Logical Partitions on Many-Core Platforms

Total Page:16

File Type:pdf, Size:1020Kb

Logical Partitions on Many-Core Platforms Logical Partitions on Many-Core Platforms Ramya Jayaram Masti, Claudio Marforio, Kari Kostiainen, Claudio Soriente, Srdjan Capkun Institute of Information Security, ETH Zurich fi[email protected] ABSTRACT systems | a technique called hypervisor disengagement [39]. Cloud platforms that use logical partitions to allocate dedi- Other benefits of logical partitions include improved perfor- cated resources to VMs can benefit from small and therefore mance [15] and efficient nested virtualization [36]. secure hypervisors. Many-core platforms, with their abun- A many-core processor consists of a large number of sim- dant resources, are an attractive basis to create and deploy ple, energy-efficient cores integrated on a single processor logical partitions on a large scale. However, many-core plat- die. Due to their abundant resources, many-core platforms forms are designed for efficient cross-core data sharing rather may be used, in principle, for deploying systems that scale than isolation, which is a key requirement for logical parti- up to hundreds, or even thousands [7], of logical partitions. tions. Typically, logical partitions leverage hardware vir- However, the available many-core systems [7, 21, 22, 41] are tualization extensions that require complex CPU core en- designed for high-performance computing applications and hancements. These extensions are not optimal for many- allow data sharing across cores. Consequently, such many- core platforms, where it is preferable to keep the cores as core architectures are not tailored to support efficient isola- simple as possible. tion which is a mandatory requirement for logical partitions. In this paper, we show that a simple address-space isola- In this paper, we investigate the feasibility of enabling log- tion mechanism, that can be implemented in the Network- ical partitions on many-core processors, in order to integrate on-Chip of the many-core processor, is sufficient to enable the processors into IaaS clouds. Motivated by the scalability logical partitions. We implement the proposed change for benefits of simple cores, we discard the option of relying on the Intel Single-Chip Cloud Computer (SCC). We also de- hardware virtualization extensions. We show that, without sign a cloud architecture that relies on a small and disen- virtualization extensions, logical partitions can be facilitated gaged hypervisor for the security-enhanced Intel SCC. Our by a simple address-space isolation mechanism, implemented prototype hypervisor is 3.4K LOC which is comparable to in the Network-on-Chip of the many-core processor. This the smallest hypervisors available today. Furthermore, vir- simple hardware enhancement does not affect the processor tual machines execute bare-metal avoiding runtime interac- core's complexity and therefore supports many-core proces- tion with the hypervisor and virtualization overhead. sor scalability. We use the Intel SCC many-core architecture [22] as a case study and demonstrate the feasibility of our solution 1. INTRODUCTION with an emulated software prototype. With the proposed A logical partition is a subset of the physical system re- hardware changes in place, we design a simple, disengaged sources that can run an operating system independently of hypervisor for many-core processors and integrate it into an the rest of the system [19]. Logical partitions are widely used IaaS cloud. Our prototype hypervisor has an implementa- in high-assurance virtualized environments such as formally- tion size of only 3.4K LOC that is comparable to the smallest verified separation kernels [13, 26] and commercial hypervi- hypervisors available today [46]. In contrast to solutions like sor deployments [1, 2, 19]. For example, IBM utilizes logical NoHype [39], our hypervisor does not rely on hardware vir- partitions in its Infrastructure as a Service (IaaS) cloud [4]. tualization extensions. Furthermore, similar to [15, 36], our Hypervisors that use logical partitions, provide dedicated solution allows bare-metal execution of VMs, hence elimi- resources to the hosted operating systems and, therefore, nating virtualization overhead. benefit from lightweight resource management and a small This work demonstrates that many-core processors are an Trusted Computing Base (TCB). Logical partitions also al- attractive basis for implementing secure cloud computing low to reduce the runtime attack surface by minimizing the services. To summarize, we make the following contribu- interaction between the hypervisor and the hosted operating tions: Permission to make digital or hard copies of all or part of this work for personal or 1. We show that on many-core platforms logical parti- classroom use is granted without fee provided that copies are not made or distributed tions can be implemented with a simple hardware en- for profit or commercial advantage and that copies bear this notice and the full cita- tion on the first page. Copyrights for components of this work