Prevalence Clotting Factor Treatment Prior to 1987 Blood Long-Term Transfusion Worldwide 170 Million ( 3%) Hemodialysis Or Organ Transplant Prior to 1992

Total Page:16

File Type:pdf, Size:1020Kb

Prevalence Clotting Factor Treatment Prior to 1987 Blood Long-Term Transfusion Worldwide 170 Million ( 3%) Hemodialysis Or Organ Transplant Prior to 1992 Hepatitis C: Diagnosis and Natural History Risk Factors Tushar Patel, MBChB Prevalence Clotting Factor Treatment Prior to 1987 Blood Long-Term Transfusion Worldwide 170 million ( 3%) Hemodialysis or Organ Transplant Prior to 1992 Risk Factors Multiple for Hepatitis C Injection United States Sexual Partners Drug Use Anti-HCV positive 3.9 million(1.8%) HCV RNA positive 2.7 million(1.4%) Mass Injections Birth from and Traditional Infected Mother Practices Alter MJ et al., New Engl J Med 1999; 341:556 Lavanchy D & McMahon B, In: Liang TJ & Hoofnagle JH (eds.) Hepatitis C. New York: Academic Press, 2000:185 1 Current Likelihood of Transmission Diagnostic Tests • Transfusion ~ 1 in 1,000,000 • Heterosexual partner ~1 in 1,000 per yr • Hepatitis C antibody tests • Needlestick injury • Qualitative HCV RNA tests ¾ HCV-positive source ~ 5% ¾ HCV status unknown ~ 1% • Quantitative HCV RNA tests • Maternal-Infant • Genotyping ¾ Mother HIV-negative ~ 5% ¾ Mother HIV-positive 15 - 20% • Liver biopsy Terrault NA, Hepatology 2002 ;36(Suppl 1):S99 Roberts EA, Yeung L. Hepatology 2002 ;36(Suppl 1):S106 Acute Hepatitis C Infection 1000 HCV RNA positive 800 Anti-HCV ALT 600 Diagnosis and Evaluation (IU/L) 400 Symptoms 200 Normal 0 ALT 02468101224123456 7 Weeks Months Time After Exposure Hoofnagle JH, Hepatology 1997; 26:15S 2 Antibody tests for HCV Genotypes hepatitis C • Six major genotypes found throughout • Indicates past or present infection the world • Inexpensive, sensitive and specific • Major determinant of response to • Poor positive predictive value in low antiviral therapy prevalence populations • In Europe and U.S., 60-70% of patients • Low sensitivity in immunosuppressed have genotype 1 infection patients Qualitative tests for Virological Tests Do Not Predict HCV RNA Natural History of Disease • Confirms diagnosis of HCV infection • No correlation between genotype and • Useful in the early diagnosis of acute progression of disease hepatitis C • No correlation between HCV RNA level and • Demonstrates the presence of active progression of disease infection • “Gold standard” for documenting response to treatment 3 Liver Biopsy • Degree of fibrosis is most important predictor of prognosis • Useful in determining need for anti-viral therapy Natural History • Advanced cirrhosis associated with reduced response to treatment Outcome Following Hepatitis C Infection Stages of Fibrosis In Chronic Hepatitis Acute hepatitis C Portal Periportal 55 - 85% Chronic infection 70% 12 Chronic hepatitis 1 - 4%/yr 20% HCC 3 4 Cirrhosis Decompensation 4 - 5%/yr Time (yr) Septal Cirrhosis 10 20 30 4 Stage of Disease Correlates Hepatocellular Carcinoma With Duration of Infection Incidence in HCV-Positive Cirrhosis 60 Chronic hepatitis % 40 Liver cirrhosis Cumulative incidence 20 Hepatocellular carcinoma