The Basolateral Amygdala and Lateral Hypothalamus Bias Learning

Total Page:16

File Type:pdf, Size:1020Kb

The Basolateral Amygdala and Lateral Hypothalamus Bias Learning Available online at www.sciencedirect.com ScienceDirect The basolateral amygdala and lateral hypothalamus bias learning towards motivationally significant events Ivy B Hoang and Melissa J Sharpe Every day we are faced with a huge amount of new information. best facilitate arrival at our eventual goal. Dysfunction in We can’t learn about everything, we have to select what to learn the balance between learning about proximal and distal about. We have many systems that contribute to learning in predictors of outcomes plays an important role in psycho- different ways, allowing us to select the most relevant logical disorders like anxiety, addiction, and schizophre- information to learn about. This review will focus on one such nia [1,2]. system, comprising the basolateral amygdala and lateral hypothalamus, which we argue works to favor learning about Two regions of the brain that are important for learning information most relevant to current goals. Specifically, we will about motivationally significant outcomes are the lateral discuss work that has revealed the role of the basolateral hypothalamus (LH) and the basolateral amygdala (BLA). amygdala in encoding the sensory-specific aspects of Both structures encode information that is proximal to rewarding information. Then, we discuss new data implicating food (or pain, under some conditions [10 ]), which facil- lateral hypothalamus in biasing learning towards reward- itates the ability to respond appropriately to these pre- predictive cues, and away from information distal to rewards. dictors in the future [3–8,9 ,10 ]. Yet when it comes to Finally, we offer a framework of how these regions learning about the distal predictors of food outcomes, the communicate to relay this information to the midbrain function of these regions diverges. Specifically, the BLA dopamine system, allowing them to bias ongoing learning will only be involved in encoding information about distal towards the best predictors of motivationally relevant predictors if these predictors have already been estab- information. lished as related to something motivationally significant [3,8,9]. For example, the BLA will encode the ice-cream Address truck tune, but only if you know the truck is likely to sell Department of Psychology, University of California, Los Angeles, CA, ice cream. On the other hand, the LH biases learning USA toward proximal predictors and actively opposes learning Corresponding authors: about distal predictors, even if those distal cues are Hoang, Ivy B ([email protected]), Sharpe, Melissa J (melissa.j.shar- related to something motivationally significant. Thus, [email protected]) in contrast to the BLA, the LH will always want to prevent you from encoding the sound of the ice-cream truck tune, even if you’ve bought ice cream from these Current Opinion in Behavioral Sciences 2021, 41:92–97 trucks a hundred times before. Here, we review the This review comes from a themed issue on Cognition and perception function of these regions in the context of Pavlovian – *value-based decision-making* conditioning and discuss potential models of how these Edited by Bernard Balleine and Laura Bradfield regions may interact to facilitate the balance of proximal and distal learning about motivationally significant outcomes. https://doi.org/10.1016/j.cobeha.2021.04.014 2352-1546/ã 2021 Elsevier Ltd. All rights reserved. Basolateral amygdala function Much of the early research on the BLA has centered around the role of this region in fear. The BLA has been shown to be critical for both the acquisition and expres- sion of conditioned fear in rodents, humans, and primates [11,12,13 ]. In a simple fear conditioning task, where Introduction subjects are learning to associate a cue with something Learning about predictors of motivationally significant aversive like a mild foot shock, inhibiting BLA function outcomes, like food or pain, is essential for approaching reduces the subsequent ability of the shock-predictive rewards and avoiding punishments. Some of these pre- cue to elicit fear [14–16,17 ]. Similarly, leaving BLA dictors are proximal to outcomes, like the taste of ice function intact during learning, but disrupting its function cream from your neighborhood’s ice-cream truck. Others in a subsequent test of fear to the shock-paired cue, also are more distal from outcomes, like hearing the nostalgic reduces fear [14–16,18]. These results demonstrate that tune of the ice-cream truck play throughout your neigh- the BLA is necessary for developing and storing fear borhood. We must balance learning about proximal and memories that facilitate appropriate behavior in the pres- distal outcomes, and devote learning to predictors that ence of predictors of aversive outcomes. Current Opinion in Behavioral Sciences 2021, 41:92–97 www.sciencedirect.com BLA and LH balance learning Hoang and Sharpe 93 While most of the work examining the role of the BLA in that