Simulation of Simplicity: a Technique to Cope with Degenerate Cases in Geometric Algorithms1

Total Page:16

File Type:pdf, Size:1020Kb

Simulation of Simplicity: a Technique to Cope with Degenerate Cases in Geometric Algorithms1 Simulation of Simplicity A Technique to Cop e with Degenerate Cases 1 in Geometric Algorithms Herb ert Edelsbrunner and Ernst Peter Muc ke Abstract This pap er describ es a generalpurp ose programming technique called the Simulation of Simplicity which can b e used to cop e with degenerate input data for geometric algorithms It relieves the programmer from the task to provide a consistent treatment for every single sp ecial case that can o ccur The programs that use the technique tend to b e considerably smaller and more robust than those that do not use it We b elieve that this technique will b ecome a standard to ol in writing geometric software Keywords Computational geometry degenerate data implementation programming to ol p erturbation determinants symb olic computation ACM Transactions on Graphics 1 Research of b oth authors was supp orted by Amo co Foundation Faculty Development Grant CS It was partially carried out while b oth authors were with the Institutes for Information Pro cessing at the Technical University of Graz Austria The rst author also acknowledges supp ort by the National Science Foundation under grant CCR 2 Department of Computer Science University of Illinois at UrbanaChampaign West Springeld Avenue Urbana Illinois USA Simulation of Simplicity Intro duction This pap er intro duces a general technique that can b e used to cop e with degenerate cases encoun tered by computer programs Consider for example a program that sorts an array of integers using a comparison as a primitive op eration A sp ecial or degenerate case o ccurs when the pro gram attempts to decide which one of two equal numb ers is smaller than the other A typical way to resolve this tie is to pretend that the numb er with smaller index is smaller assuming the integers are indexed eg by their p ositions in an array Or think of Kruskals algorithm for constructing a minimum spanning tree of a weighted graph see AHU At each step it cho oses the shortest edge that can b e added to the current collection of edges without creating a cycle If this edge is not unique then any one of the candidate edges is taken The thus generated minimum spanning tree is therefore not unique unless we sp ecify deterministic rules to break ties In b oth problems sorting and constructing minimum spanning trees the sp ecial cases are easily dealt with partly b ecause the ties can b e broken arbitrarily without creating inconsistencies The situation is usually far more complicated for geometric problems Consider for example the following seemingly straightforward algorithm for the p ointinp olygon problem which is sometimes called the Parity Algorithm Let r b e the horizontal halfline whose left endp oint is the test p oint Count the numb er of intersections b etween r and the edges of the p olygon If that numb er is o dd then the test p oint lies within the p olygon and if the numb er is even then it lies outside the p olygon As p ointed out in Fo it is not a trivial matter to implement this algorithm even if we assume that the test p oint do es not lie on the b oundary of the p olygon There are only two nondegenerate cases Either the intersection b etween r and an edge e is empty or r crosses e see Figure I a and b There are however four degenerate cases as illustrated in Figure I c through f that have to b e taken into account a b c d e f Figure I The dierent cases in the Parity Algorithm A correct answer is obtained if cases c and e are counted as one crossing and cases d and f are not counted at all If we write the co de for the ab ove algorithm we realize that a substantial amount of the eort is required to cover the four degenerated cases Observe also that there are several seemingly plausible ways to treat the degenerate cases and that some of them lead to incorrect algorithms We app eal to the imagination of the reader to envision the bizarre structure of degenerate cases one encounters in generalizing the p ointinp olygon problem to three or higher dimensions Another problem with a set of degenerate cases that is considerably richer