High Throughput Determination of Multiple Toxic Alkaloids in Food By

Total Page:16

File Type:pdf, Size:1020Kb

High Throughput Determination of Multiple Toxic Alkaloids in Food By Application Note Food Testing & Agriculture High-Throughput Determination of Multiple Toxic Alkaloids in Food by UHPLC/MS/MS Authors Abstract Guoyin Lai, Lijian Wu, Zhongda Lin, Liyi Lin, Dunming Xu, This Application Note presents a simple sample preparation procedure followed Zhigang Zhang with an Agilent 1290 Infinity II LC combined with an Agilent 6470A triple quadrupole Technigue Center, LC/MS for simultaneous, high-throughput determination of multiple alkaloids in food Xiamen Customs, matrices. The matrix-matched calibration shows very good linear relationships for Xiamen, China the 18 alkaloids in the concentration range of 0.5 to 50 µg/L in the diluted, extracted matrices of bread, milk, wine, and rice powder. This corresponds to 5.0 to 500 µg/kg Meiling Lu in the matrices when considering the dilution factor of 10. The linear regression Agilent Technologies (China) coefficients for all the analytes are higher than 0.99. The signal-to-noise ratios Co., Ltd. (S/Ns) for all analytes are higher than 10 at the lowest calibration level of 0.5 µg/L, corresponding to 5.0 µg/kg in the samples. The recoveries for the analytes in four different matrices at 5, 50, and 250 µg/kg levels ranged from 90 to 110%, and the corresponding relative standard deviations were within 2.3 to 7.9%. The results demonstrated that the developed method has the advantages of high sensitivity, accuracy, and precision. The simple sample preparation combined with rapid LC/MS/MS detection allows high-throughput screening of alkaloid residues in food matrices. Introduction Experimental (pH 3). The tube was vortexed thoroughly for two minutes, then centrifuged Alkaloids are naturally occurring alkaline Standards and sample at 7,500 rpm for five minutes. The substances with nitrogen-containing preparation procedure supernatant was collected and filtered heterocyclic structures. They often through a 2.0 µm membrane and All five classes 18 alkaloid compounds exhibit high bio-activity, and are analyzed by LC/MS. Liquid samples such were purchased from Anpu Tech. commonly the primary components as milk and wine followed the same (Shanghai, China), which were prepared in traditional herb medicine. Alkaloids extraction procedure except without the at 1.0 g/L in methanol for stock at are found in some plants, and initial hydration step. –20 °C. Calibration standard solutions may cause adverse effects when were then diluted from the stock ingested by accident.1 According LC system solutions using the corresponding to Commission Regulation (EU) Agilent 1290 Infinity II LC with the matrix extract. 2016/239, the maximum residue levels following module configuration: (MRLs) of tropane alkaloids including Solid samples (2.0 g) were added • Agilent 1290 Infinity II binary pump atropine and scopolamine in certain to 50 mL centrifugation tubes, and with degasser cereal-based foods for infants and 5 mL of water was transferred to the • Agilent 1290 Infinity II autosampler young children are as low as 1 µg/kg.2 tube for hydration. Acetonitrile (10 mL) with needle seat backflush function Colchicine is in the prohibited list in was then added to the tube, followed 3 • Agilent 1290 Infinity II multiple Regulation (EU) No. 37/2010. China by 5 mL of Na2EDTA-Mcllvaine buffer allows atropine to be used in all food column compartments matrices of animal origin without MRL, LC conditions and no other regulations restrict the amount of alkaloids in food matrices Parameter Value in China.4 However, the accidental Column Agilent ZORBAX Eclipse Plus C18 (3.0 × 50 mm, 1.8 µm) mixing of alkaloid-containing weeds Mobile Phases A: 0.1% formic acid in water; B: methanol into crops or the accidental ingestion Flow Rate 0.50 mL/min of alkaloid-containing