Median 00 0205010 30 40 60 012345678910 Years of follow-up Years since transfusion Kiyosawa K, et al., Hepatology 1990; 12:671 Adapted from Ikeda K et al, Hepatology 1993;18:47 Outlook for Those With Factors Associated Compensated Cirrhosis Study A Study B Study C With Fibrosis Number 384 112 103 Follow-up (yr) 5.0 4.5 3.3 • Duration of infection Decompensation (%/yr) 3.9 4.4 5.0 • Alcohol > 50 gm per day HCC (%/yr) 1.4 2.3 3.3 5-Year Survival (%) 91 83 84 • Age > 40 years at infection Post decompensation (%) 50 51 -- • Male gender A: Fattovich G et al. Gastroenterology 1997;112:463 B: Hu K & Tong MJ. Hepatology 1999;29:1311 C: Serfaty L et al. Hepatology 1998;27:1435 Poynard T, et al., Lancet 1997; 349:825 5 Progression to Cirrhosis Can Be Estimated Fibrosis Rate Varies Among From Initial Stage of Liver Biopsy Fibrosis HCV-Infected Individuals 100 4 Men who drink > 50 gm Initial Stage 3+ 80 alcohol daily Initial Stage 2-2.9 3 % 60 Progression Initial Stage 0-1.9 to Cirrhosis40 Stage of 2 (stage 4) Fibrosis 20 1 Women who don’t drink 0 0 2 4 6 8 101214161820 Time (yr) 0 0 5 10 15 20 25 30 35 Duration of Infection (year) Yano M, et. al., Hepatology 1996; 23:1334 Fibrosis Risk Varies Among HIV Co-Infection May Accelerate Individuals Progression to Cirrhosis Patient A Patient B 50 40 Age at infection 25 42 30 Alcohol use Seldom 3-4 drinks/day % HIV Positive With 20 N = 80 Sex Female Male Cirrhosis 10 HIV Negative Fibrosis stage/yr 0.10 0.25 N = 80 0 Years to cirrhosis 40 16 0 5 10 15 20 Duration of HCV Infection (years) Poynard T, et al., Lancet 1997; 349:825 Adapted from Di Martino V et al. Hepatology 2001;34:1193 6 Should we treat Future Prevalence Hepatitis C? of HCV 4 3 • HCV is the only chronic virus infection that can Individuals infected be eradicated (cured) by antiviral therapy. at any time 2 • Cure of infection (SVR) essentially eliminates of Prevalence risk of decompensation in patients with HCV Infections (%) 1 Individuals infected cirrhosis and dramatically reduces risk of HCC. For >20 years 0 1960 1970 1980 1990 2000 2010 2020 2030 Davis, et al. Liver Transplantation 2003. Armstrong GL et al. Hepatology 2000; 31:777-782 Liver-Related Mortality in HCV Related Complications Expected to Chronic Infection Increase Greatly in the Coming Years Results of a Markov Model Based on HCV Natural History Studies* Middle-Aged Young Transfusion Recipients Air Force Recruits 6 HCC 81% 4 Cirrhosis 82% % HCV-Negative Mortality Controls Decompensation 106% From Liver HCV Positive Disease 2 Liver-Related 181% Deaths n=377 n=222 n=8551 n=17 0 0 20 40 60 80 100 120 140 160 180 200 25 Years 45 Years Duration of Follow-Up Estimated % Increase From 2000 to 2020 Seeff LB et al, Ann Intern Med 2000; 132:105 *Assumes no HCV treatment. Seeff LB et al, Hepatology 2001;33:455 Davis GL, et al. Liver Transpl. 2003;9:331-338. 7 Mental Health Evaluation • Psychopathology (e.g., substance abuse, depression, anxiety) is prominent in individuals with chronic HCV • Pegylated IFN, with or without ribavirin, is Pre-treatment evaluation associated with depression rates of 20%-34% • IFN-α and ribavirin can worsen and/or induce depression and other underlying psychiatric conditions Æ Patients should be screened and have any pre- existing psychiatric conditions treated before initiating HCV treatment 1. Asnis GM, De La Garza R II. J Clin Gastroenterol. 