than the Simulation of Simplicity one of the p ointinp olygon problem is obtained if one intersects a p olygon with a geometric ob ject that is more complicated than a halfline When it comes to implementing geometric algorithms degenerate cases are very costly in partic ular if there are many such cases that have to b e distinguished This is caused by the p ositive correlation b etween the numb er of degenerate cases and a variety of factors that contribute to the overall cost of a piece of software These factors include the length of the program which for itself correlates p ositively with the amount of time required to write it to debug it and to maintain it Of course the degree of robustness of the program decreases with increasing complication The correctness of a program relies on the consistent treatment of all dierent cases In this context it is worthwhile to mention that more ecient algorithms tend to b e more complicated and also more sensible to slight inconsistencies in treating degenerate cases This pap er presents a general technique called Simulation of Simplicity SoS that can b e used to cop e with the problems mentioned ab ove Intuitively it simulates a conceptual p erturbation of the input data that eliminates all degeneracies We hasten to mention that the p erturbation is never ever computed it is assumed to b e arbitrarily small although not vanishing which is enough to simulate the nondegenerate top ology Another interpretation of the technique views it as a general way to break ties consistently The tiebreaking part of the co de app ears in the lowest level of the algorithm namely in the pro cedures that implement the needed primitive op erations Dierent techniques following the same main approach have recently b een suggested in Ya Ya A large part of this pap er is devoted to demonstrating that the overhead in time caused by the use of the more elab orate primitive pro cedures required by SoS is negligible The outline of this pap er is as follows Section presents the general idea of the technique and works out some guidelines needed to implement it eectively Section considers a class of problems for nite p oint sets that can b e solved using a common set of geometric primitives It also discusses how the p erturbation inuences the geometric primitives Section demonstrates ecient implementations of the primitive op erations In Section we show that the geometric primitives intro duced for p oint set problems can b e used to solve a variety of other problems dened for p olygons hyp erplanes circles spheres and other geometric ob jects Finally in Section we discuss the p erturbation technique and its limitations SoS the General Idea Degeneracies o ccur with probability zero if we draw a nite numb er of geometric ob jects each represented by a nite set of numb ers from the innite set of all such ob jects provided there is no b ound on the precision of the numb ers used In reallife computing this is not the case that is there is only a nite set of available numb ers and thus a b ound on the precision that can b e achieved As a consequence we are do omed to work with degenerate data On the other hand even innite precision do es not guarantee the nonexistence of degeneracies This section gives the general outline of a technique called the Simulation of Simplicity SoS we use simple as a synonym for nondegenerate which allows us to neglect degeneracies when we write programs A similar but less elab orate metho d has b een used to solve degenerate linear programs This leads to the implementation of the simplex algorithm referred to as the lexicographical metho d see Ch DOW Da or Ch for details In computational geometry this technique has b een used in a couple of pap ers including Ed and EW to avoid the otherwise necessary Simulation of Simplicity discussion of degenerate cases This pap er presents the theoretical foundations of SoS as well as details of its implementation The basic idea of SoS is to p erturb the given ob jects slightly which amounts to changing the numb ers that represent the ob jects these numb ers will b e called the coordinates or the parameters of the ob jects It is imp ortant that the p erturbation is small enough so that it do es not change the nondegenerate p osition of ob jects relative