weeds by farm Column Temperature 40 °C animals may increase the risk of Injection Volume 2.0 µL exposure to the public. It is essential to Time (min) %A %B 0 90 10 develop sensitive and reliable methods 1 80 20 Gradient 7 20 80 for routine monitoring of alkaloids in food 9 90 10 matrices. In reality, alkaloids vary greatly 10 90 10 in physicochemical properties, and they are also involved in many complicated MS conditions matrices. It is challenging to develop a Parameter Value reliable method for routine, simultaneous MS Agilent 6470A triple quadrupole LC/MS monitoring of multiclass alkaloids. Ion Source Agilent Jet Stream ESI Available reports are mainly focused on Ionization Mode Positive the detection of alkaloids with similar Capillary Voltage 3,500 V 5,6 chemical properties. This Application Nozzle Voltage 500 V Note presents a simple sample Nebulizer Gas Pressure N2 (35 psi) preparation procedure followed by rapid Drying Gas (N ) Temperature 300 °C LC/MS/MS analysis for simultaneous, 2 Drying Gas Flow Rate 8 L/min high-throughput determination of Sheath Gas (N ) Temperature 400 °C five classes of alkaloids in four types 2 Sheath Gas Flow Rate 12 L/min of food matrices, including milk, wine, Acquisition Mode MRM bread, and rice powder. 2 Table 1. Optimized MRM parameters for sensitive detection. Results and discussion Retention Precursor Product Fragmentor Collision Alkaloids can easily be protonated Analyte Time (min) Ion (m/z) Ion (m/z) Voltage (V) Energy (V) under acidic conditions. Therefore, Physostigmine 2.250 275.8 219.2, 162.2* 110 7, 22* MRM in positive ESI ionization mode Scopolamine 1.898 303.8 137.9, 156.1* 120 23, 15* was selected. Different mobile phase Colchicine 4.771 399.9 358.1, 309.9* 135 22, 32* combinations were examined, including Strychnine 2.368 334.9 156.1, 184.1* 135 55, 44* water/methanol, water/acetonitrile, Cortisone 5.307 360.9 162.9, 121.2* 135 25, 36* 0.1% formic acid/methanol, and Pseudoephedrine 1.719 166 148.1, 133.0* 80 10, 20* 0.1% formic acid/acetonitrile. Most Camptothecin 5.262 348.8 305.0, 249.0* 135 25, 33* alkaloids exhibited a better response in 1-(1-Naphthyl)thiourea 3.912 202.8 185.8, 144.1* 135 20, 20* methanol than in acetonitrile. Compared Atropine 2.554 290 124.1, 93.0* 135 26, 35* to the narrower and more symmetrical Mesasonitine 4.906 632.1 571.8, 105.0* 135 35, 60* peaks with higher intensity in the acidic Hypaaconitine 5.059 616.2 556.6, 105.3* 135 50, 50* water, tailing peaks with low intensity 10,11-Dimethoxystrychnine 2.594 394.9 243.6, 323.9* 135 46, 46* were observed if water without acid was Nuciferin 4.122 295.8 265.1, 249.9* 135 15, 17* used. Hence, acidified water/methanol Podophyllotoxin 5.532 414.8 246.6, 397.1* 135 10, 5* was selected as the binary mobile 10-Hydroxycamptothecin 4.773 364.8 320.5, 235.7* 135 30, 33* phase in the final conditions. MRM Aconitine 5.119 646.2 586.6, 105.3* 135 45, 50* parameters were then optimized under Gelsemine 2.171 322.8 70.1, 235.8* 135 32, 37* the selected mobile phase. Table 1 lists Solanine 4.965 868.5 98.3, 398.1* 135 92, 92* the resultant parameters. * Quantitative ion For those compounds not separated by chromatography, the characteristic ×105 MRMs enabled accurate compound 8 quantitation. Figure 1 shows the typical MRM overlays of 18 alkaloids from ) 6 different classes. 