the BLA can be engaged to learn about complex learning focuses on predictors of aversive outcomes, the sensory-specific associations that are distal from out- BLA is also critical for learning about the predictors of comes, but only if that information is motivationally rewards [3–7,19,20]. However, its contribution to reward significant at the time of encoding. learning is more nuanced, such that inhibiting BLA function does not abolish learning or responding to cues The importance of the BLA in prioritizing encoding of that predict rewarding outcomes, like it does during fear information that is motivationally significant is also conditioning [19,20]. Instead, appetitive learning studies indexed by the pattern of cue-evoked firing seen in have revealed that the BLA is important for encoding the electrophysiological studies. In one study, rats were sensory-specific representation of the reward, demon- trained to discriminate responding to two different odors strated by using Pavlovian-to-instrumental Transfer predictive of either a rewarding sucrose solution or an (PIT) and devaluation studies [3–6]. For example, during aversive quinine solution [23]. Neurons in the BLA were PIT, subjects first learn that two cues (e.g. light or tone) recorded in these rats during a reversal of these contin- lead to two different rewards (e.g. pellets or sucrose). gencies. This revealed that neuronal populations in the Then, subjects learn to make two actions (e.g. lever press BLA switch their firing preference to follow their pre- or chain pull) to receive the two outcomes. Finally, ferred outcome. That is, after a reversal, the same neuron subjects are given a test where the cues are played and that was once firing to an odor predictive of sucrose will either action can be made (in the absence of reward). now preferentially fire for that opposite odor that is now Encoding of the sensory-specific representation of these predictive of sucrose. Thus, these neurons change selec- rewards is revealed when subjects make the action that tivity to follow the reward and not the odor. Similarly, in leads to the reward congruent with that predicted by the another study, BLA neurons increased firing rate with an current cue being played (e.g. sucrose action made during unexpected change in reward magnitude or delay, exhi- sucrose cue). However, lesions of the BLA impair the biting a short burst of increased activity whether these specific PIT effect, characterized by indistinguishable changes meant more or less reward, or delivered over a action selections in the presence of either cue, despite shorter or longer timescale [24]. This is reminiscent of an the ability of the cues to generally invigorate motivated unsigned attentional signal [24], strengthening the idea responding remaining intact [6]. These findings demon- that BLA is concerned with the specific outcomes pre- strate that the BLA is necessary for encoding the rela- dicted by environmental stimuli and their motivational tionship between cues and a sensory-specific representa- significance [24,25]. Altogether, these studies provide tion of rewards [4–6]. evidence to support the BLA as an associative structure important for learning about motivationally significant Interestingly, this role of the BLA in learning about cues events by encoding sensory-specific information about that predict either rewarding or aversive outcomes can these events, including their current predictive status. extend to learning about information that is distal to these outcomes. However, this only occurs if the information being learned carries motivational significance at the time Lateral hypothalamus function these relationships are encoded. For example, the BLA is While the BLA has been known to be critical for associa- not involved in sensory preconditioning [8,9,21,22]. In tive learning for some time, it is only recently that the LH this procedure, two neutral cues are first paired together, has been conclusively shown to be necessary for rein- where neither carry any motivational significance (e.g. A forcement learning [10 ,26–28,29 ,30,31]. Before this, ! B). The next day, cue B is paired with a motivationally the function of the LH was relatively restricted to pro- significant outcome (e.g. B ! shock), endowing this cue moting approach to food and its consumption (but see: with motivational significance. After this training, when Castro et al. [32]; Petrovich [33 ]). For example, early cue A is presented alone, rats will freeze because it leads studies demonstrated that lesions made in the LH would to B, which they learned predicts shock. Inhibition of reduce spontaneous feeding behavior, suggesting the BLA function during initial A ! B learning has no impact necessity for this region for food consumption and the on the later ability of A to elicit freezing after B is paired prevention of starvation [34]. Similarly, electrical stimu- with shock, demonstrating that the BLA is not involved in lation of the LH was shown to increase food intake in learning the initial A ! B association [8,9]. However, the sated rats [34–36].