to each other Coming up with such a p erturbation is rather dicult and may require much higher precision than used for the original set of ob jects For this reason we p erform the p erturbation only symb olically by replacing each co ordinate by a p olynomial in The p olynomials will b e chosen in such a way that the p erturb ed set go es towards the original set as go es to zero We will see that it is not imp ortant to know the exact value of to p erform the simulation rather it is sucient to assume that is p ositive and suciently small Thus it will b e p ossible to use as an indeterminant and to handle primitive op erations symb olically The future user of SoS will neither have to b e concerned with the role that plays in the p erturba tion nor with the symb olic manipulation of p olynomials We may think of SoS as a package that provides the primitive op erations needed for a certain computation Ideally the inside of these op erations is hidden from the user who communicates with them like with an oracle It turns out that a large numb er of geometric problems can b e solved using a surprisingly small numb er of primitives Some of these primitives will b e discussed
Recommended publications
  • Degenerate Eigenvalue Problem 32.1 Degenerate Perturbation
    Physics 342 Lecture 32 Degenerate Eigenvalue Problem Lecture 32 Physics 342 Quantum Mechanics I Wednesday, April 23rd, 2008 We have the matrix form of the first order perturbative result from last time. This carries over pretty directly to the Schr¨odingerequation, with only minimal replacement (the inner product and finite vector space change, but notationally, the results are identical). Because there are a variety of quantum mechanical systems with degenerate spectra (like the Hydrogen 2 eigenstates, each En has n associated eigenstates) and we want to be able to predict the energy shift associated with perturbations in these systems, we can copy our arguments for matrices to cover matrices with more than one eigenvector per eigenvalue. The punch line of that program is that we can use the non-degenerate perturbed energies, provided we start with the \correct" degenerate linear combinations. 32.1 Degenerate Perturbation N×N Going back to our symmetric matrix example, we have A IR , and 2 again, a set of eigenvectors and eigenvalues: A xi = λi xi. This time, suppose that the eigenvalue λi has a set of M associated eigenvectors { that is, suppose a set of eigenvectors yj satisfy: A yj = λi yj j = 1 M (32.1) −! 1 of 9 32.1. DEGENERATE PERTURBATION Lecture 32 (so this represents M separate equations) that are themselves orthonormal1. Clearly, any linear combination of these vectors is also an eigenvector: M M X X A βk yk = λi βk yk: (32.2) k=1 k=1 M PM Define the general combination of yi to be z βk yk, also an f gi=1 ≡ k=1 eigenvector of A with eigenvalue λi.
    [Show full text]
  • DEGENERACY CURVES, GAPS, and DIABOLICAL POINTS in the SPECTRA of NEUMANN PARALLELOGRAMS P Overfelt
    DEGENERACY CURVES, GAPS, AND DIABOLICAL POINTS IN THE SPECTRA OF NEUMANN PARALLELOGRAMS P Overfelt To cite this version: P Overfelt. DEGENERACY CURVES, GAPS, AND DIABOLICAL POINTS IN THE SPECTRA OF NEUMANN PARALLELOGRAMS. 2020. hal-03017250 HAL Id: hal-03017250 https://hal.archives-ouvertes.fr/hal-03017250 Preprint submitted on 20 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. DEGENERACY CURVES, GAPS, AND DIABOLICAL POINTS IN THE SPECTRA OF NEUMANN PARALLELOGRAMS P. L. OVERFELT Abstract. In this paper we consider the problem of solving the Helmholtz equation over the space of all parallelograms subject to Neumann boundary conditions and determining the degeneracies occurring in their spectra upon changing the two parameters, angle and side ratio. This problem is solved numerically using the finite element method (FEM). Specifically for the lowest eleven normalized eigenvalue levels of the family of Neumann parallelograms, the intersection of two (or more) adjacent eigen- value level surfaces occurs in one of three ways: either as an isolated point associated with the special geometries, i.e., the rectangle, the square, or the rhombus, as part of a degeneracy curve which appears to contain an infinite number of points, or as a diabolical point in the Neumann parallelogram spec- trum.
