How Seabirds Plunge-Dive Without Injuries
How seabirds plunge-dive without injuries Brian Changa,1, Matthew Crosona,1, Lorian Strakerb,c,1, Sean Garta, Carla Doveb, John Gerwind, and Sunghwan Junga,2 aDepartment of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061; bNational Museum of Natural History, Smithsonian Institution, Washington, DC 20560; cSetor de Ornitologia, Museu Nacional, Universidade Federal do Rio de Janeiro, São Cristóvão, Rio de Janeiro RJ 20940-040, Brazil; and dNorth Carolina Museum of Natural Sciences, Raleigh, NC 27601 Edited by David A. Weitz, Harvard University, Cambridge, MA, and approved August 30, 2016 (received for review May 27, 2016) In nature, several seabirds (e.g., gannets and boobies) dive into wa- From a mechanics standpoint, an axial force acting on a slender ter at up to 24 m/s as a hunting mechanism; furthermore, gannets body may lead to mechanical failure on the body, otherwise known and boobies have a slender neck, which is potentially the weakest as buckling. Therefore, under compressive loads, the neck is po- part of the body under compression during high-speed impact. In tentially the weakest part of the northern gannet due to its long this work, we investigate the stability of the bird’s neck during and slender geometry. Still, northern gannets impact the water at plunge-diving by understanding the interaction between the fluid up to 24 m/s without injuries (18) (see SI Appendix, Table S1 for forces acting on the head and the flexibility of the neck. First, we estimated speeds). The only reported injuries from plunge-diving use a salvaged bird to identify plunge-diving phases.
[Show full text]