Membrane Binding of HIV-1 Matrix Protein: Dependence on Bilayer Composition and Protein Lipidation

Total Page:16

File Type:pdf, Size:1020Kb

Membrane Binding of HIV-1 Matrix Protein: Dependence on Bilayer Composition and Protein Lipidation crossmark Membrane Binding of HIV-1 Matrix Protein: Dependence on Bilayer Composition and Protein Lipidation Marilia Barros,a Frank Heinrich,a,c Siddhartha A. K. Datta,d Alan Rein,d Ioannis Karageorgos,e,f Hirsh Nanda,a,c* Mathias Löschea,b,c Department of Physicsa and Department of Biomedical Engineeringb, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA; NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland, USAc; HIV Dynamics and Replication Program, Center for Cancer Research, National Institute of Cancer, Frederick, Maryland, USAd; Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USAe; Institute for Downloaded from Bioscience and Biotechnology Research, Rockville, Maryland, USAf ABSTRACT By assembling in a protein lattice on the host’s plasma membrane, the retroviral Gag polyprotein triggers formation of the viral protein/membrane shell. The MA domain of Gag employs multiple signals—electrostatic, hydrophobic, and lipid-specific—to bring the protein to the plasma membrane, thereby complementing protein-protein interactions, located in full-length Gag, in lattice formation. We report the interaction of myristoylated and unmyristoylated HIV-1 Gag MA domains with bilayers com- posed of purified lipid components to dissect these complex membrane signals and quantify their contributions to the overall http://jvi.asm.org/ interaction. Surface plasmon resonance on well-defined planar membrane models is used to quantify binding affinities and amounts of protein and yields free binding energy contributions, ⌬G, of the various signals. Charge-charge interactions in the absence of the phosphatidylinositide PI(4,5)P2 attract the protein to acidic membrane surfaces, and myristoylation increases the affinity by a factor of 10; thus, our data do not provide evidence for a PI(4,5)P2 trigger of myristate exposure. Lipid-specific inter- actions with PI(4,5)P2, the major signal lipid in the inner plasma membrane, increase membrane attraction at a level similar to that of protein lipidation. While cholesterol does not directly engage in interactions, it augments protein affinity strongly by fa- cilitating efficient myristate insertion and PI(4,5)P2 binding. We thus observe that the isolated MA protein, in the absence of on August 3, 2016 by NIST RESEARCH LIBRARY protein-protein interaction conferred by the full-length Gag, binds the membrane with submicromolar affinities. IMPORTANCE Like other retroviral species, the Gag polyprotein of HIV-1 contains three major domains: the N-terminal, myristoylated MA domain that targets the protein to the plasma membrane of the host; a central capsid-forming domain; and the C-terminal, ge- nome-binding nucleocapsid domain. These domains act in concert to condense Gag into a membrane-bounded protein lattice that recruits genomic RNA into the virus and forms the shell of a budding immature viral capsid. In binding studies of HIV-1 Gag MA to model membranes with well-controlled lipid composition, we dissect the multiple interactions of the MA domain with its target membrane. This results in a detailed understanding of the thermodynamic aspects that determine membrane as- sociation, preferential lipid recruitment to the viral shell, and those aspects of Gag assembly into the membrane-bound protein lattice that are determined by MA. he polyprotein Gag is an essential component for the repro- proteins. They also differ in cotranslational modifications, since Tduction of retroviruses, such as HIV-1, in infected cells. In the some, such as HIV-1 MA, are lipidated whereas those of others, production of new viruses, many copies of Gag assemble laterally, such as Rous sarcoma virus (RSV), are not. Both the myristoyl- either in the cytoplasm or on the plasma membrane (PM) of the ation of HIV MA and its basic patch are required for correct PM host, thus acquiring their lipid envelope as they bud from the cell. targeting (4, 5). Indeed, Gag protein that included an MA-Src Distinct retroviral genera encode Gag proteins which all show a chimera in which the first 31 MA residues were replaced by the similar domain architecture, with an N-terminal matrix (MA) N-terminal end of Src was found to bind membranes and form domain that targets the PM, followed by the capsid (CA) and nucleocapsid (NC) proteins that are connected by minor domains or unstructured peptide linkers. Across retroviral genera, MA do- Received 5 November 2015 Accepted 15 February 2016 mains also share a high degree of structural homology (1). Most of Accepted manuscript posted online 24 February 2016 their N-terminal portions comprise five or six ␣-helices and adopt Citation Barros M, Heinrich F, Datta SAK, Rein A, Karageorgos I, Nanda H, Lösche a compact globular fold, whereas their C termini are often flexible M. 2016. Membrane binding of HIV-1 matrix protein: dependence on bilayer or unstructured (2). Moreover, retroviral MA domains share elec- composition and protein lipidation. J Virol 