Recommended publications
  • The Effect of Lateral Hypothalamic Lesions on Spontaneous Eeg Pattern in Rats
    ACTA NEUROBIOL. EXP. 1987, 47: 27-43 THE EFFECT OF LATERAL HYPOTHALAMIC LESIONS ON SPONTANEOUS EEG PATTERN IN RATS W. TROJNIAR, E. JURKOWLANIEC, J. ORZEL-GRYGLEWSKA and J. TOKARSKI Department of Physiology, Medical Academy Dqbinki 1, 80-211 Gdalisk, Poland Key words: lateral hypothalamus lesion, EEG, waking, sleep, subthalamus, somnolence Abstract. Neocortical and hippocampal EEG was recorded in ten rats subjected to bilateral lesions of the lateral hypothalamus at different levels of its rostro-caudal axis. In nine rats the damage evoked a marked increase of waking time with a si- multaneous reduction of the percentage of large amplitude irregular activity related to slow wave sleep in the first eight postlesion days. There was also a decrease in the amount of paradoxical sleep. Enhanced waking coexisted with behavioral som- nolence. The most extensive hypothalamic lesions produced qualitative changes of EEG concerning mainly the frequency of hippocampal theta rhythm. Control lesions within the subthalamic region did not influence either qualitative or quan- titative EEG pattern. It is concluded that limited lesions of the lateral hypotha- lamus did not destroy a sufficient number of reticular activating fibers to disturb a cortical desynchronizing reaction. The increased amount of waking pattern may be due to serotonergic deafferentation of the neocortex. Dissociation of behavioral and EEG indices of the level of arousal imply the existence of separate neuronal systems for both aspects of "activation". Bilateral destruction of the lateral hypothalamus (LH), particularly in its middle portion produces a set of severe abnormalities known as "the lateral hypothalamic syndrome". The animals, both rats and cats, display, among others, profound impairments in food and water intake (1, 32), deficits in sensorimotor integration (16), somnolence, akinesia and catalepsy (14).
    [Show full text]
  • Hypothalamic Hypocretin (Orexin): Robust Innervation of the Spinal Cord
    The Journal of Neuroscience, April 15, 1999, 19(8):3171–3182 Hypothalamic Hypocretin (Orexin): Robust Innervation of the Spinal Cord Anthony N. van den Pol Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520 Hypocretin (orexin) is synthesized by neurons in the lateral chemistry support the concept that hypocretin-immunoreactive hypothalamus and has been reported to increase food intake fibers in the cord originate from the neurons in the lateral and regulate the neuroendocrine system. In the present paper, hypothalamus. Digital-imaging physiological studies with fura-2 long descending axonal projections that contain hypocretin detected a rise in intracellular calcium in response to hypocretin were found that innervate all levels of the spinal cord from in cultured rat spinal cord neurons, indicating that spinal cord cervical to sacral segments, as studied in mouse, rat, and neurons express hypocretin-responsive receptors. A greater human spinal cord and not previously described. High densities number of cervical cord neurons responded to hypocretin than of axonal innervation are found in regions of the spinal cord another hypothalamo-spinal neuropeptide, oxytocin. These related to modulation of sensation and pain, notably in the data suggest that in addition to possible roles in feeding and marginal zone (lamina 1). Innervation of the intermediolateral endocrine regulation, the descending hypocretin fiber system column and lamina 10 as well as strong innervation of the may play a role in modulation of sensory input, particularly in caudal region of the sacral cord suggest that hypocretin may regions of the cord related to pain perception and autonomic participate in the regulation of both the sympathetic and para- tone.