owned by others than hancement, avoiding the need for hardware virtualiza- ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re- tion extensions. We use the Intel SCC architecture as a publish, to post on servers or to redistribute to lists, requires prior specific permission case study and propose minor hardware enhancements and/or a fee. Request permissions from [email protected]. that enable secure partitions. ACSAC ’15, December 07-11, 2015, Los Angeles, CA, USA c 2015 ACM. ISBN 978-1-4503-3682-6/15/12. $15.00 2. We design and implement a complete IaaS architec- DOI: http://dx.doi.org/10.1145/2818000.2818026 ture that leverages the security-enhanced Intel SCC INTEL SINGLE-CHIP CLOUD COMPUTER (SCC) MANY-CORE PROCESSOR TILE Tile1 Tile2 ... Tilen TILE STRUCTURE MESH-BASED INTERCONNECT Core(s) To Pentium Tile Pentium To R R R R Caches Network core memory core DRAM DRAM Memory interface Network R R R R Network-on-Chip (NoC) L2 cache L2 cache DMA interface R R R R DRAM Peripherals Host NoC Router To R R R R To DRAM DRAM Figure 1: Many-core architecture overview. Most To System Interface (I/O) many-core processors are organized in tiles that are con- nected to memory and peripherals over a Network-on-Chip. Figure 2: Intel SCC architecture overview. The pro- Each tile has one or more cores, network interface and op- cessor has 24 tiles and each tile hosts two cores. Each tile tionally some local memory and a DMA engine. Each pro- is connected to a mesh Network-on-Chip (NoC) via a net- cessor could include a host interface if it is a co-processor. work interfaces and a router. Cores access shared memory (DRAM) on the processor and peripherals, via the NoC. platform. The architecture includes a disengaged hy- pervisor with a TCB size comparable to the smallest known hypervisors. Asymmetric multi-core processors, such as Intel SCC [22], are in contrast designed to execute multiple operating sys- 3. We evaluate the performance of our architecture and tems on the same platform. demonstrate its suitability for practical cloud deploy- While most current many-core platforms do not support ments. virtualization extensions, there are also examples of SMP ar- chitectures that provide such functionality partially. For ex- The rest of this paper is organized as follows. In Section 2 ample, the Tilera TILE-GX [41] processors include memory we provide background information on many-core architec- virtualization support but lack CPU virtualization. Since tures. Section 3 describes hypervisor design alternatives and future many-core platforms are likely to scale to hundreds explains the goals of this work. Section 4 presents our se- or even thousands of cores, it is desirable to keep the cores curity enhancements to the Intel SCC platform and an em- as simple as possible. Solutions where operating systems ulated implementation. In Section 5 we describe an IaaS run directly on the hardware, without explicit virtualization cloud architecture, its implementation and evaluation. In mechanisms also have performance benefits [15, 36]. Section 6 we discuss deployment properties. Section 7 re- We, therefore, focus on the Intel SCC platform which is views related work and we conclude in Section 8. an AMP architecture capable of running multiple operating systems directly on its cores. 2. BACKGROUND 2.2 Intel SCC 2.1 Many-Core Architectures Figure 2 shows an overview of the Intel SCC architecture. A many-core platform consists of a large number of cores Intel SCC is a co-processor that is connected to a host plat- (hundreds or even thousands [7]) integrated into a single form. The processor has 48 cores arranged in 24 tiles. Each processor chip. Figure 1 shows the general architecture of tile contains two Pentium P54C cores enhanced with an L2 a many-core platform. Many-core processors are typically cache and special instructions to use the local on-tile mem- organized as tiles that can access memory and peripherals ory. Cores can be dynamically turned on and off depending over an interconnect. A network interface connects the com- on current computing load. Each tile also has some local ponents on each tile to the Network-on-Chip (NoC). Each memory that is shared between the cores called the Message tile contains a set of cores and, optionally, some local mem- Passing Buffer (MPB) and an on-tile network interface that ory and a DMA engine. All system resources, including connects the tile to a router. Each core is capable of run- peripherals, are accessible via memory-mapped I/O. If the ning a separate operating system independent of the other platform is designed to be a co-processor, it may optionally cores. No two cores on the system share any cache and the incorporate a dedicated memory module (DRAM) and an platform does not implement cache-coherence. Ethernet card that is separate from the host platform. The The routers at each tile are connected to a mesh network number of cores, their underlying instruction set (e.g., x86, which allows cores to access off-tile memory (DRAM) and RISC), and the type of interconnect (e.g., ring, mesh) vary I/O peripherals.
