Yale Earth & Planetary Sciences News

Total Page:16

File Type:pdf, Size:1020Kb

Yale Earth & Planetary Sciences News YALE EARTH & PLANETARY SCIENCES NEWS Yale University I Department of Earth & Planetary Sciences FALL NEWSLETTER 2020 Since our last newsletter (in Chair’s Letter 2018) we have added two new faculty, Assistant Profes- sors Juan Lora and Lidya Dear Friends, Family and Tarhan. Juan studies plan- Alumni of Yale Earth etary atmospheres and & Planetary Sciences, climates, and is one of the principal investigators on the Surely one of the first upcoming NASA Dragonfly things you’ll notice, espe- Mission to the Saturnian moon cially you alumni, is that Juan Lora, Assistant Titan. Titan is one of the big- the department changed Professor gest moons in our solar sys- its name. On July 1, 2020 tem, is the only one with a thick atmosphere made the department went from of mostly nitrogen, and has a methane cycle similar Geology & Geophysics to Earth’s hydrological cycle, which carries water to Earth & Planetary Sci- and heat around our planet. Juan also examines Dave Bercovici ences. This change has how a warming climate on Earth affects water been brewing for decades, transport through atmospheric rivers. through many cycles of discussions, polls, and debates, and was finally Lidya Tarhan works on made official this year. This is not the first time ancient environments, and the department’s name has changed. Yale is one especially how the earliest of the first educational institutions in the country animal life, at and before the to teach the science of the Earth, starting in 1804 time of the Cambrian explo- with a single faculty member, Benjamin Silliman, as sion 540 million years ago, professor of Chemistry and Natural History. In truth, affected the marine environ- departments at Yale didn’t exist in the modern ment and climate. In particu- sense until 1920, when the Department of Geology lar, she is an expert on “bio- was created. The Department changed its name turbators”, early animals who to Geology & Geophysics in 1968 to include new lived in marine sediments faculty who studied the physics of the atmosphere, Lidya Tarhan, Assistant Professor and whose motion not only ocean and Earth’s interior . But our field constantly evolves. Our new name reflects a broader, modern scope, beyond classical geology and geophysics, to INSIDE THIS ISSUE include climate science, Earth system science, and FacultyResearch..................................... 4 planetary exploration (including new discoveries In Memoriam—Memories of Brian Skinner . 8 of other solar systems). The name strengthens our InMemoriam—MemoriesofGeorgeVeronis.............18 ties with other Yale departments and schools such AlumniinMemoriam................................. 23 as Astronomy, Ecology & Evolutionary Biology, and RecentAwardsandHonors:Faculty...................26 the newly named Yale School of the Environment RecentAwardsandHonors:Students.................. 28 (formerly Forestry & Environmental Studies, who StudentNews.......................................30 changed their name at the same time we did). PostdocNews....................................... 33 Retirement:RonaldB.Smith..........................34 Visitors............................................. 35 FieldTrips:Yukon2019...............................39 AlumniNews.........................................41 Brian Skinner Postdoctoral Fellowship Fund . 47 1 YALE EARTH & PLANETARY SCIENCES NEWS FALL 2020 CHAIR’S LETTER stirred and burrowed holes (and their fossil traces) part, been kept to a skeleton crew of necessary in sediments, but changed how nutrients cycled staff and researchers, and our highest priority is through them. Lidya brings a multi-disciplinary their health and safety. The Department and the toolset to bear on this problem, combining field University are fully committed to weathering this work, sedimentology, stratigraphy, isotope geo- crisis and supporting the well-being of all our chemistry, and petrology. citizens until the time, one day soon, when life returns to normal. Juan and Lidya have already made a major impact on the department and have received a number Yale, like campuses everywhere, has responded to of honors and awards; we’ll highlight their work the moment of national reckoning with the racial in future newsletters. This year we highlight the injustice that has plagued our country. EPS, along research of another relatively recent hire, Assis- with our fellow Yale departments, has looked hard tant Professor Alan Rooney, who is a geochemist at ways of improving inclusion, equity and diver- studying the timing and causes of major geologi- sity in our discipline and in our own departmental cal and climatological transitions, such the global community. Our departmental IDEA Committee, “Snowball Earth” event nearly a billion years ago, made up of faculty, students and researchers, has as well as deglaciation during more geologically already developed community activities to facili- recent warming cycles, with relevance to our cur- tate education, outreach and progressive action, rent climate. You