Highlights of the MDA U.S. Neuromuscular Disease Registry (2013-2016)

Total Page:16

File Type:pdf, Size:1020Kb

Highlights of the MDA U.S. Neuromuscular Disease Registry (2013-2016) Highlights of the MDA U.S. Neuromuscular Disease Registry (2013-2016) Muscular Dystrophy Association • mda.org Table of Contents Overview . 3 Registry Goals for Pilot Phase . .4 Participating MDA Care Centers . 5 Introduction to the Registry . .7 ALS . 10 SMA . 15 DMD and BMD . 19 Community Impact . .24 2 Highlights of the MDA U.S. Neuromuscular Disease Registry Registry Overview In 2013, MDA launched the U.S. Neuromuscular Disease Registry (the “registry”) for four diseases — amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) — in 26 Care Centers in diverse locations throughout the United States. The registry captures clinical information on a subset (approximately 2,700) of the more than 100,000 individuals with neuromuscular diseases who are registered with MDA. The four diseases, ALS, SMA, DMD and BMD, were chosen for this pilot project because at the time of the pilot launch, there were multiple experimental therapies in development for them and because national working groups of clinical and research specialists already had identified and standardized much of the information that is important to collect in clinical trials. In addition, formal “standards of care” for individuals with these diseases already were defined, providing a unique opportunity to demonstrate how a registry could be used to measure the implementation of these care standards and their impact on patient outcomes. The registry collects a wide range of clinical data from individuals seen in MDA Care Centers including diagnostic tests, clinical measures and interventions. MDA’s registry is a clinician-entered database, which means information is typically entered or uploaded by the physician or a study coordinator, as opposed to data being entered by individual patients and/or their caregivers or families. Participation in the registry is voluntary. An independent committee called an Institutional Review Board (IRB) protects the rights and welfare of participants involved in the registry and ensures all research conducted is held to the highest ethical standards. Data from the registry used for research purposes is de-identified, meaning that the identity of the individuals enrolled in the registry is protected and not able to be connected to the clinical data. MDA’s intent in establishing the registry is to optimize the clinical management of individuals with neuromuscular diseases in order to improve survival and quality of life, and to help advance drug development for these diseases. What is a registry? A registry is a database of information — typically about individuals diagnosed with a specific disease or condition — that enables tracking or measuring of any number of health-related or quality-of-life outcomes. As the only organization in the neuromuscular disease field that supports multiple neuromuscular diseases and maintains a nationwide network of more than 150 Care Centers providing multidisciplinary care to more than 50,000 individuals annually — MDA is uniquely positioned to establish a neuromuscular disease registry. 3 Highlights of the MDA U.S. Neuromuscular Disease Registry Return to Table of Contents Registry Goals for the Pilot Phase Gain a better understanding of the course of illness for specific neuromuscular diseases. Collect data about genotype-phenotype correlations to allow for better prediction of disease progression based on genetic information. Collect longitudinal patient data that will allow benchmarking of best clinical practices. Use registry data as a platform to develop and implement a clinical quality improvement program for MDA Care Centers across the country. Provide outcome-related information about MDA Care Centers for families seeking medical care. Establish a database of individuals eligible for clinical trials in neuromuscular diseases to ease the burden of clinical trial recruitment and accelerate drug development. *The above goals were set out for the pilot phase of the registry. These goals may be amended as the pilot phase concludes and the registry is evaluated further. We are deeply grateful to all who have contributed to launching the MDA registry, especially the individuals living with ALS, SMA, BMD and DMD, the health care professionals who have entered data, and the MDA Registry Advisory Board and Clinical Advisory Committee for their insight and guidance. 