    [Show full text]
  • Tonic Activity in Lateral Habenula Neurons Promotes Disengagement from Reward-Seeking Behavior
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.15.426914; this version posted January 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Tonic activity in lateral habenula neurons promotes disengagement from reward-seeking behavior 5 Brianna J. Sleezer1,3, Ryan J. Post1,2,3, David A. Bulkin1,2,3, R. Becket Ebitz4, Vladlena Lee1, Kasey Han1, Melissa R. Warden1,2,5,* 1Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA 2Cornell Neurotech, Cornell University, Ithaca, NY 14853 USA 10 3These authors contributed equally 4Department oF Neuroscience, Université de Montréal, Montréal, QC H3T 1J4, Canada 5Lead Contact *Correspondence: [email protected] 15 Sleezer*, Post*, Bulkin* et al. 1 of 38 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.15.426914; this version posted January 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. SUMMARY Survival requires both the ability to persistently pursue goals and the ability to determine when it is time to stop, an adaptive balance of perseverance and disengagement. Neural activity in the 5 lateral habenula (LHb) has been linked to aversion and negative valence, but its role in regulating the balance between reward-seeking and disengaged behavioral states remains unclear.
    [Show full text]
  • Brain Structure and Function Related to Headache
    Review Cephalalgia 0(0) 1–26 ! International Headache Society 2018 Brain structure and function related Reprints and permissions: sagepub.co.uk/journalsPermissions.nav to headache: Brainstem structure and DOI: 10.1177/0333102418784698 function in headache journals.sagepub.com/home/cep Marta Vila-Pueyo1 , Jan Hoffmann2 , Marcela Romero-Reyes3 and Simon Akerman3 Abstract Objective: To review and discuss the literature relevant to the role of brainstem structure and function in headache. Background: Primary headache disorders, such as migraine and cluster headache, are considered disorders of the brain. As well as head-related pain, these headache disorders are also associated with other neurological symptoms, such as those related to sensory, homeostatic, autonomic, cognitive and affective processing that can all occur before, during or even after headache has ceased. Many imaging studies demonstrate activation in brainstem areas that appear specifically associated with headache disorders, especially migraine, which may be related to the mechanisms of many of these symptoms. This is further supported by preclinical studies, which demonstrate that modulation of specific brainstem nuclei alters sensory processing relevant to these symptoms, including headache, cranial autonomic responses and homeostatic mechanisms. Review focus: This review will specifically focus on the role of brainstem structures relevant to primary headaches, including medullary, pontine, and midbrain, and describe their functional role and how they relate to mechanisms
    [Show full text]
  • Mapping the Populations of Neurotensin Neurons in the Male Mouse Brain T Laura E
    Neuropeptides 76 (2019) 101930 Contents lists available at ScienceDirect Neuropeptides journal homepage: www.elsevier.com/locate/npep Mapping the populations of neurotensin neurons in the male mouse brain T Laura E. Schroeder, Ryan Furdock, Cristina Rivera Quiles, Gizem Kurt, Patricia Perez-Bonilla, ⁎ Angela Garcia, Crystal Colon-Ortiz, Juliette Brown, Raluca Bugescu, Gina M. Leinninger Department of Physiology, Michigan State University, East Lansing, MI 48114, United States ARTICLE INFO ABSTRACT Keywords: Neurotensin (Nts) is a neuropeptide implicated in the regulation of many facets of physiology, including car- Lateral hypothalamus diovascular tone, pain processing, ingestive behaviors, locomotor drive, sleep, addiction and social behaviors. Parabrachial nucleus Yet, there is incomplete understanding about how the various populations of Nts neurons distributed throughout Periaqueductal gray the brain mediate such physiology. This knowledge gap largely stemmed from the inability to simultaneously Central amygdala identify Nts cell bodies and manipulate them in vivo. One means of overcoming this obstacle is to study NtsCre Thalamus mice crossed onto a Cre-inducible green fluorescent reporter line (NtsCre;GFP mice), as these mice permit both Nucleus accumbens Preoptic area visualization and in vivo modulation of specific populations of Nts neurons (using Cre-inducible viral and genetic tools) to reveal their function. Here we provide a comprehensive characterization of the distribution and relative Abbreviation: 12 N, Hypoglossal nucleus;