2006;40:322-335. 2. Rifai MA, et al. Curr Treat Options Gastroenterol. 2006;9:508-519. Current Practice Predictors of Response to Antiviral Therapy in Chronic Hepatitis C HCV viral load Hepatitis A/ B immunizations Anti-HAV AFP HBsAg +/- US, EGD TSH • Genotype 1 and 4 are less responsive ALT Liver Biopsy than other genotypes CBC Patient referral High viral load is less responsive Mental Health Evaluation • Counseling and review Consent to treat – Natural history of HCV Specialist review as appropriate – Treatment options (ID, optho, card etc) – Adverse effects of Rx • Advanced fibrosis is less responsive – Expected benefits of Rx – Duration of treatment Treatment with regular follow-up visits 8 Hepatitis C Virologic Responses Current and Future 8 7 PegIFN/RBV 6 Treatment IU/mL) 5 10 EVR 2 log decline Maher Azzouz,MD 4 10 Associate Professor of Medicine 3 Director of Endoscopy 2 Slow virologic response Limit of detection Division of Gastroenterolgy Hepatolgy and Nutrition RNA HCV (log 1 RVR cEVR The Comprehensive Transplant Center SVR The Ohio State University 0 0 48 12 18 24 30 36 42 48 54 60 66 72 78 Weeks Goals of HCV Therapy Suboptimal Virologic Responses • Primary goal: eradicate the virus 8 7 PegIFN/RBV • Secondary goals Relapse 6 Null response 9 Slow disease progression IU/mL) 10 5 Partial response Breakthrough 2 log decline 9 Minimize risk of HCC 4 10 9 Improve liver histology 3 2 9 Enhance quality of life Limit of detection HCV RNA HCV (log 1 9 Prevent transmission of virus 0 9 Reduce extrahepatic manifestations 0 48 12 18 24 30 36 42 48 54 60 66 72 78 Weeks Lindsay KL. Hepatology. 2002;36(suppl 1):S114-S120. 9 HCV Therapy IDEAL Trial SVR/Standard Interferon (IFN) Which PegIFN is better Genotype 1 US Patients 100 50 80 40 41 40 38 60 30 43 SVR % 20 40 SVR (%) 10 19 20 6 0 PEG-INTRON 1.0 mcg/kg PEG-INTRON 1.5 mcg/kg Pegasys 180mcg 0 IFN IFN IFN/RBV 24 Weeks 48 Weeks 48 Weeks There were no statistical differences between groups McHutchison J, et al. N Engl J Med. 1998;339:1485-1492. Poynard T, et al. Lancet. 1998;352: 1426-1432. Sulkowski, M., et al. Presented at EASL 2008, Milan, Italy HCV Therapy Peg-IFN + RBV SVR With PegIFN/Ribavirin Response Rates • > 50% of GT 1 Patients Do Not Respond 60 52-53 Naive • PegIFN alfa-2b 1.5 µg/kg/week + • PegIFN alfa-2a 180 µg/week + 50 Retreatment RBV 800 mg/day for 48 weeks[1] weight-based RBV (1000 or 1200 38-41 27-40 mg/day) for 48 weeks[2] 100 40 82 17-29 80 76 30 SVR (%) 19-26 60 56 20 54 46 42 10 2-4 SVR (%) 40 0 20 All Genotypes Genotype 1 HIV/HCV HIV/HCV African American Peg on Peg US Patient Genotype 1 Genotype 1 Non-Responders n = 511 n = 348 n = 163 n = 453 n = 298 n = 140 0 Overall GT 1 GT 2/3 Overall GT 1 GT 2/3 Manns MP, et al. Lancet. 2001;358:958-965. Torriani FJ, et al. N Engl J Med. 2004;351:438-450. Poynard T et al. J Hepatol. 2005:42(Suppl 2):40-41.:Shiffman M.L., et al. Gastroenterology 2004; 126:1015- Jeffers LJ, et al. Hepatology. 2004;39:1702-1708.