Recommended publications
  • Introduction to Virtualization
    z Systems Introduction to Virtualization SHARE Orlando Linux and VM Program Romney White, IBM [email protected] z Systems Architecture and Technology © 2015 IBM Corporation Agenda ° Introduction to Virtualization – Concept – Server Virtualization Approaches – Hypervisor Implementation Methods – Why Virtualization Matters ° Virtualization on z Systems – Logical Partitions – Virtual Machines 2 z Systems Virtualization Technology © 2015 IBM Corporation Virtualization Concept Virtual Resources Proxies for real resources: same interfaces/functions, different attributes May be part of a physical resource or multiple physical resources Virtualization Creates virtual resources and "maps" them to real resources Primarily accomplished with software or firmware Resources Components with architecturally-defined interfaces/functions May be centralized or distributed - usually physical Examples: memory, disk drives, networks, servers Separates presentation of resources to users from actual resources Aggregates pools of resources for allocation to users as virtual resources 3 z Systems Virtualization Technology © 2015 IBM Corporation Server Virtualization Approaches Hardware Partitioning Bare-metal Hypervisor Hosted Hypervisor Apps ... Apps Apps ... Apps Apps ... Apps OS OS OS OS OS OS Adjustable partitions Hypervisor Hypervisor Partition Controller Host OS SMP Server SMP Server SMP Server Server is subdivided into fractions Hypervisor provides fine-grained Hypervisor uses OS services to each of which can run an OS timesharing of all resources
    [Show full text]
  • Logical Partitioning
    Power Systems Logical partitioning Power Systems Logical partitioning Note Before using this information and the product it supports, read the information in “Notices” on page 233. This edition applies to IBM AIX Version 6.1, to IBM AIX 5L™ Version 5.3, to IBM i 6.1 (product number 5722-SS1) , to IBM Virtual I/O Server version 2.1.2.0, and to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all reduced instruction set computer (RISC) models nor does it run on CISC models. © Copyright IBM Corporation 2007, 2009. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Logical partitioning ...............................1 What's new in Logical partitioning ............................1 Logical partition overview ...............................2 Benefits of logical partitioning ............................2 Sharing resources between logical partitions ........................3 Managed systems.................................5 Manufacturing default configuration ..........................5 Logical partitioning tools ..............................6 Hardware Management Console ...........................6 Partition profile ...............................7 System profile ...............................11 Partitioning with the Integrated Virtualization Manager ..................11 Virtual Partition Manager.............................13 Physical and virtual hardware resources .........................14
    [Show full text]
  • IIP (System Z9 Integrated Information Processor) Computer CEC (Central Electronics Complex) Server
    IBM System z z/VM Basics Arwed Tschoeke Systems Architect [email protected] © 2009 IBM Corporation © 2008 IBM Corporation Introduction We'll explain basic concepts of System z: – Terminology – Processors – Memory – I/O – Networking We'll see that z/VM virtualizes a System z machine: – Virtual processors – Virtual memory – … and so on Where appropriate, we'll compare or contrast: – PR/SM or LPAR – z/OS – Linux 2 z/VM: The Very Basics z/VM: The Very Basics 1 IBM System z © 2008 IBM Corporation System z Parts Nomenclature x86, UNIX, etc. System z Memory Storage (though we are moving toward "memory") Disk, Storage DASD – Direct Access Storage Device Processor Processor, Engine, PU (processing unit) IOP (I/O processor) CPU (central processing unit) CP (central processor) SAP (system assist processor) Specialty engines –IFL (Integrated Facility for Linux) –zAAP (System z Application Assist Processor) –zIIP (System z9 Integrated Information Processor) Computer CEC (central electronics complex) Server 3 z/VM: The Very Basics © 2008 IBM Corporation IBM System z Virtualization Genetics Over 40 years of continuous innovation in virtualization – Refined to support modern business requirements System z10 . – Exploit hardware technology for economical growth , .. ity System z9 z/VM V5 bil – LPAR, Integrated Facility for Linux, HiperSockets xi 64-Bit Fle – System z Application Assist Processors s, zSeries es VM/ESA Virtual Switch – System z Information Integration stn 9672 bu ESA Guest LANs Set Observer Ro Processors y, 9x21 ilit VM/XA Virtual Machine