4 Highlights of the MDA U.S. Neuromuscular Disease Registry Return to Table of Contents Clinical Advisory Participating Pilot MDA Care Centers Committee Ann & Robert H. Lurie Children’s Hospital of Chicago (Chicago, Ill.) Yaacov Anziska, M.D. California Pacific Medical Center (San Francisco, Calif.) Susan Apkon, M.D. Carolinas Medical Center (Charlotte, N.C.) Jan Bonner Children’s Healthcare of Atlanta at Scottish Rite (Atlanta, Ga.) Joline Dalton, CGC Children’s Hospital Colorado (Aurora, Colo.) Richard Finkel, M.D. Children’s Hospital of Philadelphia (Philadelphia, Pa.) Daragh Heitzman, M.D. Children’s Medical Center of Dallas (Dallas, Texas) Neil Holland, M.D. Columbia University Medical Center (New York, N.Y.) Tomas Holmlund, M.D. Gillette Children’s Specialty Healthcare (St. Paul, Minn.) Irwin Jacobs, M.D. Hospital for Special Care (New Britain, Conn.) Wendy King, PT Le Bonheur Children’s Hospital (Memphis, Tenn.) John Kissel, M.D. Massachusetts General Hospital (Boston, Mass.) Katherine Mathews, M.D. Methodist Neurological Institute (Houston, Texas) Dennis Matthews, M.D. MetroHealth Medical Center (Cleveland, Ohio) Tahseen Mozaffar, M.D. Monmouth Medical Center (Long Branch, N.J.) Jeffrey Rothstein, M.D., Ph.D. Nationwide Children’s Hospital (Columbus, Ohio) Barry Russman, M.D. Nemours Children’s Hospital (Orlando, Fla.) Ericka Simpson, M.D. Ohio State University Wexner Medical Center (Columbus, Ohio) Jonathan Strober, M.D. Rady Children’s Hospital — San Diego (San Diego, Calif.) Shriners Hospital for Children — Portland (Portland, Ore.) Registry Advisory Texas Neurology P.A. (Dallas, Texas) Board UCSF Benioff Children’s Hospital (San Francisco, Calif.) Alan Beggs, Ph.D. UCSF Fresno (Fresno, Calif.) Joshua Benditt, M.D. University of Michigan (Ann Arbor, Mich.) James Berry, M.D. University of Minnesota (Minneapolis, Minn.) Julie Bolen, Ph.D., MPH Wesley Neurology Clinic (Cordova, Tenn.) Thomas Crawford, M.D. Kevin Flanigan, M.D. Amelie Gubitz, Ph.D. Eric Hoffman, Ph.D. Emily Munson, Esq. John Porter, Ph.D. Rachel Richesson, Ph.D., MPH Jeffrey Rosenfeld, M.D., Ph.D. Carly Siskind, M.S., CGC 5 Highlights of the MDA U.S. Neuromuscular Disease Registry Return to Table of Contents Use of the Registry Data to Support Research MDA invites researchers to use the registry data to accelerate improvements in drug development and health services research. Requests for access to de-identified data are welcomed from academic investigators, clinicians and industry. Requests are reviewed internally by MDA and the Registry Advisory Board, both of which are eager to support research proposals that show promise to advance our understanding and treatment of neuromuscular diseases. Publication and presentation of results from the analyses of MDA registry data are encouraged. MDA prohibits the use of registry data for marketing purposes related to the purchase or use of medical products. Please email [email protected] to receive a Request for Data Access Form and the Data and Publication Guidelines. MDA Care Centers MDA provides care for children and adults from day one through our network of more than 150 MDA Care Centers across the United States and Puerto Rico. These multidisciplinary clinics, located at leading hospitals and health care institutions, bring health care specialists from a variety of disciplines together so that families can receive the care they need in one place. To ensure the best possible health outcomes for families, MDA supports the Care Centers through funding grants with the goal to strengthen and expand multidisciplinary care, which is proven to improve and prolong life. 6 Highlights of the MDA U.S. Neuromuscular Disease Registry Return to Table of Contents Introduction to the MDA Registry The registry contains information on individuals with ALS, SMA, DMD and BMD who received care at select MDA Care Centers between 2013 and 2016. As of September 2016, there was a total of 2,685 individuals enrolled in the registry. Individuals Enrolled in the Registry SMA 11% DMD/BMD ALS 33% 56% 7 Highlights of the MDA U.S. Neuromuscular Disease Registry Return to Table of Contents Age and Sex Distribution Male Female ALS There are more males with ALS than females 0-39 enrolled in the registry, consistent with the knowledge that ALS strikes men slightly 40-49 more often than women. 