Recommended publications
  • COVID-19 Drugs: Are There Any That Work? 24 August 2020, by from Mayo Clinic News Network, Mayo Clinic News Network
    COVID-19 drugs: Are there any that work? 24 August 2020, by From Mayo Clinic News Network, Mayo Clinic News Network dysfunction and lung injury from inflammation. A recent study found it reduced deaths by about 30% for people on ventilators and by about 20% for people who needed supplemental oxygen. The U.S. National Institutes of Health has recommended this drug for people hospitalized with COVID-19 who are on mechanical ventilators or need supplemental oxygen. Other corticosteroids, such as prednisone, methylprednisolone or hydrocortisone, may be used if dexamethasone isn't available. However, their effectiveness isn't yet known. Dexamethasone and other corticosteroids may be harmful if given for less severe COVID-19 infection. Credit: Unsplash/CC0 Public Domain Anti-inflammatory therapy. Researchers study many anti-inflammatory drugs to treat or prevent dysfunction of several organs and lung injury from infection-associated inflammation. Question: I've heard several drugs mentioned as possible treatments for COVID-19. What are they Immune-based therapy. Researchers are studying and how do they work? the use of a type of immune-based therapy called convalescent plasma. Convalescent plasma is Answer: Although there is no product approved by blood donated by people who've recovered from the Food and Drug Administration to treat COVID-19. It is used to treat people who are coronavirus disease 2019 (COVID-19), many seriously ill with the disease. medications are being tested. Drugs being studied that have uncertain One investigational drug called remdesivir has effectiveness. Researchers are studying been authorized by the FDA for emergency use amlodipine, ivermectin, losartan and famotidine.
    [Show full text]
  • COVID-19: Predicting Inhibition of the Main Protease and Therapeutic Intracellular Accumulation and Plasma and Lung Concentratio
    COVID-19: predicting inhibition of the main protease and therapeutic intracellular accumulation and plasma and lung concentrations of repurposed inhibitors Clifford Fong To cite this version: Clifford Fong. COVID-19: predicting inhibition of the main protease and therapeutic intracellu- lar accumulation and plasma and lung concentrations of repurposed inhibitors. [Research Report] Eigenenergy. 2020. hal-02917312 HAL Id: hal-02917312 https://hal.archives-ouvertes.fr/hal-02917312 Submitted on 20 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. COVID-19: predicting inhibition of the main protease and therapeutic intracellular accumulation and plasma and lung concentrations of repurposed inhibitors Clifford W. Fong Eigenenergy, Adelaide, South Australia, Australia. Email: [email protected] Keywords: COVID-2019 or SARS-CoV-2; SARS-CoV; MERS; 3C-like protease, or 3CLpro, pro or M ; inhibition; IC50, EC50, EC90, host cell membrane transport, AUC, Cmax, linear free energy relationships, HOMO-LUMO; quantum mechanics; Abbreviations: Structure
    [Show full text]
  • Antivirals Against the Chikungunya Virus
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 June 2021 Review Antivirals against the Chikungunya Virus Verena Battisti 1, Ernst Urban 2 and Thierry Langer 3,* 1 University of Vienna, Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, A-1090 Vienna, Austria; [email protected] 2 University of Vienna, Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, A-1090 Vienna, Austria; [email protected] 3 University of Vienna, Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, A-1090 Vienna, Austria; * Correspondence: [email protected] Abstract: Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that has re-emerged in recent decades, causing large-scale epidemics in many parts of the world. CHIKV infection leads to a febrile disease known as chikungunya fever (CHIKF), which is characterised by severe joint pain and myalgia. As many patients develop a painful chronic stage and neither antiviral drugs nor vac- cines are available, the development of a potent CHIKV inhibiting drug is crucial for CHIKF treat- ment. A comprehensive summary of current antiviral research and development of small-molecule inhibitor against CHIKV is presented in this review. We highlight different approaches used for the identification of such compounds and further discuss the identification and application of promis- ing viral and host targets. Keywords: Chikungunya virus ; alphavirus; antiviral therapy; direct-acting antivirals; host-directed antivirals; in silico screening; in vivo validation, antiviral drug development 1. Introduction Chikungunya virus (CHIKV) is a mosquito-borne alphavirus and belongs to the Togaviridae family. The virus was first isolated from a febrile patient in 1952/53 in the Makonde plateau (Tanzania) and has been named after the Makonde word for “that which bends you up”, describing the characteristic posture of patients suffering severe joint pains due to the CHIKV infection [1].