4 2 Response counts (cps 0 1 2 3 4 5 6 Retention time (min) Figure 1. MRM overlay of 18 alkaloids from different classes at a level of 50 µg/L for each. 3 5 mL 10 mL 15 mL Sample preparation optimization and 140 method performance 120 ) Methanol and acetonitrile were 100 investigated as extraction solvents. It 80 60 was found that acetonitrile can provide Recovery (% 40 better recovery. The volume of extraction 20 solvent required was also examined. As 0 shown in Figure 2, with the extraction e e n e ison Atropine Nuciferin Aconitine Solanine volume increasing from 5 to 10 mL, the ColchicineStrychnineCort Gelsemin Scopolamine Mesasonitine Physostigmine Samptothecin Hypaaconitin recoveries for all alkaloids increased, Podophyllotoxi Pseudoephedrine with the majority of values higher Dimethoxystrychnine 1-(1-Naphthyl)thiourea Hydroxycamptothecin than 60%. When the volume increased from 10 to 15 mL, recoveries for two Figure 2. Effect of extraction solvent volume on recovery. compounds decreased, though others continued to increase. Considering pH 3 pH 4 pH 5 140 the sensitivity in the real samples with 120 ) extraction-induced dilution, 10 mL of 100 extraction solvent was selected for target 80 60 compounds extraction. Recovery (% 40 Alkaloids are easily dissolved in water 20 under acidic conditions, and present as 0 cations. The Na EDTA-Mcllvaine buffer e e n e 2 ison was added to the extraction solvent to Atropine Nuciferin Aconitine Solanine ColchicineStrychnineCort Gelsemin Scopolamine Mesasonitine Physostigmine Samptothecin Hypaaconitin achieve acidic pH. As shown in Figure 3, Podophyllotoxi Pseudoephedrine higher recovery values can be achieved 1-(1-Naphthyl)thiourea Hydroxycamptothecin for most compounds at pH 3 and 4 than 10,11-Dimethoxystrychnine at pH 5. Therefore, pH 3 was selected for Figure 3. The effect of pH for the extraction solvent on the recovery of each analyte. the buffer during extraction. Matrix effect was evaluated using the t Wine Rice powder Milk Bread linear response slopes obtained in the solven 140 e matrix and in the pure solvent. Matrices 120 100 affected cortisone and podophyllotoxin to slop 80 more severely, particularly bread matrix e 60 (Figure 4). 40 20 0 e e n e Ratio of slop ison Atropine Nuciferin Aconitine Solanine ColchicineStrychnineCort Gelsemin Scopolamine Mesasonitine Physostigmine Samptothecin Hypaaconitin Podophyllotoxi Pseudoephedrine Dimethoxystrychnine 1-(1-Naphthyl)thiourea Hydroxycamptothecin Figure 4. Matrix effect of alkaloid detection.
Recommended publications
  • Analgesic Effects and Pharmacologic Mechanisms of the Gelsemium
    www.nature.com/scientificreports OPEN Analgesic efects and pharmacologic mechanisms of the Gelsemium alkaloid koumine on a Received: 8 June 2017 Accepted: 13 October 2017 rat model of postoperative pain Published: xx xx xxxx Bo-Jun Xiong1, Ying Xu1,2, Gui-Lin Jin1,2, Ming Liu1, Jian Yang1,2 & Chang-Xi Yu1,2 Postoperative pain (POP) of various durations is a common complication of surgical procedures. POP is caused by nerve damage and infammatory responses that are difcult to treat. The neuroinfammation- glia-steroid network is known to be important in POP. It has been reported that the Gelsemium alkaloid koumine possesses analgesic, anti-infammatory and neurosteroid modulating activities. This study was undertaken to test the analgesic efects of koumine against POP and explore the underlying pharmacologic mechanisms. Our results showed that microglia and astroglia were activated in the spinal dorsal horn post-incision, along with an increase of proinfammatory cytokines (interleukin 1β, interleukin 6, and tumor necrosis factor α). Both subcutaneous and intrathecal (i.t.) koumine treatment after incision signifcantly prevented mechanical allodynia and thermal hyperalgesia, inhibited microglial and astroglial activation, and suppressed expression of proinfammatory cytokines. Moreover, the analgesic efects of koumine were antagonized by i.t. administration of translocator protein (18 kDa) (TSPO) antagonist PK11195 and GABAA receptor antagonist bicuculline. Together, koumine prevented mechanical allodynia and thermal hyperalgesia caused by POP. The pharmacologic mechanism of koumine-mediated analgesia might involve inhibition of spinal neuroinfammation and activation of TSPO. These data suggested that koumine might be a potential pharmacotherapy for the management of POP. Postoperative pain (POP) of varying duration is extremely common afer surgery.