    [Show full text]
  • A Singular One-Dimensional Bound State Problem and Its Degeneracies
    A Singular One-Dimensional Bound State Problem and its Degeneracies Fatih Erman1, Manuel Gadella2, Se¸cil Tunalı3, Haydar Uncu4 1 Department of Mathematics, Izmir˙ Institute of Technology, Urla, 35430, Izmir,˙ Turkey 2 Departamento de F´ısica Te´orica, At´omica y Optica´ and IMUVA. Universidad de Valladolid, Campus Miguel Delibes, Paseo Bel´en 7, 47011, Valladolid, Spain 3 Department of Mathematics, Istanbul˙ Bilgi University, Dolapdere Campus 34440 Beyo˘glu, Istanbul,˙ Turkey 4 Department of Physics, Adnan Menderes University, 09100, Aydın, Turkey E-mail: [email protected], [email protected], [email protected], [email protected] October 20, 2017 Abstract We give a brief exposition of the formulation of the bound state problem for the one-dimensional system of N attractive Dirac delta potentials, as an N N matrix eigenvalue problem (ΦA = ωA). The main aim of this paper is to illustrate that the non-degeneracy× theorem in one dimension breaks down for the equidistantly distributed Dirac delta potential, where the matrix Φ becomes a special form of the circulant matrix. We then give elementary proof that the ground state is always non-degenerate and the associated wave function may be chosen to be positive by using the Perron-Frobenius theorem. We also prove that removing a single center from the system of N delta centers shifts all the bound state energy levels upward as a simple consequence of the Cauchy interlacing theorem. Keywords. Point interactions, Dirac delta potentials, bound states. 1 Introduction Dirac delta potentials or point interactions, or sometimes called contact potentials are one of the exactly solvable classes of idealized potentials, and are used as a pedagogical tool to illustrate various physically important phenomena, where the de Broglie wavelength of the particle is much larger than the range of the interaction.
    [Show full text]
  • 11.-HYPERBOLA-THEORY.Pdf
    12. HYPERBOLA 1. INTRODUCTION A hyperbola is the locus of a point which moves in the plane in such a way that Z the ratio of its distance from a fixed point in the same plane to its distance X’ P from a fixed line is always constant which is always greater than unity. M The fixed point is called the focus, the fixed line is called the directrix. The constant ratio is generally denoted by e and is known as the eccentricity of the Directrix hyperbola. A hyperbola can also be defined as the locus of a point such that S (focus) the absolute value of the difference of the distances from the two fixed points Z’ (foci) is constant. If S is the focus, ZZ′ is the directrix and P is any point on the hyperbola as show in figure. Figure 12.1 SP Then by definition, we have = e (e > 1). PM Note: The general equation of a conic can be taken as ax22+ 2hxy + by + 2gx + 2fy += c 0 This equation represents a hyperbola if it is non-degenerate (i.e. eq. cannot be written into two linear factors) ahg ∆ ≠ 0, h2 > ab. Where ∆=hb f gfc MASTERJEE CONCEPTS 1. The general equation ax22+ 2hxy + by + 2gx + 2fy += c 0 can be written in matrix form as ahgx ah x x y + 2gx + 2fy += c 0 and xy1hb f y = 0 hb y gfc1 Degeneracy condition depends on the determinant of the 3x3 matrix and the type of conic depends on the determinant of the 2x2 matrix.
    [Show full text]
  • Triangle-Free Penny Graphs: Degeneracy, Choosability, and Edge Count
    Triangle-Free Penny Graphs: Degeneracy, Choosability, and Edge Count David Eppstein 25th International Symposium on Graph Drawing & Network Visualization Boston, Massachusetts, September 2017 Circle packing theorem Contacts of interior-disjoint disks in the plane form a planar graph All planar graphs can be represented this way Unique (up to M¨obius)for triangulated graphs [Koebe 1936; Andreev 1970; Thurston 2002] Balanced circle packing Some planar graphs may require exponentially-different radii a b c d But polynomial radii are e f g h i j k possible for: l m n o I Trees p I Outerpaths I Cactus graphs a I Bounded tree-depth b c d [Alam et al. 2015] j e g h i f m k l p n o Perfect balance Circle packings with all radii equal represent penny graphs [Harborth 1974; Erd}os1987] Penny graphs as proximity graphs Given any finite set of points in the plane Draw an edge between each closest pair of points (Pennies: circles centered at the given points with radius = half the minimum distance) So penny graphs may also be called closest-pair graphs or minimum-distance graphs Penny graphs as optimal graph drawings Penny graphs are exactly graphs that can be drawn I With no crossings I All edges equal length I Angular resolution ≥ π=3 Properties of penny graphs 3-degenerate (convex hull vertices have degree ≤ 3) ) easy proof of 4-color theorem; 4-list-colorable [Hartsfield and Ringel 2003] p Number of edges at most 3n − 12n − 3 Maximized by packing into a hexagon [Harborth 1974; Kupitz 1994] NP-hard to recognize, even for trees [Bowen et al.