    [Show full text]
  • Let's Build a Z Environment
    Let’s Build a z Environment - 101 z/OS Session 23330 Tuesday, August 14 at 10:00-11:00 AM STL CC, Room 242 Presented by Paul R. Robichaux NewEra Software, Inc. [email protected] 1 Abstract – Let’s Build a z Environment! The two presentations in this series focus on the building of a z Environment – Hardware, Software, Security – with the goal of establishing a ‘Trusted Computing Base’. A z/OS System that can provide the reliability needed to meet demanding service levels, integrity and security objectives. All are necessary to execute mission critical applications. This is Intended for those new to z Systems or just beginning their careers with organizations that capitalize on systems anchored to the power and reliability of the IBM Mainframe. In – 101 – the focus will be on the platform, in this case a z14, hardware divisions of the Central Processing Complex (CEC), its various channel pathways and related devices that define a UCW (Unit Control Work), the front half of the z System Device Chain. This segment continues with the definition of an associated Operating System configuration, its various I/O devices and related features that define a UCB (Unit Control Block), the back half of the z System Device. Detailing both the Power-On and IPL process will join UCWs and UCBs to form a fully addressable device across which data (encrypted or not) may flow to and from the CEC. In – 102 – the focus will shift to a discussion of Multiple Virtual Storage (MVS), what is z/OS, how to get it, install it, support it and upgrade/migrate from release to release.
    [Show full text]
  • Systems Management Logical Partitions Version 6 Release 1
    IBM System i Systems management Logical partitions Version 6 Release 1 IBM System i Systems management Logical partitions Version 6 Release 1 Note Before using this information and the product it supports, read the information in “Notices,” on page 135. This edition applies to version 6, release 1, modification 0 of and IBM i5/OS (product number 5761–SS1) to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all reduced instruction set computer (RISC) models nor does it run on CISC models. © Copyright IBM Corporation 1999, 2008. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Logical partitions........... 1 Ordering a new server or upgrading an PDF file for Logical partitions ........ 1 existing server with logical partitions .... 45 Partitioning with a System i ......... 1 Providing hardware placement information Logical partition concepts ......... 1 to service providers......... 45 How logical partitioning works ...... 2 Designing your logical partitions ..... 46 How logical partitioning can work for you .. 3 Deciding what runs in the primary and Hardware for logical partitions ...... 4 secondary partition ......... 46 Bus .............. 5 Capacity planning for logical partitions .. 47 Bus-level and IOP-level I/O partitions ... 7 Using the System Planning Tool .... 47 Dynamically switching IOPs between Examples: Logical partitioning ...... 47 partitions ............ 7 Creating logical partitions ........ 48 IOP .............. 9 Managing logical partitions ........ 49 SPD and PCI ........... 11 Managing logical partitions by using System i Processor ............ 11 Navigator, DST, and SST ........ 50 Memory ............ 14 Starting System i Navigator ...... 53 Disk units ............ 15 Starting SST and DST for logical partitions 53 Removable media device and alternate Logical partition authority .....