90:4544–4555. doi:10.1128/JVI.02820-15. trostatic homology: basic amino acids are clustered on one surface Editor: W. I. Sundquist of their N-terminal “globular heads,” resulting in a basic patch Address correspondence to Alan Rein, [email protected], or that interacts electrostatically with the PM of the infected cell (3). Mathias Lösche, [email protected]. On the other hand, the MA domains of different retroviruses dif- * Present address: Hirsh Nanda, Janssen, LLC, Spring House, Pennsylvania, USA. fer in their net charges in this basic patch, which suggests differing Copyright © 2016, American Society for Microbiology. All Rights Reserved. contribution of electrostatic interactions in the targeting of these 4544 jvi.asm.org Journal of Virology May 2016 Volume 90 Number 9 Components of HIV-1 Gag Matrix Membrane Binding Downloaded from http://jvi.asm.org/ FIG 1 Schematic representation of the experimental configuration of the SPR measurements on an stBLM. The ultrathin gold layer on a glass substrate is passivated by a densely packed mercaptoethanol layer on which the membrane is grafted. The surface-ligated bilayer is highly hydrated at both interfaces and in-plane fluid, and yet resilient to experimental manipulation, and virtually defect-free. Its lipidic composition can be precisely controlled. on August 3, 2016 by NIST RESEARCH LIBRARY virus-like particles with the same characteristic dependence on gets of HIV (22, 23), show similar membrane compositions (15) basic residues and myristoylation as native HIV Gag (4). Although even though the global compositions of macrophage and T-cell only MA is in direct contact with the surrounding membrane in membranes are different. This suggests that HIV-1 recruits spe- the completed viral shell, the remaining domains of the Gag poly- cific membrane components and thus creates a favorable lipidic protein contribute to Gag membrane affinity. It is well docu- environment for its assembly (23). mented that CA-CA interactions drive Gag oligomerization (6, 7), The binding of HIV-1 MA to bilayer membranes has already and artificial multimerization of MA enhances its affinity to mem- been extensively studied (8, 24, 25). MA interactions with branes by an order of magnitude (8). Moreover, a recent study PI(4,5)P2 not only direct Gag assembly to specific regions of the identifies protein-protein contacts in the SPA segment of RSV Gag PM but may also help trigger myristate exposure from its seques- that stabilize oligomers and increase membrane affinity, leading in tered state within the protein (26). Entropic effects may contrib- turn to pronounced cooperativity in membrane binding (9). ute, since it has been reported that myristate exposure favors MA In HIV, Gag is synthesized in the cytoplasm, migrates to the trimerization (27, 28). Moreover, some evidence suggests that the cellular periphery, and eventually targets the surface of the PM, unsaturated chain of PI(4,5)P2 binds MA upon myristate mem- where the assembly of immature virus occurs (10). As in other brane insertion (26, 28), which would enhance Gag affinity to lipid retroviral genera, the MA domain of HIV-1 Gag is the structural rafts. On the other hand, important questions remain poorly un- motif that mediates targeting to the PM (11) where lateral assem- derstood. For example, a clear delineation of how individual bi- bly of the viral shell occurs. Distinct molecular signals comple- layer components contribute to MA binding has not yet been ment each other in positioning the protein in an orientation pro- achieved, and in particular the impact of protein myristoylation ductive for assembly on the correct target membrane (12): on protein-membrane interactions has not been quantitatively electrostatic interactions between the basic patch of residues on assessed. the globular head and anionic membrane lipids, hydrophobic in- In this study, we use surface plasmon resonance (SPR) spec- teraction between MA’s myristoylated N terminus and the mem- troscopy on synthetic solid-supported bilayers, referred to as brane, and specific binding of the protein to phosphatidylinositol- sparsely tethered bilayer lipid membranes (stBLMs), to parse pro- 4,5-bisphosphate [PI(4,5)P2](13), a low-abundance phospholipid tein-membrane interactions into their components. In combina- found principally in the cytoplasmic leaflet of the PM (14). Lip- tion, SPR performed on stBLMs offers unique advantages for the idomic studies show that raft-related lipids, such as sphingomy- study of viral assembly processes on membranes. Both the stBLM elin and cholesterol, are enriched in the HIV-1 envelope (15–18). model system (29) and the SPR method for studying intermolec- This is consistent with the hypothesis that HIV-1 assembles on ular interactions (30) are well established. SPR offers information microdomains in the PM, possibly lipid rafts, with specific lipid not only on the affinity of a ligand to its target surface but also on compositions (19–21). Moreover, virion membranes budded the equilibrium load of the ligand at that surface (30), i.e., the from macrophages and from T cells, two distinct preferential tar- protein density on the membrane surface.