    [Show full text]
  • Simvastatin Attenuates Renal Ischemia/Reperfusion Injury from Oxidative Stress Via Targeting Nrf2/HO‑1 Pathway
    4460 EXPERIMENTAL AND THERAPEUTIC MEDICINE 14: 4460-4466, 2017 Simvastatin attenuates renal ischemia/reperfusion injury from oxidative stress via targeting Nrf2/HO‑1 pathway YU ZHANG1, SHU RONG2, YI FENG1, LIQUN ZHAO1, JIANG HONG1, RUILAN WANG1 and WEIJIE YUAN2 Departments of 1Emergency Intensive Medicine and 2Nephrology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200082, P.R. China Received August 31, 2016; Accepted June 15, 2017 DOI: 10.3892/etm.2017.5023 Abstract. Ischemia-reperfusion (I/R) injury of the kidneys pathway to ultimately protect the kidneys from I/R-associated is commonly encountered in the clinic. The present study oxidative damage. assessed the efficacy of simvastatin in preventing I/R‑induced renal injury in a rat model and investigated the corresponding Introduction molecular mechanisms. Rats were divided into 3 groups, including a sham, I/R and I/R + simvastatin group. The Ischemia/reperfusion (I/R) injury of the kidneys represents a results revealed that in the I/R group, the levels of blood urea challenge in the clinic and is commonly encountered in renal nitrogen, serum creatinine and lactate dehydrogenase were transplantation, hemorrhagic shock, partial nephrectomy and significantly higher than those in the sham group, which accidental or iatrogenic trauma, brining about serious injury was significantly inhibited by simvastatin pre‑treatment. to multiple organs, including renal tubules, brain and heart (1). I/R significantly decreased superoxide dismutase activity Therefore, it is urgent to find effective therapies and elucidate compared with that in the sham group, which was largely molecular mechanisms by which renal I/R injury may be rescued by simvastatin.
    [Show full text]
  • Comparative Analysis of Gelsemine and Gelsemium Sempervirens Activity on Neurosteroid Allopregnanolone Formation in the Spinal Cord and Limbic System
    Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2011, Article ID 407617, 10 pages doi:10.1093/ecam/nep083 Original Article Comparative Analysis of Gelsemine and Gelsemium sempervirens Activity on Neurosteroid Allopregnanolone Formation in the Spinal Cord and Limbic System Christine Venard,1 Naoual Boujedaini,2 Ayikoe Guy Mensah-Nyagan,1 and Christine Patte-Mensah1 1 Equipe “St´ero¨ıdes, Neuromodulateurs et Neuropathologies”, EA-4438 Universit´edeStrasbourg,Bˆatiment 3 de la Facult´edeM´edecine, F-67000 Strasbourg, France 2 Laboratoires BOIRON, Sainte-Foy-l`es-Lyon, France Correspondence should be addressed to Ayikoe Guy Mensah-Nyagan, [email protected] Received 10 February 2009; Accepted 15 June 2009 Copyright © 2011 Christine Venard et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Centesimal dilutions (5, 9 and 15 cH) of Gelsemium sempervirens are claimed to be capable of exerting anxiolytic and analgesic effects. However, basic results supporting this assertion are rare, and the mechanism of action of G. sempervirens is completely unknown. To clarify the point, we performed a comparative analysis of the effects of dilutions 5, 9 and 15 cH of G. sempervirens or gelsemine (the major active principle of G. sempervirens) on allopregnanolone (3α,5α-THP)productionintheratlimbicsystem (hippocampus and amygdala or H-A) and spinal cord (SC). Indeed, H-A and SC are two pivotal structures controlling, respectively, anxiety and pain that are also modulated by the neurosteroid 3α,5α-THP. At the dilution 5 cH, both G.