    [Show full text]
  • Removing Degeneracy May Require a Large Dimension Increase∗
    THEORY OF COMPUTING, Volume 3 (2007), pp. 159–177 http://theoryofcomputing.org Removing Degeneracy May Require a Large Dimension Increase∗ Jirˇ´ı Matousekˇ Petr Skovroˇ nˇ Received: March 12, 2007; published: September 26, 2007. Abstract: Many geometric algorithms are formulated for input objects in general position; sometimes this is for convenience and simplicity, and sometimes it is essential for the al- gorithm to work at all. For arbitrary inputs this requires removing degeneracies, which has usually been solved by relatively complicated and computationally demanding perturbation methods. The result of this paper can be regarded as an indication that the problem of removing degeneracies has no simple “abstract” solution. We consider LP-type problems, a successful axiomatic framework for optimization problems capturing, e. g., linear programming and the smallest enclosing ball of a point set. For infinitely many integers D we construct a D- dimensional LP-type problem such that in order to remove degeneracies from it, we have to increase the dimension to at least (1 + ε)D, where ε > 0 is an absolute constant. The proof consists of showing that certain posets cannot be covered by pairwise disjoint copies of Boolean algebras under some restrictions on their placement. To this end, we prove that certain systems of linear inequalities are unsolvable, which seems to require surprisingly precise calculations. ∗An extended abstract of this paper has appeared in Proceedings of European Conference on Combinatorics, Graph Theory and Applications 2007 (Eurocomb), pp. 107–113. ACM Classification: F.2.2 AMS Classification: 68U05, 06A07, 68R99 Key words and phrases: LP-type problem, degeneracy, general position, geometric computation, par- tially ordered set Authors retain copyright to their work and grant Theory of Computing unlimited rights to publish the work electronically and in hard copy.
    [Show full text]
  • Degeneracy and All That = ∫
    DEGENERACY AND ALL THAT The Nature of Thermodynamics, Statistical Mechanics and Classical Mechanics Thermodynamics The study of the equilibrium bulk properties of matter within the context of four laws or ‘facts of experience’ that relate measurable properties, like temperature, pressure, and volume etc. It is important to understand that from the viewpoint of thermodynamics the microscopic nature of matter is irrelevant, that is, thermodynamics would apply equally well if matter formed a continuum. In addition, thermodynamics is a measurement or laboratory based science and is not a branch of metaphysics. Statistical Mechanics Statistical Mechanics is a statistical approach to solving the classical n body problem in order to study the same bulk properties of matter as thermodynamics but doing so at the microscopic level. In this way Statistical Mechanics allows an understanding of the equilibrium properties of matter at a molecular level. Statistical Mechanics makes heavy use of Thermodynamics, Classical Mechanics and Quantum Mechanics for its development and hence the perquisites for this course. Classical Mechanics The Classical Mechanical approach to studying the n body problem involves solving six simultaneous differential equations for each particle in the system. This assumes one knows the initial position q(t) and momentum p(t) of each particle at time to. Since the bulk properties of the system of interest are themselves functions of the q and p, i.e., G=G[p(t),q(t)] we can then do a time average of the form 1 t0 G Gobs G[ p ( t ), q ( t )] dt t0 where is long enough to ensure G is independent of , i.e., fluctuations are negligible.