50-59 60-69 Age (Years) 70-79 80+ Number of Individuals *Age unspecified for 2; Sex unspecified for 1 SMA The most common forms of SMA are typically 0-9 diagnosed during the infant, toddler or early childhood years, while less severe forms 10-19 may not present until later in childhood or even adulthood. 20-29 Age (Years) 30-39 40+ Number of Individuals DMD/BMD DMD and BMD are diseases caused by 0-9 alterations in the DMD gene found on the X chromosome. The DMD gene encodes a dystrophin 10-19 protein called . DMD and BMD affect males, although females can be “carriers” who have a normal DMD 20-29 gene on one X chromosome and an abnormal DMD gene on the other X chromosome. Most Age (Years) 30-39 female carriers do not have signs or symptoms of DMD or BMD. 40+ Number of Individuals
Recommended publications
  • A Schematic Approach to Hypotonia in Infancy
    Leyenaar.qxd 8/26/2005 4:03 PM Page 397 NEUROLOGY SUBSPECIALTY ARTICLE A schematic approach to hypotonia in infancy JoAnna Leyenaar MD MPH, Peter Camfield MD FRCPC, Carol Camfield MD FRCPC J Leyenaar, P Camfield, C Camfield. A schematic approach Une démarche schématique envers l’hypotonie to hypotonia in infancy. Paediatr Child Health 2005; pendant la première enfance 10(7):397-400. L’hypotonie peut être le signe révélateur de nombreuses maladies Hypotonia may be the presenting sign for many systemic diseases and systémiques ou du système nerveux. Le présent article traite d’une diseases of the nervous system. The present paper discusses a rational, démarche diagnostique rationnelle, simple et précise envers l’hypotonie simple and accurate diagnostic approach to hypotonia in infancy, pendant la première enfance, illustrée par le cas d’une fillette de cinq mois illustrated by the case of a five-month-old infant girl recently referred récemment aiguillée vers le IWK Health Centre de Halifax, en Nouvelle- to the IWK Health Centre in Halifax, Nova Scotia. Key points in the Écosse. Les principaux points de l’anamnèse et de l’examen physique sont history and physical examination are outlined to allow a tailored exposés afin de permettre une exploration personnalisée de la patiente et investigation both for the patient and for other hypotonic infants. A des autres nourrissons hypotoniques. Un exposé sur une importante discussion of an important neuromuscular disease, diagnosed in the maladie neuromusculaire, diagnostiquée chez la patiente, conclut l’article. present patient, concludes the paper. Key Words: Hypotonia; Infant; Spinal muscular atrophy nfants with hypotonia pose challenges for clinicians respiratory syncytial virus-positive bronchiolitis.
    [Show full text]
  • Myasthenia and Related Disorders of the Neuromuscular Junction Jennifer Spillane, David J Beeson, Dimitri M Kullmann
    Myasthenia and related disorders of the neuromuscular junction Jennifer Spillane, David J Beeson, Dimitri M Kullmann To cite this version: Jennifer Spillane, David J Beeson, Dimitri M Kullmann. Myasthenia and related disorders of the neuromuscular junction. Journal of Neurology, Neurosurgery and Psychiatry, BMJ Publishing Group, 2010, 81 (8), pp.850. 10.1136/jnnp.2008.169367. hal-00557404 HAL Id: hal-00557404 https://hal.archives-ouvertes.fr/hal-00557404 Submitted on 19 Jan 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Myasthenia and related disorders of the neuromuscular junction Jennifer Spillane1, David J Beeson2 and Dimitri M Kullmann1 1UCL Institute of Neurology 2Weatherall Institute for Molecular Medicine, Oxford University Abtract Our understanding of transmission at the neuromuscular junction has increased greatly in recent years. We now recognise a wide variety of autoimmune and genetic diseases that affect this specialised synapse, causing muscle weakness and fatigue. These disorders greatly affect quality of life and rarely can be fatal. Myasthenia Gravis is the most common disorder and is most commonly caused by auto‐antibodies targeting postsynaptic acetylcholine receptors (AChRs). Antibodies to muscle‐specific kinase (MuSK) are detected in a variable proportion of the remainder.