can find out much more about including town-halls, reading clubs, seminar series, the breadth of discovery by Alan and his group in and public lectures, in addition to participating in these pages. (see page #) the broader university effort. The department as a whole has been a leading Our loyal department staff have, as always, contin- unit in the development of the Planetary Solutions ued to make the department run like clock-work Project, one of the Yale’s major science priorities with a renowned (within Yale certainly) collegial guided by Provost Scott Strobel. This initiative environment, despite all the recent challenges. focusses on addressing our planet’s future, given a While I can’t mention everyone, I will highlight a changing climate, stressed resources, environmen- few. First, Melissa Wojciechowski is our newest tal degradation, and loss of biodiversity. The Plan- staff member (as of 2018) and is our lead Business etary Solutions Project involves multiple depart- Administrator. Melissa is a true gift to the depart- ments across Yale, and the EPS department has ment, keeping an iron grip on spend-thrift chairs been collaborating on its development since the (well, she’s worked with just the one so far, so beginning. EPS provides the scientific back-bone guess who?) while also being a hero and ally to us for understanding climate change, the water and all. Becky Pocock, the Chair’s Senior Administra- carbon cycles, and climate mitigation approaches tive Assistant, has been a gem in the department such as carbon capture and storage. We also since 2007, and has worked her magic and made have continued to explore new frontier areas of us Chairs look good, much more, I’m sure, than science with a series of exciting symposia, the first we deserved. Becky is also 99% responsible for of which, on “Planet Formation and Evolution” getting this very Newsletter completed, despite was held in the spring of 2019; two future ones will the distractions and procrastination of the cur- cover “Climate and the Polar Regions” (delayed rent Chair. Dave Rossman, our Computer Support from spring of 2020 because of Covid-19) and person has done a heroic job during the Covid-19 “Co-evolution of Earth and Life” (hopefully spring crisis of diligently keeping our computers run- of 2021 or 2022). ning. And lastly, Pam Buonocore, our Operations Manager, has been the department rock (no pun This last year has of course been challenging on intended, well maybe a little) for decades, hold- several fronts. The Covid-19 crisis brought the ing together the department by sheer force of entire university to a stand-still in March of 2020, will (and anyone who knows Pam realizes how apt and students and faculty have worked hard to that description is). Pam is retiring at the end of adjust to the new way of working, teaching and this year, and we’re not entirely sure what we’ll do learning. Kline Geology Lab has, for the most without her. To all the other staff members who 2 YALE EARTH & PLANETARY SCIENCES NEWS FALL 2020 CHAIR’S LETTER I’m not naming (and I’m sorry I can’t), and espe- memorial tribute to George (see page #), who cially those serving as essential support in our labs was a giant in the field of physical oceanography, during the Covid-19 lock-down: the department a founder of the renowned Geophysical Fluid could never work or thrive as it does without you! Dynamics Summer School in Woods Hole, and a member of both the National Academy of Sci- I’ll also note some other transitions in our depart- ences and American Academy of Arts & Sciences. ment. First, Ron Smith, the Damon Wells Profes- sor, retired this year, effective July 2020. Ron was Brian Skinner, Professor Emeritus and formerly the a pillar of our department, starting at Yale in 1976, Eugene Higgins Professor, passed away in August and serving as department chair from 1991 to 1997. of 2019. Brian was a pioneer in mineralogy and He was an immensely popular instructor at Yale, economic geology, and a highly influential educa- as well as renowned and award-winning meteo- tor and instructor, both with his incredibly popular rologist. Because of Covid-19 we couldn’t have introductory geology class (which inspired many a proper farewell celebration for Ron. So instead Yale undergrads to become geology majors) and we managed a surprise Zoom party for him, with his famous series of textbooks. You will find an all the department and a wonderful showing from homage to Brian in these pages (see page #). his former students, postdocs and colleagues; and Moreover, a group of friends, family, and alumni surprisingly (to us), the surprise worked! With have been working with the Department to start the number of faces and the lovely reminiscences a new fellowship in Brian’s memory, already with of Ron’s mentorship, friendship and adventures, amazing progress, and it’s also described within it was as good if not better than we could have this newsletter (see page #). hoped. Ron will continue to be present in EPS as a Lastly, I’ll bid my own farewell as Chair of the research professor, but for the time being he and Department.