Recommended publications
  • HIV-1 Rev Downregulates Tat Expression and Viral Replication Via Modulation of NAD(P)H:Quinine Oxidoreductase 1 (NQO1)
    ARTICLE Received 25 Jul 2014 | Accepted 22 Apr 2015 | Published 10 Jun 2015 DOI: 10.1038/ncomms8244 HIV-1 Rev downregulates Tat expression and viral replication via modulation of NAD(P)H:quinine oxidoreductase 1 (NQO1) Sneh Lata1,*, Amjad Ali2,*, Vikas Sood1,2,w, Rameez Raja2 & Akhil C. Banerjea2 HIV-1 gene expression and replication largely depend on the regulatory proteins Tat and Rev, but it is unclear how the intracellular levels of these viral proteins are regulated after infection. Here we report that HIV-1 Rev causes specific degradation of cytoplasmic Tat, which results in inhibition of HIV-1 replication. The nuclear export signal (NES) region of Rev is crucial for this activity but is not involved in direct interactions with Tat. Rev reduces the levels of ubiquitinated forms of Tat, which have previously been reported to be important for its transcriptional properties. Tat is stabilized in the presence of NAD(P)H:quinine oxidoreductase 1 (NQO1), and potent degradation of Tat is induced by dicoumarol, an NQO1 inhibitor. Furthermore, Rev causes specific reduction in the levels of endogenous NQO1. Thus, we propose that Rev is able to induce degradation of Tat indirectly by downregulating NQO1 levels. Our findings have implications in HIV-1 gene expression and latency. 1 Department of Microbiology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi 110095, India. 2 Laboratory of Virology, National Institute of Immunology, New Delhi 110067, India. * These authors contributed equally to this work. w Present address: Translational Health Science and Technology Institute, Faridabad, Haryana 121004, India. Correspondence and requests for materials should be addressed to A.C.B.
    [Show full text]
  • Viroporins: Structures and Functions Beyond Cell Membrane Permeabilization
    Editorial Viroporins: Structures and Functions beyond Cell Membrane Permeabilization José Luis Nieva 1,* and Luis Carrasco 2,* Received: 17 September 2015 ; Accepted: 21 September 2015 ; Published: 29 September 2015 Academic Editor: Eric O. Freed 1 Biophysics Unit (CSIC, UPV/EHU) and Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain 2 Centro de Biología Molecular Severo Ochoa (CSIC, UAM), c/Nicolás Cabrera, 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain * Correspondence: [email protected] (J.L.N.); [email protected] (L.C.); Tel.: +34-94-601-3353 (J.L.N.); +34-91-497-8450 (L.C.) Viroporins represent an interesting group of viral proteins that exhibit two sets of functions. First, they participate in several viral processes that are necessary for efficient production of virus progeny. Besides, viroporins interfere with a number of cellular functions, thus contributing to viral cytopathogenicity. Twenty years have elapsed from the first review on viroporins [1]; since then several reviews have covered the advances on viroporin structure and functioning [2–8]. This Special Issue updates and revises new emerging roles of viroporins, highlighting their potential use as antiviral targets and in vaccine development. Viroporin structure. Viroporins are usually short proteins with at least one hydrophobic amphipathic helix. Homo-oligomerization is achieved by helix–helix interactions in membranes rendering higher order structures, forming aqueous pores. Progress in viroporin structures during the last 2–3 years has in some instances provided a detailed knowledge of their functional architecture, including the fine definition of binding sites for effective inhibitors.