    [Show full text]
  • Honey Ingredients As Used in Cosmetics
    Safety Assessment of Honey ingredients as Used in Cosmetics Status: Scientific Literature Review for Public Comment Release Date: September 3, 2019 Panel Meeting Date: December 9-10, 2019 All interested persons are provided 60 days from the above release date (November 2, 2019) to comment on this safety assessment and to identify additional published data that should be included or provide unpublished data which can be made public and included. Information may be submitted without identifying the source or the trade name of the cosmetic product containing the ingredient. All unpublished data submitted to CIR will be discussed in open meetings, will be available at the CIR office for review by any interested party and may be cited in a peer-reviewed scientific journal. Please submit data, comments, or requests to the CIR Executive Director, Dr. Bart Heldreth. The 2019 Cosmetic Ingredient Review Expert Panel members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D., Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Executive Director is Bart Heldreth, Ph.D. This safety assessment was prepared by Priya Cherian, Scientific Analyst/Writer. © Cosmetic Ingredient Review 1620 L Street, NW, Suite 1200 ♢ Washington, DC 20036-4702 ♢ ph 202.331.0651 ♢ fax 202.331.0088 ♢ [email protected] INTRODUCTION This scientific literature review is the initial step in preparing a safety assessment of the following 7 honey ingredients as used in cosmetic formulations: Honey Honey Powder Hydrogenated Honey Hydrolyzed Honey Protein Honey Cocoates Honey Extract Hydrolyzed Honey According to the web-based International Cosmetic Ingredient Dictionary and Handbook (wINCI; Dictionary), all of these ingredients function as skin-conditioning agents.1 Other functions include, but are not limited to, use as a flavoring agent, anti-acne agent, abrasive, binder, depilating agent, exfoliant, hair-conditioning agent, and nail-conditioning agent (Table 1).
    [Show full text]
  • The Impact of Plant Chemicals on Bee Health: Interactions with Parasites and Immunity
    The impact of plant chemicals on bee health: Interactions with parasites and immunity Thesis submitted for the degree of Doctor of Philosophy (PhD) Royal Holloway University of London 25/03/2019 Arran James Folly Declaration of authorship: I Arran James Folly hereby declare that this thesis and the work presented in it is entirely my own. Where I have consulted the work of others this is clearly stated. Signed: Date: 2 For Robert Budge, who started my fascination with the natural world. 3 Acknowledgements Before I begin I must forewarn the reader that there are many people, and indeed animals that I must declare my gratitude for. For without them I can assure you, this work and my sanity would have crumbled. Firstly I would like to thank my supervisors Mark Brown and Phil Stevenson, they have been the Obi-Wan Kenobi to my Luke Skywalker and the Gandalf to my Bilbo Baggins. Everything that I have achieved during my time as a PhD student can be directly attributed to the training and guidance I have had from Mark and Phil. I am not only a better scientist because of them, but also a better person, and I will be eternally grateful. Scientific research is truly a cooperative and inclusive world and I want to thank the lab groups and scientists at Royal Holloway, Kew Gardens and the Natural History Museum. In no particular order I would like to thank Hauke Koch, Callum Martin, Emily Bailes, Harry Siviter, Iain Farrel, Judy Bagi, Ash Samuelson, Fabio Manfredi, Elli Leadbeater, Dylan Hodgkiss, Tim Russell, Rüdiger Riesch, Julia Koricheva, Vincent Jansen, Alan Gange, Dave Morritt, Ian Barnes, Selina Brace and all the technical and administration staff.