Recommended publications
  • Susanna Strada
    SUSANNA STRADA Earth System Physics Section Tel: (+39) 040 2240 879 The Abdus Salam International Centre for Theoretical Physics Email: [email protected] Strada Costiera 11 34151 Trieste, Italy EDUCATION Ph.D. in Atmospheric Chemistry and Physics, Université Paul Sabatier Toulouse, France ​ 2008–2012 Dissertation: “Multiscale modelling of wildfires impacts on the atmospheric dynamics ​ ​ and chemistry in the Mediterranean region”. Supervisor: Céline MARI. M.S in Physics, University of Bologna Bologna, Italy ​ 2006–2008 ​ ​ B.A in Physics, University of Milan Milan, Italy ​ 2002–2006 ​ ​ AWARDS and FELLOWSHIPS Marie Skłodowska-Curie Actions (Individual European Fellowship, 24-month) funded by 2017 the European Commission (180,000 euros) TALENTS fellowship (incoming mobility, 18-month) funded by the Friuli Venezia Giulia 2016 Region through the European Social Fund (60,000 euros) Bourse ATUPS (3-month fellowship) funded by Université Paul Sabatier (France) to support 2010 a scientific visit to Brazil (2,000 euros) RESEARCH EXPERIENCE The Abdus Salam International Centre for Theoretical Physics, Earth System Trieste, Italy Physics 2017–Present TALENTS (18 months) and MSCA-IF (30 months) Post-doctoral Fellow. Advisor: Dr. Filippo GIORGI and Josep PENUELAS (UAB-CREAF, Barcelona, Spain). ● Investigate relationship between biogenic emissions and soil moisture through regional climate simulations and analysis of multiple observational datasets ● Perform and examine regional climate simulations on the effects of land-use changes on European regional
    [Show full text]
  • Fire Air Pollution Reduces Global Terrestrial Productivity
    ARTICLE https://doi.org/10.1038/s41467-018-07921-4 OPEN Fire air pollution reduces global terrestrial productivity Xu Yue 1 & Nadine Unger 2 Fire emissions generate air pollutants ozone (O3) and aerosols that influence the land carbon cycle. Surface O3 damages vegetation photosynthesis through stomatal uptake, while aero- sols influence photosynthesis by increasing diffuse radiation. Here we combine several state- fi 1234567890():,; of-the-art models and multiple measurement datasets to assess the net impacts of re- induced O3 damage and the aerosol diffuse fertilization effect on gross primary productivity (GPP) for the 2002–2011 period. With all emissions except fires, O3 decreases global GPP by 4.0 ± 1.9 Pg C yr−1 while aerosols increase GPP by 1.0 ± 0.2 Pg C yr−1 with contrasting spatial impacts. Inclusion of fire pollution causes a further GPP reduction of 0.86 ± 0.74 Pg C yr−1 −1 during 2002–2011, resulting from a reduction of 0.91 ± 0.44 Pg C yr by O3 and an increase of 0.05 ± 0.30 Pg C yr−1 by aerosols. The net negative impact of fire pollution poses an increasing threat to ecosystem productivity in a warming future world. 1 Climate Change Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China. 2 College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QE, UK. Correspondence and requests for materials should be addressed to X.Y. (email: [email protected]) or to N.U. (email: [email protected]) NATURE COMMUNICATIONS | (2018) 9:5413 | https://doi.org/10.1038/s41467-018-07921-4 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-018-07921-4 ire is an important disturbance to the terrestrial carbon GPP increases with photosynthetically active radiation (PAR) budget.