    [Show full text]
  • Logical Partitioning Feature of CB Series Xeon Servers Suitable for Robust and Reliable Cloud
    Hitachi Review Vol. 61 (2012), No. 2 65 Logical Partitioning Feature of CB Series Xeon Servers Suitable for Robust and Reliable Cloud Hitoshi Ueno, Ph. D., PE.jp OVERVIEW: LPAR is Hitachi’s own server virtualization feature for Shinichi Matsumura Hitachi Compute Blade servers. LPAR stands for logical partitioning used by mission-critical systems such as mainframes and offers excellent performance, including reliability, stability, and maintaining virtual server separation. The implementation of logical partitioning on Xeon*1 servers significantly expands the scope for applying virtualization in private clouds because it means that virtualization of mission-critical systems can be used even on Xeon servers. Hitachi is currently developing new solutions that improve ease-of-operation and simplify installation, and the number of sites using LPAR for cloud is increasing. LPAR is already a proven virtualization feature and Hitachi intends to continue with development to make further improvements in performance and reliability. INTRODUCTION is that, compared to the VM (virtual machine) method, HITACHI aims to create new value through its next it is easier to configure systems with higher reliability generation of IT (information technology) platforms and performance. However, very few virtualization and virtualization is a key technology for implementing products support the use of logical partitioning on the infrastructure clouds that will support this Xeon processors and other Xeon servers (see Table 1). endeavor. Within this, Hitachi Compute Blade (CB) Virtualization based on logical partitioning has logical partitioning feature (LPAR) provides a server been widely used for mission-critical applications virtualization feature critical to data processing. in the past and, unlike virtualization software from This article describes the characteristics of the other vendors, Hitachi’s LPAR feature also extends LPAR, a server virtualization feature that enhances this capability to Xeon servers.
    [Show full text]
  • PR/SM Planning Guide Level 01A
    zEnterprise System Processor Resource/Systems Manager Planning Guide SB10-7155-01 Level 01a zEnterprise System Processor Resource/Systems Manager Planning Guide SB10-7155-01 Level 01a Level 01a Note Before using this information and the product it supports, read the information in “Safety” on page xi, Appendix D, “Notices,” on page 217, and IBM Systems Environmental Notices and User Guide, Z125-5823. This edition, SB10-7155-01, applies to the IBM zEnterprise 196 and zEnterprise 114 servers. This edition replaces SB10-7155-00. There might be a newer version of this document in a PDF file available on Resource Link.Goto http://www.ibm.com/servers/resourcelink and click Library on the navigation bar. A newer version is indicated by a lowercase, alphabetic letter following the form number suffix (for example: 00a, 00b, 01a, 01b). © Copyright IBM Corporation 2010, 2011. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Level 01a Contents Figures ..............vii Chapter 2. Planning considerations . 31 Overview ...............33 Tables ...............ix Planning the I/O configuration ........33 Planning considerations .........33 Safety ...............xi Maximum number of logical partitions ....35 Managing logical paths for ESCON and FICON Safety notices ..............xi channels ..............36 World trade safety information .......xi Managing the establishment of logical paths . 40 Laser safety information ..........xi Shared channel overview .........49 Laser compliance ...........xi Unshared ESCON or FICON channel recommendations ...........55 About this publication ........xiii Dynamically managed CHPIDs.......55 What is included in this publication ......xiv IOCP coding specifications ........56 Related publications ...........xv Coupling facility planning considerations ....66 z/Architecture ............xv Test or migration coupling configuration .