    [Show full text]
  • A Non-Degeneracy Property for a Class of Degenerate Parabolic Equations
    Zeitschrift für Analysis und ihre Anwendungen Journal for Analysis and its Applications Volume 15 (1996), No. 3, 637-650 A Non-Degeneracy Property for a Class of Degenerate Parabolic Equations C. Ebmeyer Abstract. We deal with the initial and boundary value problem for the degenerate parabolic equation u = A,3(u) in the cylinder fI x (0,T), where I C R" is bounded, 3(0) = (0) 0, and,O ' ^! 0 (e.g., /3(U) uIlzIm_l (m > 1)). We study the appearance of the free boundary, and prove under certain hypothesis on 3 that the free boundary has a finite speed of propagation, and is Holder continuous. Further, we estimate the Lebesgue measure of the set where u > 0 is small and obtain the non-degeneracy property I10 < /3(u(x,t)) < e} < ce. Keywords: Free boundary problems, finite speed of propagation, porous medium equations AMS subject classification: Primary 35K65, secondary 35R35, 76S05 0. Introduction Consider the initial and boundary value problem u t =Ls13( u ) in Qx(0,T] u(x,t)=0 onôfZx(0,T] (0.1) u(x,0)=uo(x) in where Q C 1Ris bounded, T < +00, 0 is a function with /3(0) = i3(0) = 0 and ,3 > 0, and u0 > 0. Written in divergence form Ut = div(/3(u)Vu) we see that (0.1) is a degenerate parabolic equation. The model equation of this type is the porous medium equation Ut = I. (uIuI m_l ) (m > 1). (0.2) Equation (0.2) has been the subject of intensive research, surveys can be found in [14, 16].
    [Show full text]
  • A Computational Model of View Degeneracy and Its Application to Active Focal Length Control
    Please do not remove this page A Computational Model of View Degeneracy and its Application to Active Focal Length Control Wilkes, David; Dickinson, Sven J.; Tsotsos, John K. https://scholarship.libraries.rutgers.edu/discovery/delivery/01RUT_INST:ResearchRepository/12643458520004646?l#13643535820004646 Wilkes, D., Dickinson, S. J., & Tsotsos, J. K. (1997). A Computational Model of View Degeneracy and its Application to Active Focal Length Control. Rutgers University. https://doi.org/10.7282/T3R214W9 This work is protected by copyright. You are free to use this resource, with proper attribution, for research and educational purposes. Other uses, such as reproduction or publication, may require the permission of the copyright holder. Downloaded On 2021/10/04 10:05:38 -0400 A Computational Mo del of View Degeneracy and its Application to Active Focal Length Control David Wilkes Department of Computer Science University of Toronto Sven J Dickinson Rutgers University Center for Cognitive Science RuCCS and Department of Computer Science Rutgers University John K Tsotsos Department of Computer Science University of Toronto Abstract We quantify the observation by Kender and Freudenstein that degenerate views o ccupy a signicant fraction of the viewing sphere surrounding an ob ject This demonstrates that systems for recognition must explicitly account for the p ossibility of view degeneracy We show that view degeneracy cannot b e detected from a single camera viewp oint As a result systems designed to recognize ob jects from a single arbitrary
    [Show full text]
  • On Degeneracy in Geometric Computations*
    Chapter 3 On Degeneracy in Geometric Computations* Christoph Burnikelt Kurt Mehlhornt S tefan Schirrat Abstract solves P and z is a degenerate problem instance The main goal of this paper is to argue against the then x is also degenerate for A. Typical cases belief that perturbation is a “theoretical paradise” and of degeneracy are four cocircular points, three to put forward the claim that it is simpler (in terms collinear points, or two points with the same x- of programming effort) and more efficient (in terms of coordinate. Degeneracy is considered to be a running time) to avoid the perturbation technique and curse in geometric computations. It is common to deal directly with degenerate inputs. We substantiate belief that the requirement to handle degenerate our claim on two basic problems in computational geometry, the line segment intersection problem and the inputs leads to difficult and boring case analyses, convex hull problem. complicates algorithms, and produces cluttered code. 1 Introduction. Fortunately, there is a general technique for Following Emiris and Canny [EC921 we view a coping with degeneracies: the perturbation tech- geometric problem P as a function from IRnd to nique introduced by Edelsbrunner and Miicke S x IR,“, where n, m, and d are integers and S is [EM901 and later refined by Yap [YapSO] and some discrete space, modelling the symbolic part of Emiris and Canny [EC92]. In this technique, the the output (e.g., a planar graph or a face incidence input is perturbed symbolically, e.g., Emiris and lattice). A problem instance z E lRnd, which for Canny propose to replace the j-th coordinate ~;j concreteness we view as n points in d-dimensional of the i-th input point by x;j + E .