    [Show full text]
  • Curriculum Vitae
    Curriculum Vitae Drew T. Shindell Nicholas School of the Environment, Duke University Environment Hall, PO Box 90328 Durham, NC 27708 Email: [email protected] Webpage: http://www.giss.nasa.gov/staff/dshindell EDUCATION Ph.D. (Physics), State University of New York at Stony Brook, 1995 B.A. (Physics), University of California at Berkeley, 1988 EMPLOYMENT 2014-present: Professor of Climate Sciences, Duke University 2000-2014: Physical Scientist, NASA Goddard Institute for Space Studies, NYC 1997-2010: Lecturer, Dept. of Earth and Environmental Sci., Columbia University 1997-2000: Associate Research Scientist, Columbia University & NASA GISS 1995-1997: NASA EOS Postdoctoral Researcher, Columbia Univ. & NASA GISS RESEARCH INTERESTS Interactions between atmospheric composition and climate change Climate and air quality linkages and public policy Natural modes of climate variability and detection/attribution of climate change Historical and paleoclimate Interdisciplinary assessment of the impact of emissions and related metrics PROFESSIONAL EXPERIENCE Chair, Scientific Advisory Panel to the Climate and Clean Air Coalition (35 nations plus various IGOs and NGOs), 2012-2014 Review Panel, NOAA Office of Atmospheric Research, Laboratory Review, 2014 Coordinating Lead Author, Anthropogenic and Natural Radiative Forcing chapter, Intergovernmental Panel on Climate Change Fifth Assessment Report, 2013 Contributing Author, 3 chapters (Long-term Climate Change: Projections, Commitments and Irreversibility; Detection and Attribution of Climate Change:
    [Show full text]
  • A NEW METAZOAN from the MIDDLE CAMBRIAN of UTAH and the NATURE of the VETULICOLIA by DEREK E
    [Palaeontology, Vol. 48, Part 4, 2005, pp. 681–686] RAPID COMMUNICATION A NEW METAZOAN FROM THE MIDDLE CAMBRIAN OF UTAH AND THE NATURE OF THE VETULICOLIA by DEREK E. G. BRIGGS*, BRUCES.LIEBERMAN , SUSAN L. HALGEDAHLà and RICHARD D. JARRARDà *Department of Geology and Geophysics, Yale University, PO Box 208109, New Haven, CT 06520-8109, USA; e-mail: [email protected] Department of Geology, University of Kansas, 1475 Jayhawk Boulevard, 120 Lindley Hall, Lawrence, KS 66045, USA àDepartment of Geology and Geophysics, University of Utah, 135 S. 1460 East, Salt Lake City, UT 84112, USA Typescript received 22 November 2004; accepted in revised form 24 March 2005 Abstract: A new metazoan, Skeemella clavula gen. et sp. arthropodan in character. The similarity of this fossil nov., is described from the Middle Cambrian Pierson Cove to vetulicolians throws hypotheses of their deuterostome Formation of the Drum Mountains, Utah, USA. Skeemella affinity into question and highlights their problematic sta- is similar to vetulicolians, but differs from other examples tus. of this group in the relative proportions of the anterior and posterior sections, the large number of divisions, and Key words: vetulicolian, Cambrian, deuterostome, arthro- the elongate bifid termination. The posterior section is pod. The very name vetulicolian conjures up creatures from species Banffia confusa, to erect a new class of stem-group another planet. These extraordinary fossils, with a head arthropods, the Vetulicolida. They argued that Banffia shield-like anterior and narrow segmented trunk-like pos- constricta from the Burgess Shale belongs to the same terior, are the latest Cambrian group to be accorded phy- class, extending its range to North America.