    [Show full text]
  • The Lateral Hypothalamic Parvalbuminimmunoreactive
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Published in "7KH-RXUQDORI&RPSDUDWLYH1HXURORJ\ GRLFQH" provided by RERO DOC Digital Library which should be cited to refer to this work. The lateral hypothalamic parvalbumin-immunoreactive (PV1) nucleus in rodents* Zoltán Mészár1, Franck Girard1, Clifford B. Saper2 and Marco R. Celio1,2** 1Anatomy Unit and “Program in Neurosciences”, Department of Medicine, University of Fribourg, Rte. A. Gockel 1, CH-1700 Fribourg, Switzerland 2 Neurology and Neuroscience, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA Running title: Parvalbumin-positive nucleus in the lateral hypothalamus Associate Editor: Paul W. Sawchenko Key Words: medial forebrain bundle, lateral tuberal nucleus, glutamate, projection neurons, neuropeptides, vocalization Corresponding author: Marco R. Celio, Anatomy and “Program in Neuroscience”, Department of Medicine, University of Fribourg, Rte. A. Gockel 1, CH-1700 Fribourg, Switzerland. Phone: +41 26 300 84 91; Fax: +41 26 300 97 33. E-mail: http://doc.rero.ch [email protected]. **MRC spent sabbatical leaves at HMS in 1997 and 2008. Supported by the Canton of Fribourg, an grant of the Swiss National Science Foundation (no.: 3100A0-113524), the Novartis Foundation and USPHS grants NS33987 and NS072337. *Dedicated to Emilio Celio (1927-2011), founder of Swant. Abbreviations: Anatomic: IIn: optic nerve 3dV: third ventricle 2 A: amygdala AHA: anterior hypothalamic area Cer: cerebellum cp: cerebral peduncle DMH: dorsomedial hypothalamic
    [Show full text]
  • Amygdala Nuclei Volume and Shape in Military Veterans with Posttraumatic Stress Disorder
    Biological Psychiatry: Archival Report CNNI Amygdala Nuclei Volume and Shape in Military Veterans With Posttraumatic Stress Disorder Rajendra A. Morey, Emily K. Clarke, Courtney C. Haswell, Rachel D. Phillips, Ashley N. Clausen, Mary S. Mufford, Zeynep Saygin, VA Mid-Atlantic MIRECC Workgroup, H. Ryan Wagner, and Kevin S. LaBar ABSTRACT BACKGROUND: The amygdala is a subcortical structure involved in socioemotional and associative fear learning processes relevant for understanding the mechanisms of posttraumatic stress disorder (PTSD). Research in animals indicates that the amygdala is a heterogeneous structure in which the basolateral and centromedial divisions are susceptible to stress. While the amygdala complex is implicated in the pathophysiology of PTSD, little is known about the specific contributions of the individual nuclei that constitute the amygdala complex. METHODS: Military veterans (n = 355), including military veterans with PTSD (n = 149) and trauma-exposed control subjects without PTSD (n = 206), underwent high-resolution T1-weighted anatomical scans. Automated FreeSurfer segmentation of the amygdala yielded 9 structures: basal, lateral, accessory basal, anterior amygdaloid, and central, medial, cortical, and paralaminar nuclei, along with the corticoamygdaloid transition zone. Subregional volumes were compared between groups using ordinary-least-squares regression with relevant demographic and clinical regressors followed by 3-dimensional shape analysis of whole amygdala. RESULTS: PTSD was associated with smaller left and right lateral and paralaminar nuclei, but with larger left and right central, medial, and cortical nuclei (p , .05, false discovery rate corrected). Shape analyses revealed lower radial distance in anterior bilateral amygdala and lower Jacobian determinant in posterior bilateral amygdala in PTSD compared with control subjects.