    [Show full text]
  • Introduction to the System Z Hardware Management Console
    Front cover Introduction to the System z Hardware Management Console Large scale hardware systems management concepts Design and implementation of a management controller Practical operational techniques and scenarios Merwyn Jones HMC & SE Development Team ibm.com/redbooks International Technical Support Organization Introduction to the System z Hardware Management Console February 2010 SG24-7748-00 Note: Before using this information and the product it supports, read the information in “Notices” on page xi. First Edition (February 2010) © Copyright International Business Machines Corporation 2010. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Notices . xi Trademarks . xii Preface . xiii The team who wrote this book . xiii Acknowledgements . xvi Become a published author . xvi Comments welcome. xvi Chapter 1. Introduction to System z Hardware. 1 1.1 General introduction: Mainframes in our midst . 2 1.2 System z hardware architecture . 3 1.2.1 Consolidation of mainframes . 3 1.2.2 An overview of the early architectures . 4 1.2.3 Early system design . 5 1.2.4 Current architecture . 7 1.3 The raised floor . 7 1.4 Hardware management console . 9 1.5 Frames and cages . 9 1.6 Processor units . 10 1.6.1 Multiprocessors. 10 1.6.2 Processor types . 11 1.7 Memory hierarchy . 13 1.8 Networking the mainframe . 14 1.9 Disk devices . 14 1.9.1 Types of DASD . 16 1.9.2 Basic shared DASD . 17 1.10 I/O connectivity (channels) . 18 1.10.1 Channel subsystem .
    [Show full text]
  • IBM POWER Virtualization Best Practice Guide
    IBM Power Systems Performance IBM POWER Virtualization Best Practices Guide Version 4.0 March 2020 Copyright © 2020 by International Business Machines Corporation. IBM Power Virtualization Best Practices Guide CONTENTS 1 INTRODUCTION .................................................................................................................... 7 2 VIRTUAL PROCESSORS .......................................................................................................... 7 2.1 Sizing/configuring virtual processors ......................................................................................................... 9 2.2 Entitlement vs. Virtual processors ........................................................................................................... 10 2.3 Matching entitlement of an LPAR close to its average utilization for better performance ....................... 10 2.4 When to add additional virtual processors .............................................................................................. 11 2.5 How to estimate the number of virtual processors per uncapped shared LPAR ...................................... 11 3 AIX VIRTUAL PROCESSOR MANAGEMENT - PROCESSOR FOLDING ....................................... 11 3.1 VPM folding example .............................................................................................................................. 12 3.2 Tuning Virtual Processor Management Folding ....................................................................................... 13 3.3
    [Show full text]
  • PR/SM Planning Guide Operational Considerations
    IBM IBM Z Processor Resource/Systems Manager Planning Guide SB10-7169-02 Level 02a IBM IBM Z Processor Resource/Systems Manager Planning Guide SB10-7169-02 Note: Before you use this information and the product it supports, read the information in “Safety” on page xi, Appendix C, “Notices,” on page 199, and IBM Systems Environmental Notices and User Guide, Z125-5823. This edition, SB10-7169-02, applies to the IBM Z and IBM LinuxONE servers. This edition replaces SB10-7169-01. There might be a newer version of this document in a PDF file available on Resource Link. Go to http://www.ibm.com/servers/resourcelink and click Library on the navigation bar. © Copyright IBM Corporation 2017, 2019. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Figures .............. vii Extended TOD-clock facility ........ 26 Clock Comparator on Shared Processors.... 27 Tables ............... ix Chapter 2. Planning considerations .. 29 Safety ............... xi Planning the I/O configuration ........ 29 Maximum number of logical partitions .... 31 Safety notices .............. xi Managing logical paths for FICON channels .. 31 World trade safety information ....... xi Managing the establishment of logical paths .. 33 Laser safety information .......... xi Shared channel overview ......... 42 Laser compliance ............ xi Unshared ESCON or FICON channel recommendations ........... 48 About this publication ........ xiii Dynamically managed CHPIDs....... 48 What is included in this publication ...... xiii IOCP coding specifications ........ 49 Related publications ........... xiv 25GbE RoCE Express2 planning considerations .. 58 z/Architecture ............ xiv 10Gb RoCE planning considerations ...... 58 Enterprise Systems Architecture/390 (ESA/390) xiv Coupling facility planning considerations .... 59 Hardware.............