    [Show full text]
  • Harry Whittington Dies 94
    Published: 5:58PM BST 08 Aug 2010 Professor Harry Whittington Professor Harry Whittington, who died on June 20 aged 94, was the former Woodwardian Professor of Geology at Cambridge and the world’s leading authority on fossil trilobites; in later life he led painstaking research which revealed a “Cambrian explosion” and raised disturbing questions about the proCesses of evolution. Trilobites were hard-carapaced creatures, which thrived, in the Cambrian period, beginning 542 million years ago, until they died out nearly 300 million years later. Very distantly related to horseshoe crabs, they lived in the sea and crawled on land, evolving into more than 20,000 different species, ranging in size from a millimetre to nearly two feet. Many known species are ones which Whittington himself discovered on field trips around the world. Usually it is difficult to extract the fossils from the surrounding rock, but in the 1940s Whittington and his colleague Bill Evitt investigated beds in Virginia where the carapaces of the animals had been replaced by insoluble silica. By throwing samples into acid, they were able to recover thousands of perfect specimens, ranging from fully-grown adults to microscopic larvae. These fossils enabled Whittington, in a series of monographs published in the 1950s and 1960s, to revolutionize what we know about trilobites — how they grew from larva to maturity through successive molts, how they moved and articulated their bodies, and how they evolved and migrated. Later in his career, in 1966, Whittington was invited by the Canadian Geological Society to chair a group commissioned to examine the Burgess Shale deposits discovered by CD Walcott during the building of the Canadian Pacific Railway in 1909.
    [Show full text]
  • In This Issue
    March 21, 2006 ͉ vol. 103 ͉ no. 12 ͉ 4331–4794 In This Issue Proceedings of the National Academy ofPNAS Sciences of the United States of America www.pnas.org 4362 Trapping single biomolecules in free solution 4377 Interconnection of tropospheric ozone and sulfate 4457 Resolution measure and single-molecule microscopy 4570 Non-Watson–Crick mispairs in tRNA promote translation 4634 Alfalfa nodule bacterium illuminates vitamin B12 synthesis CHEMISTRY, BIOPHYSICS GEOPHYSICS Trapping single biomolecules Interconnection of tropospheric ozone in free solution and sulfate Adam Cohen and W. E. Moerner report on the successful sup- Nadine Unger et al. show that ozone (O3) precursor emissions can pression of Brownian motion of individual biomolecules in free dramatically affect both air quality and climate forcing by increas- solution. The authors used an anti-Brownian electrokinetic ing the levels of tropospheric sulfate (SO4). Ozone and sulfate are (ABEL) trap, which monitors strongly coupled through their the Brownian motion of photochemistry; sulfate is gen- a nanoparticle through fluo- erated by the oxidation of rescence microscopy and sulfur dioxide (SO2) by the hy- applies a feedback voltage to droxyl radical (OH) or hydro- a microfluidic cell so that the gen peroxide (H2O2), both of resulting electrophoretic and which can be derived from O3. electroosmotic forces produce Likewise, O3 production re- a drift that cancels the Brown- quires the presence of nitrogen Difference in surface sulfate mixing ian motion of the particle. oxides, which sulfate can re- ratio between future control simu- The ABEL technology was move by conversion to nitric lation and sensitivity simulation used to trap individual parti- acid.
    [Show full text]
  • THE SYNTHETIC THEORY of EVOLUTION DNA Makes RNA, RNA Makes Protein and Proteins Make Us
    320 Chapter f THE AGE OF MAMMALS The Present is the Key to the Past: HUGH RANCE THE SYNTHETIC THEORY OF EVOLUTION DNA makes RNA, RNA makes protein and proteins make us. —Crick.1 f14 Genes, alleles < deoxyribonucleic acid > ...using the metaphor of computation to describe the role of genes is bad biology, for it implies an internal self-sufficiency of DNA. Even if we had the complete DNA sequence of an organism and unlimited computational power, we could not compute an organism, because an organism does not compute itself from its genes. (In fact, any computer that did as poor a job of computation as a genetic “program” does of an organism would immediately be thrown into the trash.) —Richard Lewontin The Triple Helix: Gene, Organism, and Environment, 2000.2 Mathematical population theorists Ronald Aylmer Fisher (The Genetical Theory of Natural Selection, 1930),3 John Burdon Sanderson Haldane (design disparaging: “[He has] an inordinate fondness for beetles.”),4 and Sewall Wright (conceiver of “adaptive landscapes”)5 were the principle forgers, during the period 1920-1950, of the modern theory of population genetics that unites previously warring concepts (Footnote f14.1) of Darwinian natural selection, which is decidedly nonrandom, that guides evolution incrementally (by gradual change) but rapidly by its recursiveness (the output of previous selection is input for subsequent selection), along paths to fitness, and the purely random nature (no inherent directionality, no predictability) of heredity by large sudden changes (saltations, hopeful monsters) that Mendelian rules suggested to some geneticists (principally, typologists William Bateson, Hugo de Vries, and Wilhelm Johannsen).