    [Show full text]
  • The Neuromodulatory Basis of Emotion
    1 The Neuromodulatory Basis of Emotion Jean-Marc Fellous Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California The Neuroscientist 5(5):283-294,1999. The neural basis of emotion can be found in both the neural computation and the neuromodulation of the neural substrate mediating behavior. I review the experimental evidence showing the involvement of the hypothalamus, the amygdala and the prefrontal cortex in emotion. For each of these structures, I show the important role of various neuromodulatory systems in mediating emotional behavior. Generalizing, I suggest that behavioral complexity is partly due to the diversity and intensity of neuromodulation and hence depends on emotional contexts. Rooting the emotional state in neuromodulatory phenomena allows for its quantitative and scientific study and possibly its characterization. Key Words: Neuromodulation, Emotion, Affect, Hypothalamus, Amygdala, Prefrontal the behavior1 that this substrate mediates. The Introduction neuromodulation of 'cognitive centers' results in phenomena pertaining to emotional influences of The scientific study of the neural basis of cognitive processing. Neuromodulations of memory emotion is an active field of experimental and structures explain the influence of emotion on theoretical research (See (1,2) for reviews). Partly learning and recall; the neuromodulation of specific because of a lack of a clear definition (should it reflex pathways explains the influence of the exists) of what emotion is, and probably because of emotional state on elementary motor behaviors, and its complexity, it has been difficult to offer a so forth... neuroscience framework in which the influence of The instantaneous pattern of such modulations emotion on behavior can be studied in a (i.e.
    [Show full text]
  • The Basolateral Amygdala-Medial Prefrontal Cortex Circuitry Regulates Behavioral Flexibility During Appetitive Reversal Learning
    Behavioral Neuroscience © 2019 American Psychological Association 2020, Vol. 134, No. 1, 34–44 ISSN: 0735-7044 http://dx.doi.org/10.1037/bne0000349 The Basolateral Amygdala-Medial Prefrontal Cortex Circuitry Regulates Behavioral Flexibility During Appetitive Reversal Learning Sara E. Keefer Gorica D. Petrovich University of Maryland School of Medicine Boston College Environmental cues can become predictors of food availability through Pavlovian conditioning. Two forebrain regions important in this associative learning are the basolateral amygdala (BLA) and medial prefrontal cortex (mPFC). Recent work showed the BLA-mPFC pathway is activated when a cue reliably signals food, suggesting the BLA informs the mPFC of the cue’s value. The current study tested this hypothesis by altering the value of 2 food cues using reversal learning and illness-induced devaluation paradigms. Rats that received unilateral excitotoxic lesions of the BLA and mPFC contralaterally placed, along with ipsilateral and sham controls, underwent discriminative conditioning, followed by reversal learning and then devaluation. All groups successfully discriminated between 2 auditory stimuli that were followed by food delivery (conditional stimulus [CS]ϩ) or not rewarded (CSϪ), demonstrating this learning does not require BLA-mPFC communication. When the outcomes of the stimuli were reversed, the rats with disconnected BLA-mPFC (contralateral condition) showed increased responding to the CSs, especially to the rCSϩ (original CSϪ) during the first session, suggesting impaired cue memory recall and behavioral inhibition compared to the other groups. For devaluation, all groups successfully learned conditioned taste aversion; however, there was no evidence of cue devaluation or differences between groups. Interestingly, at the end of testing, the nondevalued contralateral group was still responding more to the original CSϩ (rCSϪ) compared to the devalued contralateral group.
    [Show full text]
  • Categorization of Neurons in the Lateral Hypothalamus by Projection and Morphology
    Categorization of Neurons in the Lateral Hypothalamus by Projection and Morphology Elin Hermann [email protected] under the direction of Prof. Konstantinos Meletis PhD. Daniela Calvigioni PhD. Janós Fuzik Department of Neuroscience Karolinska Institutet Research Academy for Young Scientists July 11, 2018 Abstract To cure brain disorders scientists must figure out how the brain functions. Thus the aim of this study is to see which neurons in the lateral hypothalamus (LHA) are connected to the Lateral habenula (LHb) and to periaqueductal gray (PAG). Additionally, the diver- sity of neurons will be investigated by projection and morphology in order to categorize neurons in the LHA. Retrograde injections were administrated in the LHb and PAG, re- constructions of the morphology of some neurons was performed. Immunohistochemistry with melanin-concentrating hormone (MCH), parvalbumin (PV), and estrogen (ER) in the LHA were conducted in different coordinates of the brain. It was shown that MCH varied in different coordinates, that PV marked neurons barely existed in the LHA and neurons with ER were common in the LHA area. Furthermore, the reconstruction of cell morphology showed two different-looking neurons projected to the LHb. One type looked similar to the neurons projecting to the PAG and the other had a simpler morphology. Future studies need to be performed in order to aquire more accurate results of both the reconstruction and the staining with immunohistochemistry to prove their reliability. Additionally, immunohistochemistry of the two different neurons projected to the LHb should be done in order to see a difference and potentially categorize them. Acknowledgements I would like to thank Prof.