    [Show full text]
  • What's in the Pipeline: New HIV Drugs, Vaccines, Microbicides, HCV And
    What’s in the Pipeline: New HIV Drugs, Vaccines, Microbicides, HCV and TB Treatments in Clinical Trials by Rob Camp, Richard Jefferys, Tracy Swan & Javid Syed edited by Mark Harrington & Bob Huff Treatment Action Group New York, NY, USA July 2005 e thymidine • BI-201 • Racivir (PSI 5004) • TMC-278 • Diarylpyrimidine (DAPY) • 640385 • Reverset (D-D4FC) • JTK-303 • UK-427 (maraviroc) • Amdoxovir • AMD-070 • Vicriviroc LIPO-5 • GTU-Multi-HIV • pHIS-HIV-B • rFPV-HIV-B • ADMVA • GSK Protein HIV Vaccine TBC-M335 (MVA) • TBC-F357 (FPV) • TBC-F349 (FPV) • LIPO-4T (LPHIV-1) • LFn-p24 • H G • Oligomeric gp140/MF59 • VRC-HIVDNA-009-00-VP • PolyEnv1 • ISS P-001 • EP HIV- • BufferGel • Lactin-V • Protected Lactobacilli in combination with BZK • Tenofovir/PMPA G ulose acetate/CAP) • Lime Juice • TMC120 • UC-781 • VivaGel (SPL7013 gel) • ALVAC Ad5 • Autologous dendritic cells pulsed w/ALVAC • Autologous dendritic cell HIV vaccination x • Tat vaccine • GTU-nef DNA vaccine • Interleukin-2 (IL-2) • HE2000 • Pegasys (peginter L-4/IL-13 trap • Serostim • Tucaresol • MDX-010 anti-CTLA4 antibody • Cyclosporine A • 496 • HGTV43 • M87o • Vertex • VX-950 • Idenix • Valopicitabine (NM283) • JTK-003 mplant • Albuferon • Celgosivir (MBI-3253) • IC41 • INN0101 • Tarvicin • ANA971 (oral) floxacin, Tequin • J, TMC207 (ex R207910) • LL-3858 • M, moxifloxacin, Avelox • PA-824 Acknowledgements. Thanks to our intrepid editors, Bob Huff, copy-editor Andrea Dailey, and proof-reader Jen Curry, to awesome layout expert Lei Chou, to webmaster Joel Beard, to Joe McConnell for handling administrative matters related to the report, and most of all to the board and supporters of TAG for making our work possible.