    [Show full text]
  • Combined Web 759..782
    Movement Disorders Vol. 24, No. 5, 2009, pp. 759–782 Ó 2009 Movement Disorder Society Brief Reports Clinical Characteristics of Psychogenic movement disorders (PMDs) are not uncommon in movement disorder clinics.1 PMDs may 49 Patients with Psychogenic phenomenologically mimic almost all movement disor- Movement Disorders in a Tertiary ders. The most common movement disorder is tremor, followed by dystonia and others.2–5 Clinic in Turkey Diagnostic criteria for PMDs was first identified by Fahn and Williams, based on atypical and common Sibel Ertan, MD,1 Derya Uluduz, MD,1 clinical clues.6 Later, other authors described additional 1* 1 Sibel O¨ zekmekc¸i, MD, Gu¨nes Kiziltan, MD, features to distinguish PMD patients from those with 2 1 1 Turan Ertan, MD, Cengiz Yalc¸inkaya, MD, , and neurogenic movement disorders.7–9 ¨ 1 and C¸ igdem Ozkara, MD Because there is no study written in English on any 1Department of Neurology, Cerrahpasa Faculty of Medicine, hospital-based data of PMDs in Turkey, we aimed to Istanbul University, Istanbul, Turkey; 2Department of identify the frequency and phenomenological features Psychiatry, Cerrahpasa Faculty of Medicine, Istanbul of PMDs in our patient population with movement dis- University, Istanbul, Turkey orders. Abstract: Patients admitted to movement disorders outpa- tient unit at a university hospital between January 2002 and June 2007 were screened for psychogenic movement PATIENTS AND METHODS disorders (PMDs). Out of 1,743 patients, 49 patients Patients admitted to our Movement Disorders Unit (2.8%), including four children, were diagnosed to have between January 2002 and June 2007, were screened PMDs. Women to men ratio was 34/15.
    [Show full text]
  • Diagnosis and Treatment of Facioscapulohumeral Muscular Dystrophy: 2015 Guidelines Steven Karceski Neurology 2015;85;E41-E43 DOI 10.1212/WNL.0000000000001865
    PATIENT PAGE Section Editors Diagnosis and treatment of DavidC.Spencer,MD Steven Karceski, MD facioscapulohumeral muscular dystrophy 2015 guidelines Steven Karceski, MD WHAT DID THE AUTHORS STUDY? Dr. Tawil led a in people with FSHD. However, a person with committee of doctors who specialize in diagnosing FSHD could develop heart problems unrelated to and treating facioscapulohumeral muscular dystrophy FSHD. If a person with FSHD developed heart prob- (FSHD). Together, they reviewed published articles lems, he or she would need to see a doctor for an eval- and research in FSHD and similar muscular dystro- uation and treatment. phies. They assembled detailed recommendations Although rare, patients with a low number of about the diagnosis and treatment of people with copies of D4Z4 may develop problems with their FSHD.1 vision. They develop Coats disease, which can be de- tected by an ophthalmologist using special equip- HOW IS FSHD DIAGNOSED? The initial step to the ment called indirect ophthalmoscopy. In short, a diagnosis of FSHD is taking a careful medical history. person who has a low number of copies should be This starts in the doctor’s office. The doctor will ask screened and evaluated for this possibility by a many questions about the person’s weakness: how it trained eye specialist. started, where it is most noticeable, how quickly it is Pain is common in people with FSHD. The pain worsening, and whether there is a family history of occurs in the muscles and bones. It often responds to the same kind of problem. If there is a family history several medications and physical therapy.