    [Show full text]
  • Human Retroviruses in the Second Decade: a Personal Perspective
    © 1995 Nature Publishing Group http://www.nature.com/naturemedicine • REVIEW Human retroviruses in the second decade: A personal perspective Human retroviruses have developed novel strategies for their propagation and survival. A consequence of their success has been the induction of an extraordinarily diverse set of human dlst!ases, including AIDS, cancers and neurological and Inflammatory disorders. Early research focused on their characterization, linkage to these dlst!ases, and the mechanisms Involved. Research should now aim at the eradication of human retroviruses and on treatment of infected people. Retroviruses are transmitted either geneti- .................... ···.. .... ·. ..... .. discovered". Though its characteristics are cally (endogenous form) or as infectious ROBERT C. GALLO strikingly similar to HTLV-1, HTLV-II is not agents (exogenous form)'·'. As do many so clearly linked to human disease. It is cu­ other animal species, humans have both forms ..... In general, rious that HTLV-11 is endemic in some American Indians and endogenous retroviruses are evolutionary relics of old infec­ more prevalent in drug addicts than HTLV-I"·'•. tions and are not known to cause disease. The DNA of many HIV-1 is also most prevalent in equatorial Africa, but in con­ species, including humans, harbours multiple copies of differ­ trast to HTLV the demography of the HIV epidemic is still in ent retroviral proviruses. The human endogenous proviral flux, and the virus is new to most of the world. The number of sequences are virtually all defective, and comprise about one infected people worldwide is now estimated to be about 17 mil­ percent of the human genome, though R. Kurth's group in lion and is predicted to reach 30 to SO million by the year 2000.
    [Show full text]
  • Mechanisms of Action of Novel Influenza A/M2 Viroporin Inhibitors Derived from Hexamethylene Amiloride S
    Supplemental material to this article can be found at: http://molpharm.aspetjournals.org/content/suppl/2016/05/18/mol.115.102731.DC1 1521-0111/90/2/80–95$25.00 http://dx.doi.org/10.1124/mol.115.102731 MOLECULAR PHARMACOLOGY Mol Pharmacol 90:80–95, August 2016 Copyright ª 2016 by The American Society for Pharmacology and Experimental Therapeutics Mechanisms of Action of Novel Influenza A/M2 Viroporin Inhibitors Derived from Hexamethylene Amiloride s Pouria H. Jalily, Jodene Eldstrom, Scott C. Miller, Daniel C. Kwan, Sheldon S. -H. Tai, Doug Chou, Masahiro Niikura, Ian Tietjen, and David Fedida Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver (P.H.J., J.E., S.C.M., D.C.K., D.C., I.T., D.F.), and Faculty of Health Sciences, Simon Fraser University, Burnaby (S.S.-H.T., M.N., I.T.), British Columbia, Canada Received December 7, 2015; accepted May 12, 2016 Downloaded from ABSTRACT The increasing prevalence of influenza viruses with resistance to [1,19-biphenyl]-4-carboxylate (27) acts both on adamantane- approved antivirals highlights the need for new anti-influenza sensitive and a resistant M2 variant encoding a serine to asparagine therapeutics. Here we describe the functional properties of hexam- 31 mutation (S31N) with improved efficacy over amantadine and – 5 m m ethylene amiloride (HMA) derived compounds that inhibit the wild- HMA (IC50 0.6 Mand4.4 M, respectively). Whereas 9 inhibited molpharm.aspetjournals.org type and adamantane-resistant forms of the influenza A M2 ion in vitro replication of influenza virus encoding wild-type M2 (EC50 5 channel.