    [Show full text]
  • Articles (Koch Et Al., 2013); and the Pollution Control Strategy Makes Use of Et Al., 2006), and Lightning Nox (Price Et Al., 1997)
    Geosci. Model Dev., 11, 4417–4434, 2018 https://doi.org/10.5194/gmd-11-4417-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Advances in representing interactive methane in ModelE2-YIBs (version 1.1) Kandice L. Harper1, Yiqi Zheng2, and Nadine Unger3 1School of Forestry and Environmental Studies, Yale University, New Haven, CT 06511, USA 2Department of Geology and Geophysics, Yale University, New Haven, CT 06511, USA 3College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QJ, UK Correspondence: Kandice L. Harper ([email protected]) and Nadine Unger ([email protected]) Received: 28 March 2018 – Discussion started: 18 May 2018 Revised: 11 September 2018 – Accepted: 27 September 2018 – Published: 2 November 2018 Abstract. Methane (CH4) is both a greenhouse gas and a sults from the optimization process. The simulated methane precursor of tropospheric ozone, making it an important fo- chemical lifetime of 10:4±0:1 years corresponds well to ob- cus of chemistry–climate interactions. Methane has both an- served lifetimes. The simulated year 2005 global-mean sur- thropogenic and natural emission sources, and reaction with face methane concentration is 1.1 % higher than the observed the atmosphere’s principal oxidizing agent, the hydroxyl value from the NOAA ESRL measurements. Comparison radical (OH), is the dominant tropospheric loss process of of the simulated atmospheric methane distribution with the methane. The tight coupling between methane and OH abun- NOAA ESRL surface observations at 50 measurement loca- dances drives indirect linkages between methane and other tions finds that the simulated annual methane mixing ratio short-lived air pollutants and prompts the use of interactive is within 1 % (i.e., C1 % to −1 %) of the observed value at methane chemistry in global chemistry–climate modeling.
    [Show full text]
  • A Solution to Darwin's Dilemma: Differential Taphonomy of Ediacaran and Palaeozoic Non-Mineralised Discoidal Fossils
    Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published version when available. Title A Solution to Darwin's Dilemma: Differential Taphonomy of Ediacaran and Palaeozoic Non-Mineralised Discoidal Fossils Author(s) MacGabhann, Breandán Anraoi Publication Date 2012-08-29 Item record http://hdl.handle.net/10379/3406 Downloaded 2021-09-26T20:57:04Z Some rights reserved. For more information, please see the item record link above. A Solution to Darwin’s Dilemma: Differential taphonomy of Palaeozoic and Ediacaran non- mineralised discoidal fossils Volume 1 of 2 Breandán Anraoi MacGabhann Supervisor: Dr. John Murray Earth and Ocean Sciences, School of Natural Sciences, NUI Galway August 2012 Differential taphonomy of Palaeozoic and Ediacaran non-mineralised fossils Table of Contents List of Figures ........................................................................................................... ix List of Tables ........................................................................................................... xxi Taxonomic Statement ........................................................................................... xxiii Acknowledgements ................................................................................................ xxv Abstract ................................................................................................................. xxix 1. Darwin’s Dilemma ...............................................................................................
    [Show full text]
  • Rt Hon Boris Johnson Prime Minister 10 Downing Street London SW1A 2AA
    Rt Hon Boris Johnson Prime Minister 10 Downing Street London SW1A 2AA 29 November 2019 Dear Prime Minister, We are writing as 350 members of the climate change research community in the United Kingdom to urge you to challenge robustly the President of the United States of America, Donald Trump, during his visit to the United Kingdom next week about his reckless approach to climate change and his false claims about the Paris Agreement. The United Kingdom is likely to be confirmed next month at the United Nations climate change summit in Madrid as the host of the 26th session of the Conference of the Parties (COP26) to the United Nations Framework Convention on Climate Change in 2020. Next year’s summit, which your Government has indicated will take place in Glasgow, will be absolutely vital to international efforts to avoid dangerous climate change. Parties to the Paris Agreement are expected to submit ahead of the summit revised nationally determined contributions which include more ambitious pledges to reduce annual emissions of greenhouse gases. The United Kingdom has been attempting to lead by example on climate change and has reduced its annual production of emissions of greenhouse gases by 44 per cent between 1990 and 2018, while increasing its gross domestic product by about 75 per cent over the same period. The United Kingdom’s consumption emissions have also started to decline. Although the United Kingdom is currently not on track to meet its fourth and fifth carbon budgets, according to the Committee on Climate Change, the UK Government made a very significant advance on domestic policy earlier this year by successfully securing the passage of legislation through Parliament to strengthen the Climate Change Act such that the new target is to reduce annual emissions of greenhouse gases to net zero by 2050.