    [Show full text]
  • Poisonous Plant Guide Reprinted from the Merck Veterinary Manual, 8Th Ed., 1998, with Permission of the Publisher, Merck & Co., Inc.,Whitehouse Station, N.J
    Poisonous Plant Guide Reprinted from The Merck Veterinary Manual, 8th ed., 1998, with permission of the publisher, Merck & Co., Inc.,Whitehouse Station, N.J. This chart may be used as a guide to preventing pet exposure to poisonous plants. Call your veterinarian immediately if you suspect your pet has been exposed to any poisonous substance. Agave Brunfelsia Americana (Agavaceae): Caladium pauciflora var spp (Araceae): Century Plant, Aloe Barbadensis (vera) (Liliaceae): floribunda (Solanaceae): Caladium, Fancy leaf American aloe Barbados aloe, Curacao aloe Yesterday-today-and-tomorrow, caladium, Angel wings Lady-of-the-night CHARACTERISTICS: Clumps of thick, CHARACTERISTICS: Succulent herb with cluster of Aglaonema CHARACTERISTICS: Perennial herbs with long-shaped blue/green leaves with hook narrow fleshy, spinous or coarsely serrated margin CHARACTERISTICS: Evergreen shrubs to small trees with (margin) and pointed spines (tip). Central modestum simple, heart-shaped thin, highlighted veins, leaves, with hook spines on leaf margin. Dense alternate, undivided, toothless, thick rather leathery flower stalk with small tubular (Araceae): variegated leaves; yellow green spathe; grown spiked tubular yellow flowers at end of single stalk. lustrous leaves.Winter-blooming; large showy flowers in clusters. Chinese evergreen, from rhizomes. Painted drop tongue sometimes fragrant flowers, clustered or solitary TOXIC PRINCIPLES AND EFFECTS: Contains anthraquinone at the branch ends, with 5-lobed tubular calyx, TOXIC PRINCIPLES AND EFFECTS: Calcium oxalate TOXIC PRINCIPLES AND EFFECTS: Sap contains glycosides (barbaloin, emodin) and chrysophanic CHARACTERISTICS: Central stem with solid 5 petals, and funnel-shaped corolla. crystals and unknowns found in all parts, especially calcium oxalate crystals; saponins and acid in the latex of the leaves; higher medium green or splotched gray/green Fruits berry-like capsules.
    [Show full text]
  • Modes of Action of Herbal Medicines and Plant Secondary Metabolites
    Medicines 2015, 2, 251-286; doi:10.3390/medicines2030251 OPEN ACCESS medicines ISSN 2305-6320 www.mdpi.com/journal/medicines Review Modes of Action of Herbal Medicines and Plant Secondary Metabolites Michael Wink Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, INF 364, Heidelberg D-69120, Germany; E-Mail: [email protected]; Tel.: +49-6221-544-881; Fax: +49-6221-544-884 Academic Editor: Shufeng Zhou Received: 13 August 2015 / Accepted: 31 August 2015 / Published: 8 September 2015 Abstract: Plants produce a wide diversity of secondary metabolites (SM) which serve them as defense compounds against herbivores, and other plants and microbes, but also as signal compounds. In general, SM exhibit a wide array of biological and pharmacological properties. Because of this, some plants or products isolated from them have been and are still used to treat infections, health disorders or diseases. This review provides evidence that many SM have a broad spectrum of bioactivities. They often interact with the main targets in cells, such as proteins, biomembranes or nucleic acids. Whereas some SM appear to have been optimized on a few molecular targets, such as alkaloids on receptors of neurotransmitters, others (such as phenolics and terpenoids) are less specific and attack a multitude of proteins by building hydrogen, hydrophobic and ionic bonds, thus modulating their 3D structures and in consequence their bioactivities. The main modes of action are described for the major groups of common plant secondary metabolites. The multitarget activities of many SM can explain the medical application of complex extracts from medicinal plants for more health disorders which involve several targets.