    [Show full text]
  • A Novel Ebola Virus VP40 Matrix Protein-Based Screening for Identification of Novel Candidate Medical Countermeasures
    viruses Communication A Novel Ebola Virus VP40 Matrix Protein-Based Screening for Identification of Novel Candidate Medical Countermeasures Ryan P. Bennett 1,† , Courtney L. Finch 2,† , Elena N. Postnikova 2 , Ryan A. Stewart 1, Yingyun Cai 2 , Shuiqing Yu 2 , Janie Liang 2, Julie Dyall 2 , Jason D. Salter 1 , Harold C. Smith 1,* and Jens H. Kuhn 2,* 1 OyaGen, Inc., 77 Ridgeland Road, Rochester, NY 14623, USA; [email protected] (R.P.B.); [email protected] (R.A.S.); [email protected] (J.D.S.) 2 NIH/NIAID/DCR/Integrated Research Facility at Fort Detrick (IRF-Frederick), Frederick, MD 21702, USA; courtney.fi[email protected] (C.L.F.); [email protected] (E.N.P.); [email protected] (Y.C.); [email protected] (S.Y.); [email protected] (J.L.); [email protected] (J.D.) * Correspondence: [email protected] (H.C.S.); [email protected] (J.H.K.); Tel.: +1-585-697-4351 (H.C.S.); +1-301-631-7245 (J.H.K.) † These authors contributed equally to this work. Abstract: Filoviruses, such as Ebola virus and Marburg virus, are of significant human health concern. From 2013 to 2016, Ebola virus caused 11,323 fatalities in Western Africa. Since 2018, two Ebola virus disease outbreaks in the Democratic Republic of the Congo resulted in 2354 fatalities. Although there is progress in medical countermeasure (MCM) development (in particular, vaccines and antibody- based therapeutics), the need for efficacious small-molecule therapeutics remains unmet. Here we describe a novel high-throughput screening assay to identify inhibitors of Ebola virus VP40 matrix protein association with viral particle assembly sites on the interior of the host cell plasma membrane.
    [Show full text]
  • Functional Control of HIV-1 Post-Transcriptional Gene Expression by Host Cell Factors
    Functional control of HIV-1 post-transcriptional gene expression by host cell factors DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Amit Sharma, B.Tech. Graduate Program in Molecular Genetics The Ohio State University 2012 Dissertation Committee Dr. Kathleen Boris-Lawrie, Advisor Dr. Anita Hopper Dr. Karin Musier-Forsyth Dr. Stephen Osmani Copyright by Amit Sharma 2012 Abstract Retroviruses are etiological agents of several human and animal immunosuppressive disorders. They are associated with certain types of cancer and are useful tools for gene transfer applications. All retroviruses encode a single primary transcript that encodes a complex proteome. The RNA genome is reverse transcribed into DNA, integrated into the host genome, and uses host cell factors to transcribe, process and traffic transcripts that encode viral proteins and act as virion precursor RNA, which is packaged into the progeny virions. The functionality of retroviral RNA is governed by ribonucleoprotein (RNP) complexes formed by host RNA helicases and other RNA- binding proteins. The 5’ leader of retroviral RNA undergoes alternative inter- and intra- molecular RNA-RNA and RNA-protein interactions to complete multiple steps of the viral life cycle. Retroviruses do not encode any RNA helicases and are dependent on host enzymes and RNA chaperones. Several members of the host RNA helicase superfamily are necessary for progressive steps during the retroviral replication. RNA helicase A (RHA) interacts with the redundant structural elements in the 5’ untranslated region (UTR) of retroviral and selected cellular mRNAs and this interaction is necessary to facilitate polyribosome formation and productive protein synthesis.
    [Show full text]
  • HIV-1: to Splice Or Not to Splice, That Is the Question
    viruses Review HIV-1: To Splice or Not to Splice, That Is the Question Ann Emery 1 and Ronald Swanstrom 1,2,3,* 1 Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; [email protected] 2 Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA 3 Center for AIDS Research, University of North Carolina, Chapel Hill, NC 27599, USA * Correspondence: [email protected] Abstract: The transcription of the HIV-1 provirus results in only one type of transcript—full length genomic RNA. To make the mRNA transcripts for the accessory proteins Tat and Rev, the genomic RNA must completely splice. The mRNA transcripts for Vif, Vpr, and Env must undergo splicing but not completely. Genomic RNA (which also functions as mRNA for the Gag and Gag/Pro/Pol precursor polyproteins) must not splice at all. HIV-1 can tolerate a surprising range in the relative abundance of individual transcript types, and a surprising amount of aberrant and even odd splicing; however, it must not over-splice, which results in the loss of full-length genomic RNA and has a dramatic fitness cost. Cells typically do not tolerate unspliced/incompletely spliced transcripts, so HIV-1 must circumvent this cell policing mechanism to allow some splicing while suppressing most. Splicing is controlled by RNA secondary structure, cis-acting regulatory sequences which bind splicing factors, and the viral protein Rev. There is still much work to be done to clarify the combinatorial effects of these splicing regulators. These control mechanisms represent attractive targets to induce over-splicing as an antiviral strategy.