    [Show full text]
  • Solas Event Report Report 01 I May 2017
    solas event report Report 01 I May 2017 Two workshops in parallel on: “Changing Atmospheric Acidity and its Impacts on the Oceanic Solubility of Nutrients” and “The Impact of Ocean Acidifica- tion on Fluxes of Non-CO2 Climate Active Species” 27 February - 2 March, 2017 Norwich, United Kingdom From February 27 to March 2, 2017, two work- shops took place at the University of East Anglia (UEA), Norwich, United Kingdom under the aus- In this report pices of Group of Experts on the Scientific As- pects of Marine Environmental Protection Workshops summary 1 (GESAMP) Working Group 38 and sponsored by World Meteorological Organization (WMO), Na- Event sponsors 4 tional Science Foundation (NSF), Scientific Committee on Oceanic Research (SCOR), Sur- face Ocean - Lower Atmosphere Study (SOLAS), Attendees research profiles and UEA. These workshops focused on the changes in the acid/base balance of the atmos- Natural iron fertilization of the phere and ocean, and their impacts on air-sea oceans around Australia, linking exchange. terrestrial aerosols to marine While workshop 1 was on “Changing Atmospher- biogeochemistry 5 ic Acidity and its Impacts on the Oceanic Solubili- ty of Nutrients”, workshop 2 dealt with “The Im- Will ocean acidification affect pact of Ocean Acidification on Fluxes of Non-CO2 the biogenic emission of volatile Climate Active Species”. These two themes rec- short-lived halocarbons by ognise the importance of both (1) atmospheric marine algae 8 nutrient deposition to the biogeochemistry of the oceans and (2) the emissions of trace gases from the ocean for atmospheric chemistry and climate regulation. Continued … 1 Event summary Figure 1: Participants of the workshops at the University of East Anglia, Norwich, United Kingdom.
    [Show full text]
  • 31 May 2019 Dear Prime Minister, We Are Writing As 250 Members of the UK's Climate Change Research Community to Urge You to Ro
    31 May 2019 Dear Prime Minister, We are writing as 250 members of the UK’s climate change research community to urge you to robustly challenge President Trump during his official State Visit to the United Kingdom next week about his reckless approach to climate change. The President’s refusal to tackle climate change, and particularly his initiation of the withdrawal of the United States from the Paris Agreement, is increasing risks for lives and livelihoods in the United States, the United Kingdom and around the world. Since his inauguration in January 2017, President Trump has taken a series of decisions that undermine both international and United States domestic efforts to stop the continued rise in atmospheric concentrations of greenhouse gas concentrations that are driving climate change. In the United States, President Trump’s administration has been abandoning many of the policies and measures, including the Clean Power Plan, introduced by his predecessor to reduce greenhouse gas emissions. Annual emissions of energy-related carbon dioxide by the United States increased by 137 million tonnes, or 2.7 per cent, between 2017 and 2018, to 5,268 million tonnes, according to the United States Energy Information Administration. It is the largest annual rise in emissions, in absolute terms, since 2009-10. President Trump has also sought to prevent the public from learning the truth about climate change. His administration has removed large amounts of information about climate change from the websites of the White House, Government Departments and federal agencies. The President has publicly stated his rejection of the scientific evidence for climate change and the White House is considering the creation of a committee to cast doubt on the robust and rigorous analysis presented in the United States Fourth National Climate Assessment.
    [Show full text]