    [Show full text]
  • LPAR Weight Concepts
    Planning for any System z processor, especially image upgrades, consideration must be given to handling the impacts Determine Per CP Share - Vertical CP Management of PR/SM where the following factors should be considered: * Logical processors are classified as vertical high , medium or low - The number of partitions * PR/SM quasi-dedicates vertical high logicals to physical processors - The CP usage; either general purpose, traditional CPs or the use of IFL/ICF CPs and z/OS specialty processors. vertical medium - The remainder of the share is distributed to the LPAR A: 7.2 CPs – 6 VH,2 VM (60%), 1 VL - The partition mode, either dedicated or shared processors - The ratio of logical CPs to physical CPs defined * Vertical low processors are only given service when other partitions do - The number of logical CPs defined to the partitions not use their entire share and there is demand in the partition LPAR B: 1.8 CPs – 1 VH, 1 VM (80%), 7 VL - The type of system control program (z/OS, z/VM, Linux, etc.), and the workload characteristics in each partition. - The effect of the partitions shared weight and any impact of capping on the partition. * Vertical low processors are parked by z/OS when no extra service is available. Book 0 Important Concepts System z Partitioning Controls * LPAR weights become important only when the processor is extremely busy ( approaching 100%) or are capped * Example CEC 2827-704: Access to resources is relative to other partitions. * There are two dispatchers involved in making resource allocations: - PR/SM Every partition must have a relative weight, the relative weight is also known as the initial - Operating System processing weight (hard cap).
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,802,354 Kubala Et Al
    IIIUSOO5802354A United States Patent (19) 11 Patent Number: 5,802,354 Kubala et al. 45 Date of Patent: Sep. 1, 1998 54 SESSESSEEogical :::::: y: a G. et al. ................... 395/551 PARTITIONS OF A PARTITIONED OTHER PUBLICATIONS NFORMATION HANDLING SYSTEM TO A TEST DATESOURCE "Enterprise Systems Architecture/390 Principles of Opera tion' IBM Publication, SA22-7201-02, Dec. 1994. (75) Inventors: JeffreyB. Mathias, P. Kubala, Vestal; Poughguag;Ira G. Siegel, Thomas New ocessor RResource/Systems C is S t sManager Planninging Uu1Guide” Paltz; David E. Whitney, IBM Publication, GA22-7236-01, Sep. 1996. Poughkeepsie, all of N.Y. Primary Examiner Thomas M. Heckler 73) Assignee: International Business Machines Attorney; Agent, or Firm-W. A. Kinnaman, Jr. Corporation. Armonk, N.Y. 57) ABSTRACT (21) Appl. No.: 871,429 A method and apparatus for synchronizing selected logical o partitions of a partitioned information handling system to a 22 Filed: Jun. 9, 1997 test datesource. A system operator is presented with a 6 display panel in which the operator may specify a set of test 2. 4 to spees ope-woo was seeds Pawa as aposuo Xu Pow Ge.K. partitions and a test clock value. Each partition designated as (58 Field of search an a wo be 44 440 x and see395551 555 a test partition is synchronized to the test clock value upon being newly activated, while production partitions are syn 395/200.78 chronized to a production clock value. The first test partition to be newly activated is synchronized to the test clock value 56) References Cited by calculating the difference between the test clock value U.S.
    [Show full text]