    [Show full text]
  • HIV-1 Virus Cycle Replication: a Review of RNA Polymerase II Transcription, Alternative Splicing and Protein Synthesis Corresponding Autor
    HIV-1 virus cycle replication: a review of RNA polymerase II transcription, alternative splicing and protein synthesis Correspondingautor: MiguelRamos-Pascual Abstract HIV virus replication is a time-related process that includes attachment to host cell and fusion, reverse transcription, integration on host cell DNA, transcription and splicing, multiple mRNA transport, protein synthesis, budding and maturation. Focusing on the core steps, RNA polymerase II transcripts in an early stage pre-mRNA containing regulator proteins (i.e nef,tat,rev,vif,vpr,vpu), which are completely spliced by the spliceosome complex (0.9kb and 1.8kb) and exported to the ribosome for protein synthesis. These splicing and export processes are regulated by tat protein, which binds on Trans-activation response (TAR) element, and by rev protein, which binds to the Rev-responsive Element (RRE). As long as these regulators are synthesized, splicing is progressively inhibited (from 4.0kb to 9.0kb) and mRNAs are translated into structural and enzymatic proteins (env, gag-pol). During this RNAPII scanning and splicing, around 40 different multi-cystronic mRNA have been produced. Long-read sequencing has been applied to the HIV-1 virus genome (type HXB2CG) with the HIV.pro software, a fortran 90 code for simulating the virus replication cycle, specially RNAPII transcription, exon/intron splicing and ribosome protein synthesis, including the frameshift at gag/pol gene and the ribosome pause at env gene. All HIV-1 virus proteins have been identified as far as other ORFs. As observed, tat/rev protein regulators have different length depending on the splicing cleavage site: tat protein varies from 224aa to a final state of 72aa, whereas rev protein from 25aa to 27aa, with a maximum of 119aa.
    [Show full text]
  • XFEL Structures of the Influenza M2 Proton Channel: SPECIAL FEATURE Room Temperature Water Networks and Insights Into Proton Conduction
    XFEL structures of the influenza M2 proton channel: SPECIAL FEATURE Room temperature water networks and insights into proton conduction Jessica L. Thomastona, Rahel A. Woldeyesb, Takanori Nakane (中根 崇智)c, Ayumi Yamashitad, Tomoyuki Tanakad, Kotaro Koiwaie, Aaron S. Brewsterf, Benjamin A. Baradb, Yujie Cheng, Thomas Lemmina, Monarin Uervirojnangkoornh,i,j,k,l, Toshi Arimad, Jun Kobayashid, Tetsuya Masudad,m, Mamoru Suzukid,n, Michihiro Sugaharad, Nicholas K. Sauterf, Rie Tanakad, Osamu Nurekic, Kensuke Tonoo, Yasumasa Jotio, Eriko Nangod, So Iwatad,p, Fumiaki Yumotoe, James S. Fraserb, and William F. DeGradoa,1 aDepartment of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158; bDepartment of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158; cDepartment of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan; dSPring-8 Angstrom Compact Free Electron Laser (SACLA) Science Research Group, RIKEN SPring-8 Center, Saitama 351-0198, Japan; eStructural Biology Research Center, High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801, Japan; fMolecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; gSchool of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853; hDepartment of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305; iHoward Hughes Medical Institute, Stanford University, Stanford, CA 94305; jDepartment of Neurology
    [Show full text]
  • Historical News and Views
    CELEBRATING OUR TENTH YEAR HISTORICAL NEWS AND VIEWS gp41: HIV’s shy protein Michael B Zwick, Erica O Saphire & Dennis R Burton The first X-ray crystal structures of gp41, the protein that mediates fusion of HIV-1 to target cells, were solved in the mid-1990s. The structures provide a foundation for understanding viral entry and the mechanism of action of compounds that block fusion. The first fusion inhibitor has recently entered the clinic, and the hope is that more potent and broadly active compounds, based on molecular design, will follow. The structure of gp41 was a long-sought and a bc Merged viral and elusive goal for HIV biologists. The difficulties Viral membrane Viral membrane host cell membrane of working with a membrane protein, the strong tendency of gp41 to aggregate, and other http://www.nature.com/naturemedicine hurdles stood in the way.When Chan et al.1 and Weissenhorn et al.2 finally produced the first structures in 1997, followed shortly by Tan et gp41 N al.3, they began to give molecular form to the apparatus of viral fusion, whose outline had CHR emerged earlier in the decade. The structures are the focus of much work to design new CHR inhibitors of the fusion process, and serve as an Deborah Maizels C outstanding example of how findings in basic N N N science can stimulate exploration of new thera- Figure 1 The conformations of HIV-1 gp41 before, NHR NHR during and after the fusion of the viral and host-cell C peutics. T20 C This is what fusion looks like: envelope spikes membranes.