    [Show full text]
  • Tremor in X-Linked Recessive Spinal and Bulbar Muscular Atrophy (Kennedy’S Disease)
    CLINICS 2011;66(6):955-957 DOI:10.1590/S1807-59322011000600006 CLINICAL SCIENCE Tremor in X-linked recessive spinal and bulbar muscular atrophy (Kennedy’s disease) Francisco A. Dias,I Renato P. Munhoz,I Salmo Raskin,II Lineu Ce´sar Werneck,I He´lio A. G. TeiveI I Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clı´nicas, Federal University of Parana´ , Curitiba, PR, Brazil. II Genetika Laboratory, Curitiba, PR, Brazil. OBJECTIVE: To study tremor in patients with X-linked recessive spinobulbar muscular atrophy or Kennedy’s disease. METHODS: Ten patients (from 7 families) with a genetic diagnosis of Kennedy’s disease were screened for the presence of tremor using a standardized clinical protocol and followed up at a neurology outpatient clinic. All index patients were genotyped and showed an expanded allele in the androgen receptor gene. RESULTS: Mean patient age was 37.6 years and mean number of CAG repeats 47 (44-53). Tremor was present in 8 (80%) patients and was predominantly postural hand tremor. Alcohol responsiveness was detected in 7 (88%) patients with tremor, who all responded well to treatment with a b-blocker (propranolol). CONCLUSION: Tremor is a common feature in patients with Kennedy’s disease and has characteristics similar to those of essential tremor. KEYWORDS: Kennedy’s disease; X-linked recessive bulbospinal neuronopathy; Spinal and bulbar muscular atrophy; Motor neuron disease; Tremor. Dias FA, Munhoz RP, Raskin S, Werneck LC, Teive HAG. Tremor in X-linked recessive spinal and bulbar muscular atrophy (Kennedy’s disease). Clinics. 2011;66(6):955-957. Received for publication on December 24, 2010; First review completed on January 18, 2011; Accepted for publication on February 25, 2011 E-mail: [email protected] Tel.: 55 41 3019-5060 INTRODUCTION compatible with a long life.
    [Show full text]
  • Consensus-Based Care Recommendations for Adults with Myotonic Dystrophy Type 1
    Consensus-based Care Recommendations for Adults with Myotonic Dystrophy Type 1 I Consensus-based Care Recommendations for Adults with Myotonic Dystrophy Type 1 Due to the multisystemic nature of this disease, the studies and rigorous evidence needed to drive the creation of an evidence-based guideline for the clinical care of adult myotonic dystrophy type 1 (DM1) patients are not currently available for all affected body systems and symptoms. In order to improve and standardize care for this disorder now, more than 65 leading myotonic dystrophy (DM) clinicians in Western Europe, the UK, Canada and the US joined in a process started in Spring 2015 and concluded in Spring 2017 to create the Consensus-based Care Recommendations for Adults with Myotonic Dystrophy Type 1. The project was organized and supported by the Myotonic Dystrophy Foundation (MDF). A complete list of authors and an overview of the process is available in Addendum 1. A complete reading list for each of the study area sections is available in Addendum 2. An Update Policy has been adopted for this document and will direct a systematic review of literature and appropriate follow up every three years. Myotonic Dystrophy Foundation staff will provide logistical and staff support for the update process. A Quick Reference Guide extrapolated from the Consensus-based Care Recommendations is available here http://www.myotonic.org/clinical-resources For more information, visit myotonic.org. Myotonic Dystrophy Foundation 1 www.myotonic.org Table of Contents Life-threatening symptoms
    [Show full text]
  • Evidence-Based Guideline: Evaluation, Diagnosis, and Management Of
    Evidence-based Guideline: Evaluation, Diagnosis, and Management of Facioscapulohumeral Muscular Dystrophy Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology and the Practice Issues Review Panel of the American Association of Neuromuscular & Electrodiagnostic Medicine Rabi Tawil, MD, FAAN1; John T. Kissel, MD, FAAN2; Chad Heatwole, MD, MS-CI3; Shree Pandya, PT, DPT, MS4; Gary Gronseth, MD, FAAN5; Michael Benatar, MBChB, DPhil, FAAN6 (1) MDA Neuromuscular Disease Clinic, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY (2) Department of Neurology, Wexner Medical Center, Ohio State University, Columbus, OH (3) Department of Neurology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY (4) Department of Neurology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY (5) Department of Neurology, University of Kansas School of Medicine, Kansas City, KS (6) Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL Correspondence to: American Academy of Neurology [email protected] 1 Approved by the Guideline Development, Dissemination, and Implementation Subcommittee on July 23, 2014; by the AAN Practice Committee on October 20, 2014; by the AANEM Board of Directors on [date]; and by the AANI Board of Directors on [date]. This guideline was endorsed by the FSH Society on December 18, 2014. 2 AUTHOR CONTRIBUTIONS Rabi Tawil: study concept and design, acquisition of data, analysis or interpretation of data, drafting/revising the manuscript, critical revision of the manuscript for important intellectual content, study supervision. John Kissel: acquisition of data, analysis or interpretation of data, critical revision of the manuscript for important intellectual content.