    [Show full text]
  • Differences in Clinical Outcomes Among Hepatitis C Genotype 1
    Clinical and Experimental Gastroenterology Dovepress open access to scientific and medical research Open Access Full Text Article REVIEW Differences in clinical outcomes among hepatitis C genotype 1-infected patients treated with peginterferon alpha-2a or peginterferon alpha-2b plus ribavirin: a meta-analysis Eric Druyts1 Background: With the development of new direct acting antiviral (DAA) therapy for hepatitis Edward J Mills1,2 C, the backbone peginterferon alpha used may be of importance in maximizing treatment Jean Nachega3 outcomes. To this end, the rates of sustained virologic response (SVR), relapse, and treatment Christopher O’Regan4 discontinuation among hepatitis C genotype 1-infected patients given peginterferon alpha-2a Curtis L Cooper5 plus ribavirin or peginterferon alpha-2b plus ribavirin were determined using a meta-analysis. Methods: Randomized trials examining peginterferon alpha-2a or peginterferon alpha-2b co- 1Faculty of Health Sciences, University administered with ribavirin for 48 weeks were included. Data were extracted on SVR, relapse, of Ottawa, Ottawa, ON, Canada; For personal use only. 2Department of Clinical Epidemiology and treatment discontinuations for treatment-naïve and treatment-experienced patients. Pooled and Biostatistics, McMaster University, proportions using fixed and random effects meta-analysis were calculated. Hamilton, ON, Canada; 3Centre for Infectious Diseases, Stellenbosch Results: Twenty-six trials provided data on patients treated with peginterferon alpha-2a plus University, Stellenbosch,
    [Show full text]
  • Existing Drugs Considered As Promising in COVID-19 Therapy
    International Journal of Molecular Sciences Review Existing Drugs Considered as Promising in COVID-19 Therapy Edyta Janik 1 , Marcin Niemcewicz 1 , Marcin Podogrocki 1, Joanna Saluk-Bijak 2 and Michal Bijak 1,* 1 Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; [email protected] (E.J.); [email protected] (M.N.); [email protected] (M.P.) 2 Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; [email protected] * Correspondence: [email protected]; Tel./Fax: +48-42-635-43-36 Abstract: COVID-19 is a respiratory disease caused by newly discovered severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The disease at first was identified in the city of Wuhan, China in December 2019. Being a human infectious disease, it causes high fever, cough, breathing problems. In some cases it can be fatal, especially in people with comorbidities like heart or kidney problems and diabetes. The current COVID-19 treatment is based on symptomatic therapy, so finding an appropriate drug against COVID-19 remains an immediate and crucial target for the global scientific community. Two main processes are thought to be responsible for the COVID-19 pathogenesis. In the early stages of infection, disease is determined mainly by virus replication. In the later stages of infection, by an excessive immune/inflammatory response, leading to tissue damage. Therefore, the main treatment options are antiviral and immunomodulatory/anti-inflammatory agents.
    [Show full text]
  • Anti-Tumor Potential of IMP Dehydrogenase Inhibitors: a Century-Long Story
    Review Anti-Tumor Potential of IMP Dehydrogenase Inhibitors: A Century-Long Story Rand Naffouje 1, Punita Grover 1, Hongyang Yu 2,3, Arun Sendilnathan 1, Kara Wolfe 1,4, Nazanin Majd 5, Eric P. Smith 6, Koh Takeuchi 7, Toshiya Senda 2,3, Satoshi Kofuji 8 and Atsuo T. Sasaki 1,4,9,10,* 1 Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; [email protected] (P.G.); [email protected] (A.S.); [email protected] (K.W.); [email protected] (A.T.S.) 2 Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tokyo 135-0063, Japan; [email protected] (H.Y.); [email protected] (T.S.) 3 Department of Accelerator Science, School of High Energy Accelerator Science, SOKENDAI (the Graduate University for Advanced Studies), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan 4 Department of Cancer Biology, University of Cincinnati College of Medicine, OH 45267, USA 5 Department of Neuro-oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; [email protected] 6 Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; [email protected] 7 Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Science and Technology, 2-3-26 Aomi, Koto, Tokyo 135-0063, Japan; [email protected] 8 Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; [email protected] 9 Department of Neurosurgery, Brain Tumor Center at UC Gardner Neuroscience Institute, Cincinnati, OH 45267, USA 10 Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan * Correspondence: [email protected] Received: 9 August 2019; Accepted: 2 September 2019; Published: 11 September 2019 Abstract: The purine nucleotides ATP and GTP are essential precursors to DNA and RNA synthesis and fundamental for energy metabolism.