    [Show full text]
  • Analysis of Arginine-Rich Peptides from the HIV Tat Protein Reveals Unusual Features of RNA-Protein Recognition
    Downloaded from genesdev.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Analysis of arginine-rich peptides from the HIV Tat protein reveals unusual features of RNA-protein recognition Barbara J. Calnan/ Sara Biancalana/ Derek Hudson,^ and Alan D. Frankel^'^ 'whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142 USA; ^MilliGen/Biosearch, Novate, California 94949 USA Arginine-rich sequences are found in many RNA-binding proteins and have been proposed to mediate specific RNA recognition. Fragments of the HIV-1 Tat protein that contain the arginine-rich region of Tat bind specifically to a 3-nucleotide bulge in TAR RNA. To determine the amino acid requirements for specific RNA recognition, we synthesized a series of mutant Tat peptides spanning this domain (YGRKKRRQRRRP) and measured their affinity and specificity for TAR RNA. Several corresponding mutations were introduced into the full-length Tat protein, and trans-activation activity was measured. Systematic substitution of arginine residues with alanines or lysines suggested that overall charge density is important but did not point to any specific residues as being essential for binding. A glutamine-to-alanine substitution had no effect on binding. Remarkably, peptides with scrambled or reversed sequences showed the same affinity and specificity for TAR RNA as the wild-type peptide. Trans-activation activity of the mutant Tat proteins correlated with RNA binding. Arginine-rich peptides from SIV Tat and from HIV-1 Rev, which can functionally substitute for the basic region of HIV-1 Tat, also bound specifically to TAR. Circular dichroism spectra suggest that the arginine-rich region of Tat is unstructured in the absence of RNA, becomes partially or fully structured upon binding, and induces a conformational change in the RNA.
    [Show full text]
  • The Emerging Role of HIV-1 Integrase in Virion Morphogenesis
    viruses Review Going beyond Integration: The Emerging Role of HIV-1 Integrase in Virion Morphogenesis Jennifer L. Elliott and Sebla B. Kutluay * Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; [email protected] * Correspondence: [email protected] Received: 26 August 2020; Accepted: 7 September 2020; Published: 9 September 2020 Abstract: The HIV-1 integrase enzyme (IN) plays a critical role in the viral life cycle by integrating the reverse-transcribed viral DNA into the host chromosome. This function of IN has been well studied, and the knowledge gained has informed the design of small molecule inhibitors that now form key components of antiretroviral therapy regimens. Recent discoveries unveiled that IN has an under-studied yet equally vital second function in human immunodeficiency virus type 1 (HIV-1) replication. This involves IN binding to the viral RNA genome in virions, which is necessary for proper virion maturation and morphogenesis. Inhibition of IN binding to the viral RNA genome results in mislocalization of the viral genome inside the virus particle, and its premature exposure and degradation in target cells. The roles of IN in integration and virion morphogenesis share a number of common elements, including interaction with viral nucleic acids and assembly of higher-order IN multimers. Herein we describe these two functions of IN within the context of the HIV-1 life cycle, how IN binding to the viral genome is coordinated by the major structural protein, Gag, and discuss the value of targeting the second role of IN in virion morphogenesis. Keywords: HIV-1; integrase; maturation; integrase–RNA interactions; protein–RNA interactions 1.
    [Show full text]