    [Show full text]
  • Inhibitory Input from the Lateral Hypothalamus to the Ventral Tegmental Area Disinhibits Dopamine Neurons and Promotes Behavioral Activation
    Inhibitory Input from the Lateral Hypothalamus to the Ventral Tegmental Area Disinhibits Dopamine Neurons and Promotes Behavioral Activation The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Nieh, Edward H. et al. “Inhibitory Input from the Lateral Hypothalamus to the Ventral Tegmental Area Disinhibits Dopamine Neurons and Promotes Behavioral Activation.” Neuron 90, 6 (June 2016): 1286–1298 © 2016 Elsevier Inc As Published http://dx.doi.org/10.1016/J.NEURON.2016.04.035 Publisher Elsevier/Cell Press Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/112706 Terms of Use Creative Commons Attribution-NonCommercial-NoDerivs License Detailed Terms http://creativecommons.org/licenses/by-nc-nd/4.0/ HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Neuron. Manuscript Author Author manuscript; Manuscript Author available in PMC 2017 June 15. Published in final edited form as: Neuron. 2016 June 15; 90(6): 1286–1298. doi:10.1016/j.neuron.2016.04.035. Inhibitory Input from the Lateral Hypothalamus to the Ventral Tegmental Area Disinhibits Dopamine Neurons and Promotes Behavioral Activation Edward H. Nieh1,2, Caitlin M. Vander Weele1,2, Gillian A. Matthews1, Kara N. Presbrey1, Romy Wichmann1, Christopher A. Leppla1, Ehsan M. Izadmehr1, and Kay M. Tye1,* 1The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA SUMMARY Projections from the lateral hypothalamus (LH) to the ventral tegmental area (VTA), containing both GABAergic and glutamatergic components, encode conditioned responses and control compulsive reward-seeking behavior.
    [Show full text]
  • Lichtenberg Et Al. 1 the Medial Orbitofrontal Cortex
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.27.441665; this version posted June 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Lichtenberg et al. 1 The medial orbitofrontal cortex - basolateral amygdala circuit regulates the influence of reward cues on adaptive behavior and choice Nina T. Lichtenberg1, Linnea Sepe-Forrest1, Zachary T. Pennington1, Alexander C. Lamparelli1, Venuz Y. Greenfield1, Kate M. Wassum1-4 1. Dept. of Psychology, UCLA, Los Angeles, CA 90095. 2. Brain Research Institute, UCLA, Los Angeles, CA 90095, USA. 3. Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, USA. 4. Integrative Center for Addictive Disorders, University of California, Los Angeles, Los Angeles, CA, USA. Correspondence: Kate Wassum: [email protected] Dept. of Psychology, UCLA 1285 Pritzker Hall Box 951563 Los Angeles, CA 90095-1563 Abbreviated title: A corticoamygdala circuit for reward expectation Key words: reward, memory, decision making, Pavlovian conditioning, basolateral amygdala, orbitofrontal cortex, Pavlovian-to-instrumental transfer, devaluation Pages: 19 Words: Abstract: 238 Significance statement: 88 Introduction: 641 Discussion:1500 Figures: 3 Tables: 0 Supplemental Tables: 0 Supplemental Figures: 0 Acknowledgements: We would also like to acknowledge the very helpful feedback from Drs. Alicia Izquierdo, Melissa Sharpe, and Melissa Malvaez on this data. Lastly, we would like to acknowledge the generous infrastructure support from the Staglin Center for Behavior and Brain Sciences.
    [Show full text]