    [Show full text]
  • Myotonia in Centronuclear Myopathy
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.41.12.1102 on 1 December 1978. Downloaded from Journal ofNeurology, Neurosurgery, and Psychiatry, 1978, 41, 1102-1108 Myotonia in centronuclear myopathy A. GIL-PERALTA, E. RAFEL, J. BAUTISTA, AND R ALBERCA From the Departments of Neurology and Pathology, Ciudad Sanitaria Virgen del Rocio, Seville, Spain SUMMARY Centronuclear myopathy, which is unusual because of clinical myotonia, is described in two sisters. The diagnosis was established in adult life, but the first symptoms were noticed in infancy. The outstanding points of the clinical picture were mild amyotrophy, paresis, and clinical myotonia. Myotubular myopathy (Spiro et al., 1966) is an the age of 27 years she noticed increased muscular entity defined by its morphological muscular difficulties, and needed support to climb stairs. by guest. Protected copyright. alterations. The disease displays a notable clinical Later on, paresis of the upper extremities, of variability and marked genetic heterogeneity indeterminate onset, caused difficulty in raising (Radu et al., 1977). Usually it is present early in the arms above the shoulders. These symptoms life, and is found only rarely in adults (Vital et al., were not modified by cold weather. The patient 1970). Electrical myotonia (Munsat et al., 1969; repeatedly suffered from corneal ulcers, and within Radu et al., 1977) with accompanying cataract the past year she had noticed macular skin lesions has been described in this disease (Hawkes and on the right arm. Absolon, 1975). The patient walked with a waddling gait and a We report a family in which two members dis- limp on the right side.
    [Show full text]
  • Clinical Approach to the Floppy Child
    THE FLOPPY CHILD CLINICAL APPROACH TO THE FLOPPY CHILD The floppy infant syndrome is a well-recognised entity for paediatricians and neonatologists and refers to an infant with generalised hypotonia presenting at birth or in early life. An organised approach is essential when evaluating a floppy infant, as the causes are numerous. A detailed history combined with a full systemic and neurological examination are critical to allow for accurate and precise diagnosis. Diagnosis at an early stage is without a doubt in the child’s best interest. HISTORY The pre-, peri- and postnatal history is important. Enquire about the quality and quantity of fetal movements, breech presentation and the presence of either poly- or oligohydramnios. The incidence of breech presentation is higher in fetuses with neuromuscular disorders as turning requires adequate fetal mobility. Documentation of birth trauma, birth anoxia, delivery complications, low cord R van Toorn pH and Apgar scores are crucial as hypoxic-ischaemic encephalopathy remains MB ChB, (Stell) MRCP (Lond), FCP (SA) an important cause of neonatal hypotonia. Neonatal seizures and an encephalo- Specialist pathic state offer further proof that the hypotonia is of central origin. The onset of the hypotonia is also important as it may distinguish between congenital and Department of Paediatrics and Child Health aquired aetiologies. Enquire about consanguinity and identify other affected fam- Faculty of Health Sciences ily members in order to reach a definitive diagnosis, using a detailed family Stellenbosch University and pedigree to assist future genetic counselling. Tygerberg Children’s Hospital CLINICAL CLUES ON NEUROLOGICAL EXAMINATION Ronald van Toorn obtained his medical degree from the University of Stellenbosch, There are two approaches to the diagnostic problem.