    [Show full text]
  • 24 March 2011 (24.03.2011) W O 201 1 /03 523 1 a 1
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau „ (10) International Publication Number (43) International Publication Date 24 March 2011 (24.03.2011) W O 201 1 /03 523 1 A 1 (51) International Patent Classification: (74) Agents: WARD, John et al.; Gilead Sciences, Inc., 333 C07D 487/04 (2006.01) Lakeside Drive, Foster City, CA 94404 (US). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/US20 10/049471 kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (22) International Filing Date: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, 20 September 2010 (20.09.2010) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (25) Filing Language: English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (26) Publication Langi English ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (30) Priority Data: NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, 61/244,297 2 1 September 2009 (21 .09.2009) US SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (71) Applicant (for all designated States except US): GILEAD SCIENCES, INC. [US/US]; 333 Lakeside (84) Designated States (unless otherwise indicated, for every Drive, Foster City, CA 94404 (US).
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2008/0161324 A1 Johansen Et Al
    US 2008O161324A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2008/0161324 A1 Johansen et al. (43) Pub. Date: Jul. 3, 2008 (54) COMPOSITIONS AND METHODS FOR Publication Classification TREATMENT OF VRAL DISEASES (51) Int. Cl. (76) Inventors: Lisa M. Johansen, Belmont, MA A63/495 (2006.01) (US); Christopher M. Owens, A63L/35 (2006.01) Cambridge, MA (US); Christina CI2O I/68 (2006.01) Mawhinney, Jamaica Plain, MA A63L/404 (2006.01) (US); Todd W. Chappell, Boston, A63L/35 (2006.01) MA (US); Alexander T. Brown, A63/4965 (2006.01) Watertown, MA (US); Michael G. A6II 3L/21 (2006.01) Frank, Boston, MA (US); Ralf A6IP3L/20 (2006.01) Altmeyer, Singapore (SG) (52) U.S. Cl. ........ 514/255.03: 514/647; 435/6: 514/415; Correspondence Address: 514/460, 514/275: 514/529 CLARK & ELBNG LLP 101 FEDERAL STREET BOSTON, MA 02110 (57) ABSTRACT (21) Appl. No.: 11/900,893 The present invention features compositions, methods, and kits useful in the treatment of viral diseases. In certain (22) Filed: Sep. 13, 2007 embodiments, the viral disease is caused by a single stranded RNA virus, a flaviviridae virus, or a hepatic virus. In particu Related U.S. Application Data lar embodiments, the viral disease is viral hepatitis (e.g., (60) Provisional application No. 60/844,463, filed on Sep. hepatitis A, hepatitis B, hepatitis C, hepatitis D, hepatitis E). 14, 2006, provisional application No. 60/874.061, Also featured are screening methods for identification of filed on Dec. 11, 2006. novel compounds that may be used to treat a viral disease.
    [Show full text]
  • A SARS-Cov-2 Protein Interaction Map Reveals Targets for Drug Repurposing
    Article A SARS-CoV-2 protein interaction map reveals targets for drug repurposing https://doi.org/10.1038/s41586-020-2286-9 A list of authors and affiliations appears at the end of the paper Received: 23 March 2020 Accepted: 22 April 2020 A newly described coronavirus named severe acute respiratory syndrome Published online: 30 April 2020 coronavirus 2 (SARS-CoV-2), which is the causative agent of coronavirus disease 2019 (COVID-19), has infected over 2.3 million people, led to the death of more than Check for updates 160,000 individuals and caused worldwide social and economic disruption1,2. There are no antiviral drugs with proven clinical efcacy for the treatment of COVID-19, nor are there any vaccines that prevent infection with SARS-CoV-2, and eforts to develop drugs and vaccines are hampered by the limited knowledge of the molecular details of how SARS-CoV-2 infects cells. Here we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identifed the human proteins that physically associated with each of the SARS-CoV-2 proteins using afnity-purifcation mass spectrometry, identifying 332 high-confdence protein–protein interactions between SARS-CoV-2 and human proteins. Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (of which, 29 drugs are approved by the US Food and Drug Administration, 12 are in clinical trials and 28 are preclinical compounds). We screened a subset of these in multiple viral assays and found two sets of pharmacological agents that displayed antiviral activity: inhibitors of mRNA translation and predicted regulators of the sigma-1 and sigma-2 receptors.