    [Show full text]
  • Ventral Pallidal Gabaergic Neurons Control Wakefulness Associated with Motivation Through the Ventral Tegmental Pathway
    Molecular Psychiatry https://doi.org/10.1038/s41380-020-00906-0 ARTICLE Ventral pallidal GABAergic neurons control wakefulness associated with motivation through the ventral tegmental pathway 1 1 1 1 2 1 2 Ya-Dong Li ● Yan-Jia Luo ● Wei Xu ● Jing Ge ● Yoan Cherasse ● Yi-Qun Wang ● Michael Lazarus ● 1 1 Wei-Min Qu ● Zhi-Li Huang Received: 8 April 2020 / Revised: 13 September 2020 / Accepted: 1 October 2020 © The Author(s) 2020. This article is published with open access Abstract The ventral pallidum (VP) regulates motivation, drug addiction, and several behaviors that rely on heightened arousal. However, the role and underlying neural circuits of the VP in the control of wakefulness remain poorly understood. In the present study, we sought to elucidate the specific role of VP GABAergic neurons in controlling sleep–wake behaviors in mice. Fiber photometry revealed that the population activity of VP GABAergic neurons was increased during physiological transitions from non-rapid eye movement (non-REM, NREM) sleep to either wakefulness or REM sleep. Moreover, chemogenetic and optogenetic manipulations were leveraged to investigate a potential causal role of VP GABAergic neurons 1234567890();,: 1234567890();,: in initiating and/or maintaining arousal. In vivo optogenetic stimulation of VP GABAergic neurons innervating the ventral tegmental area (VTA) strongly promoted arousal via disinhibition of VTA dopaminergic neurons. Functional in vitro mapping revealed that VP GABAergic neurons, in principle, inhibited VTA GABAergic neurons but also inhibited VTA dopaminergic neurons. In addition, optogenetic stimulation of terminals of VP GABAergic neurons revealed that they promoted arousal by innervating the lateral hypothalamus, but not the mediodorsal thalamus or lateral habenula.
    [Show full text]
  • Effects of Gelsemine on Oxidative Stress and DNA Damage Responses of Tetrahymena Thermophila
    Effects of gelsemine on oxidative stress and DNA damage responses of Tetrahymena thermophila Qiao Ye1,2, Yongyong Feng1,2, Zhenlu Wang1,2, Wenzhao Jiang1,2, Yuexin Qu1,2, Chaonan Zhang1,2, Aiguo Zhou1,2, Shaolin Xie1,2 and Jixing Zou1,2 1 Healthy Aquaculture Laboratory, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China 2 Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China ABSTRACT Gelsemine is an important toxic substance extracted from Gelsemium elegans, which has a lot of biological functions in cells and organisms, but its toxicity has been rarely reported in Tetrahymena thermophila. In this study, we used the protozoan T. thermophila as an experimental model to investigate the potential toxicity-induced mechanism of gelsemine in the unicellular eukaryote. Our results clearly showed gelsemine inhibited T. thermophila growth in a dose-dependent manner. This exposure also resulted in oxidative stress on T. thermophila cells and antioxidant enzyme levels were significantly altered at high gelsemine levels (p < 0.05). Gelsemine produced a slight apoptotic effect at the highest (0.8 mg/mL) gelsemine level used here (p < 0.05). Furthermore, the toxin-induced DNA damage in a dose-dependent manner. The ultrastructural analysis also revealed mitophagic vacuoles at 0.4 and 0.8 mg/mL levels of gelsemine exposure. Moreover, expressions of oxidative stress-related and MAP kinase genes were significantly changed after exposure to 0.8 mg/mL level of gelsemine (p < 0.05). Altogether, our results clearly show that gelsemine from G.