    [Show full text]
  • The Clinical Approach to Movement Disorders Wilson F
    REVIEWS The clinical approach to movement disorders Wilson F. Abdo, Bart P. C. van de Warrenburg, David J. Burn, Niall P. Quinn and Bastiaan R. Bloem Abstract | Movement disorders are commonly encountered in the clinic. In this Review, aimed at trainees and general neurologists, we provide a practical step-by-step approach to help clinicians in their ‘pattern recognition’ of movement disorders, as part of a process that ultimately leads to the diagnosis. The key to success is establishing the phenomenology of the clinical syndrome, which is determined from the specific combination of the dominant movement disorder, other abnormal movements in patients presenting with a mixed movement disorder, and a set of associated neurological and non-neurological abnormalities. Definition of the clinical syndrome in this manner should, in turn, result in a differential diagnosis. Sometimes, simple pattern recognition will suffice and lead directly to the diagnosis, but often ancillary investigations, guided by the dominant movement disorder, are required. We illustrate this diagnostic process for the most common types of movement disorder, namely, akinetic –rigid syndromes and the various types of hyperkinetic disorders (myoclonus, chorea, tics, dystonia and tremor). Abdo, W. F. et al. Nat. Rev. Neurol. 6, 29–37 (2010); doi:10.1038/nrneurol.2009.196 1 Continuing Medical Education online 85 years. The prevalence of essential tremor—the most common form of tremor—is 4% in people aged over This activity has been planned and implemented in accordance 40 years, increasing to 14% in people over 65 years of with the Essential Areas and policies of the Accreditation Council age.2,3 The prevalence of tics in school-age children and for Continuing Medical Education through the joint sponsorship of 4 MedscapeCME and Nature Publishing Group.
    [Show full text]
  • Neonatal Hypotonia
    Neonatal Hypotonia Clinical Approach to Floppy Baby Hypotonia in the newborn is a common presenting feature of systemic illness or neurologic dysfunction at any level of the central or peripheral nervous system. It is defined as reduced resistance to passive range of motion in joints. Etiology: diverse Causes include (but are not limited to): Central Sepsis (most common) Hypoxic ischemic encephalopathy Intracranial hemorrhage Cerebral malformations Chromosomal abnormalities (e.g.Trisomy 21, Prader-Willi syndrome) Congenital infections (TORCH) Drug effects (e.g. benzodiazepines, Magnesium toxicity) Inborn errors of metabolism Endocrine: hypothyroidism Benign congenital hypotonia Spinal cord Birth trauma (especially Breech delivery) Syringomyelia Anterior Horn Cell Spinal Muscular Atrophy Neurogenic arthrogryposis Neuromuscular Myasthenia gravis (transient/ congenital) junction Infantile botulism Peripheral nerves Congenital hypomyelinating neuropathy Hereditary motor and sensory neuropathies (Dejerine-Sottas disease) Hereditary sensory and autonomic neuropathy Guillain Barre syndrome (very rare) Muscle Congenital myopathies (e.g. central core disease, Nemaline Rod myopathy, myotubular myopathy, congenital fiber type disproportion and multicore myopathy) Congenital muscular dystrophies( merosin deficient, Walker- Warburg disease, muscle-eye-brain disease, Fukuyama disease Muscular dystrophies (inc. congenital myotonic dystrophy) Metabolic myopathies Disease of Glycogen Metabolism and multisystem Acid maltase deficiency
    [Show full text]
  • Genetic Neuromuscular Disease *
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.73.suppl_2.ii12 on 1 December 2002. Downloaded from GENETIC NEUROMUSCULAR DISEASE Mary M Reilly, Michael G Hanna ii12* J Neurol Neurosurg Psychiatry 2002;73(Suppl II):ii12–ii21 he clinical practice of neuromuscular disease is currently undergoing enormous change as a direct result of the wealth of recent molecular genetic discoveries. Indeed, the majority of gene Tdiscoveries in the area of neurological disease relate to neuromuscular disorders. The immedi- ate impact of these discoveries is that a precise DNA based diagnosis is possible. This often gives patients accurate prognostic and genetic counselling information. It will also facilitate rational screening programmes for recognised complications such as cardiac or respiratory involvement. Unfortunately, at present many eligible patients do not benefit from or have access to such diagnostic precision, although this is changing. The discovery of new genes and proteins has opened up unexplored avenues of research into therapies for neuromuscular patients. While therapeutic trials in genetic neuromuscular diseases remain in their infancy, it seems clear that a precise DNA based diagnosis will be essential. Eligi- bility for such trials and indeed for future proven therapies will be contingent upon DNA based diagnosis. For example, it is no longer acceptable to make “limb-girdle muscular dystrophy” based on simple histochemistry, a final diagnosis. Detailed immunocytochemistry and protein chemistry in combination with DNA analysis offer the patient the best chance of a precise diagnosis from which accurate prognostication, screening, and genetic counselling will follow. In this review we describe some of the more common genetic nerve and muscle diseases encountered by adult neurologists.
    [Show full text]