    [Show full text]
  • Technology Report No 47
    Interferon-based Therapies for Technology Chronic Hepatitis C Virus Infection: An Assessment of Report Clinical Outcomes Issue 47 May 2004 i Publications can be requested from: CCOHTA 600-865 Carling Avenue Ottawa ON Canada K1S 5S8 Tel. (613) 226-2553 Fax. (613) 226-5392 Email: [email protected] or download from CCOHTA’s web site: http://www.ccohta.ca Cite as: Husereau D, Bassett K, Koretz R. Inteferon-based therapies for chronic hepatitis C virus infection: an assessment of clinical outcomes.Ottawa: Canadian Coordinating Office for Health Technology Assessment; 2004. Technology report no 47. Reproduction of this document for non-commercial purposes is permitted provided appropriate credit is given to CCOHTA. CCOHTA is a non-profit organization funded by the federal, provincial and territorial governments. Legal Deposit – 2004 National Library of Canada ISBN: 1-894978-28-5 (print) ISBN: 1-894978-29-3 (electronic version) PUBLICATIONS MAIL AGREEMENT NO: 40026386 RETURN UNDELIVERABLE CANADIAN ADDRESSES TO CANADIAN COORDINATING OFFICE FOR HEALTH TECHNOLOGY ASSESSMENT 600-865 CARLING AVENUE OTTAWA ON K1S 5S8 ii Canadian Coordinating Office for Health Technology Assessment Inteferon-based Therapies for Chronic Hepatitis C Virus Infection: An Assessment of Clinical Outcomes Donald Husereau BScPharm MSc1 Ken Bassett MD PhD2 Ronald Koretz MD3 May 2004 1 Canadian Coordinating Office for Health Technology Assessment (CCOHTA), Ottawa ON 2 Centre for Health Services and Policy Research, Vancouver BC 3 Olive View UCLA Medical Centre, Sylmar, California
    [Show full text]
  • The IMPDH Inhibitor Merimepodib Suppresses SARS-Cov-2 Replication in Vitro
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.07.028589; this version posted April 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The IMPDH inhibitor merimepodib suppresses SARS-CoV-2 replication in vitro. Natalya Bukreyeva1, Emily K. Mantlo1, Rachel A. Sattler1, Cheng Huang1, Slobodan Paessler1 and Jerry Zeldis2 1Department of Pathology, University of Texas Medical Branch 2ViralClear, a subsidiary of BioSig, Inc. Abstract: The ongoing COVID-19 pandemic continues to pose a major public health burden around the world. The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected over one million people worldwide as of April, 2020, and has led to the deaths of nearly 300,000 people. No approved vaccines or treatments in the USA currently exist for COVID-19, so there is an urgent need to develop effective countermeasures. The IMPDH inhibitor merimepodib (MMPD) is an investigational antiviral drug that acts as a noncompetitive inhibitor of IMPDH. It has been demonstrated to suppress replication of a variety of emerging RNA viruses. We report here that MMPD suppresses SARS-CoV-2 replication in vitro. After overnight pretreatment of Vero cells with 10 μM of MMPD, viral titers were reduced by 4 logs of magnitude, while pretreatment for 4 hours resulted in a 3-log drop. The effect is dose-dependent, and concentrations as low as 3.3 μM significantly reduced viral titers when the cells were pretreated prior to infection.
    [Show full text]