    [Show full text]
  • 2020 State of Nebraska Statutes Relating to Pharmacy
    2020 STATE OF NEBRASKA STATUTES RELATING TO PHARMACY PRACTICE ACT Department of Health and Human Services Division of Public Health Licensure Unit 301 Centennial Mall South, Third Floor PO Box 94986 Lincoln, NE 68509-4986 STATUTE INDEX UNIFORM CONTROLLED SUBSTANCES ACT 28-401. Terms, defined. 28-401.01. Act, how cited. 28-401.02. Act; how construed. 28-402. Repealed. Laws 2001, LB 398, § 97. 28-403. Administering secret medicine; penalty. 28-404. Controlled substances; declaration. 28-405. Controlled substances; schedules; enumerated. 28-406. Registration; fees. 28-407. Registration required; exceptions. 28-408. Registration to manufacture or distribute controlled substances; factors considered. 28-409. Registrant; disciplinary action; grounds; procedure. 28-410. Records of registrants; inventory; violation; penalty; storage. 28-411. Controlled substances; records; by whom kept; contents; compound controlled substances; duties. 28-412. Narcotic drugs; administration to narcotic-dependent person; violation; penalty. 28-413. Distribution to another registrant; manner. 28-414. Controlled substance; Schedule II; prescription; contents. 28-414.01. Controlled substance; Schedule III, IV, or V; medical order, required; prescription; contents; pharmacist; authority to adapt prescription; duties. 28-414.02. Prescription created, signed, transmitted, and received electronically; records. 28-414.03. Controlled substances; maintenance of records; label. 28-414.04. Controlled substance; transfer. 28-414.05. Controlled substance; destruction; records. 28-414.06. Controlled substance; practitioner; provide information; limit on liability or penalty. 28-414.07. Controlled substances; chemical analysis; admissible as evidence in preliminary hearing. 28-415. Narcotic drugs; label; requirements. 28-416. Prohibited acts; violations; penalties. 28-417. Unlawful acts; violations; penalty. 28-418. Intentional violations; penalty.
    [Show full text]
  • INFORMATION to USERS the Most Advanced Technology Has Been Used to Photo­ Graph and Reproduce This Manuscript from the Microfilm Master
    INFORMATION TO USERS The most advanced technology has been used to photo­ graph and reproduce this manuscript from the microfilm master. UMI films the original text directly from the copy submitted. Thus, some dissertation copies are in typewriter face, while others may be from a computer printer. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyrighted material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are re­ produced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each oversize page is available as one exposure on a standard 35 mm slide or as a 17" x 23" black and white photographic print for an additional charge. Photographs included in the original manuscript have been reproduced xerographically in this copy. 35 mm slides or 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. Accessing the World’sUMI Information since 1938 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA Order Number 8824558 Part I. Studies toward a synthesis of gelsemine using free radical cyclization reactions. Part II. Asymmetric synthesis of /9-lactams Lee, Chih-Shone, Ph.D. The Ohio State University, 1988 UMI 300 N. Zeeb Rd. Ann Arbor, MI 48106 PART L STUDIES TOWARD A SYNTHESIS OF GELSEMINE USING FREE RADICAL CYCLIZATION REACTIONS PART H.
    [Show full text]
  • Dietary Phytochemicals, Honey Bee Longevity and Pathogen Tolerance
    insects Article Dietary Phytochemicals, Honey Bee Longevity and Pathogen Tolerance Elisa Bernklau 1, Louis Bjostad 1, Alison Hogeboom 2, Ashley Carlisle 3 and Arathi H. S. 2,* ID 1 Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA; [email protected] (E.B.); [email protected] (L.B.) 2 Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA; [email protected] 3 Department of Fisheries, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO 80523, USA; [email protected] * Correspondence: [email protected] Received: 29 June 2018; Accepted: 29 August 2018; Published: 8 January 2019 Abstract: Continued loss of natural habitats with native prairies and wildflower patches is eliminating diverse sources of pollen, nectar and phytochemicals therein for foraging bees. The longstanding plant-pollinator mutualism reiterates the role of phytochemicals in sustaining plant-pollinator relationship and promoting honey bee health. We studied the effects of four phytochemicals—caffeine, gallic acid, kaempferol and p-coumaric acid, on survival and pathogen tolerance in the European honey bee, Apis mellifera (L.). We recorded longevity of worker bees that were provided ad libitum access to sugar solution supplemented with different concentrations of phytochemicals. We artificially infected worker bees with the protozoan parasite, Nosema ceranae. Infected bees were provided access to the same concentrations of the phytochemicals in the sugar solution, and their longevity and spore load at mortality were determined. Bees supplemented with dietary phytochemicals survived longer and lower concentrations were generally more beneficial. Dietary phytochemicals enabled bees to combat infection as seen by reduced spore-load at mortality.
    [Show full text]