meaning: The protein content in the urine increases, the physiology and pathology should be considered when increased protein is seen.