    [Show full text]
  • Edge Bounds and Degeneracy of Triangle-Free Penny Graphs and Squaregraphs
    Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 0, no. 0, pp. 0{0 (0) DOI: 10.7155/jgaa.00463 Edge Bounds and Degeneracy of Triangle-Free Penny Graphs and Squaregraphs David Eppstein Department of Computer Science, University of California, Irvine Abstract We show that triangle-free penny graphs have degeneracy at most two, and that both triangle-free penny graphs and squaregraphs have at most p min2n − Ω( n); 2n − D − 2 edges, where n is the number of vertices and D is the diameter of the graph. Submitted: Reviewed: Revised: Accepted: Final: October 2017 January 2017 February 2017 February 2018 March 2018 Published: Article type: Communicated by: Regular paper F. Frati and K.-L. Ma A preliminary version of this paper appears as \Triangle-Free Penny Graphs: Degeneracy, Choosability, and Edge Count" in the proceedings of the 25th International Symposium on Graph Drawing and Network Visualization. The material on squaregraphs was added subsequently to that version. This work was supported in part by the National Science Foundation under Grants CCF-1228639, CCF-1618301, and CCF-1616248. E-mail address: [email protected] (David Eppstein) JGAA, 0(0) 0{0 (0) 1 1 Introduction In this paper we investigate the number of edges and degeneracy of two classes of planar graphs, the triangle-free penny graphs and the squaregraphs. 1.1 Background Numbers of edges. It is standard that n-vertex planar graphs have at most 3n − 6 edges, and that bipartite planar graphs have at most 2n − 4 edges. The 3n − 6 bound follows by observing that in an embedded graph with n vertices, e edges, and f faces, each face has at least three edges, and by using the corresponding inequality on the number of face-edge incidences, 2e ≥ 3f, to eliminate the number f of faces from Euler's formula n − e + f = 2.
    [Show full text]
  • Arxiv:1807.08641V1 [Cond-Mat.Mes-Hall] 23 Jul 2018
    Attractive Coulomb interactions in a triple quantum dot Changki Hong,1 Gwangsu Yoo,2 Jinhong Park,3 Min-Kyun Cho,4 Yunchul Chung,1, 3, ∗ H.-S. Sim,2, y Dohun Kim,4, z Hyungkook Choi,5 Vladimir Umansky,3 and Diana Mahalu3 1Department of Physics, Pusan National University, Busan 46241, Republic of Korea 2Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea 3Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel 4Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea 5Department of Physics, Research Institute of Physics and Chemistry, Chonbuk National University, Jeonju 54896, Republic of Korea Electron pairing due to a repulsive Coulomb interaction in a triple quantum dot (TQD) is exper- imentally studied. It is found that electron pairing in two dots of a TQD is mediated by the third dot, when the third dot strongly couples with the other two via Coulomb repulsion so that the TQD is in the twofold degenerate ground states of (1; 0; 0) and (0; 1; 1) charge configurations. Using the transport spectroscopy that monitors electron transport through each individual dot of a TQD, we analyze how to achieve the degeneracy in experiments, how the degeneracy is related to electron pairing, and the resulting nontrivial behavior of electron transport. Our findings may be used to design a system with nontrivial electron correlations and functionalities. Recently, it was experimentally demonstrated [1], us- charges, we find that electron pairing in two QDs of the ing an electrostatically coupled quadruple quantum dot TQD is mediated by the third QD, when the third QD formed in carbon nanotubes, that an effectively attrac- strongly couples with the other two QDs via Coulomb re- tive interaction between electrons can be induced purely pulsion.
    [Show full text]