Feature Extraction for Image Selection Using Machine Learning
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
10 Oriented Principal Component Analysis for Feature Extraction
10 Oriented Principal Component Analysis for Feature Extraction Abstract- Principal Components Analysis (PCA) is a popular unsupervised learning technique that is often used in pattern recognition for feature extraction. Some variants have been proposed for supervising PCA to include class information, which are usually based on heuristics. A more principled approach is presented in this paper. Suppose that we have a pattern recogniser composed of a linear network for feature extraction and a classifier. Instead of designing each module separately, we perform global training where both learning systems cooperate in order to find those components (Oriented PCs) useful for classification. Experimental results, using artificial and real data, show the potential of the proposed learning system for classification. Since the linear neural network finds the optimal directions to better discriminate classes, the global-trained pattern recogniser needs less Oriented PCs (OPCs) than PCs so the classifier’s complexity (e.g. capacity) is lower. In this way, the global system benefits from a better generalisation performance. Index Terms- Oriented Principal Components Analysis, Principal Components Neural Networks, Co-operative Learning, Learning to Learn Algorithms, Feature Extraction, Online gradient descent, Pattern Recognition, Compression. Abbreviations- PCA- Principal Components Analysis, OPC- Oriented Principal Components, PCNN- Principal Components Neural Networks. 1. Introduction In classification, observations belong to different classes. Based on some prior knowledge about the problem and on the training set, a pattern recogniser is constructed for assigning future observations to one of the existing classes. The typical method of building this system consists in dividing it into two main blocks that are usually trained separately: the feature extractor and the classifier. -
Planepack Interview with Rebecca Blackburn September 2017
Planepack interview with Rebecca Blackburn September 2017 Slobodanka: Hello Planepack readers. Welcome to another episode of Planepack. I'm sitting here with Rebecca. We're in the lovely Equinox Café in Deacon. And, Rebecca, tell me you said, you mentioned that you've been travelling light for almost ten years now. How did that all come about? Rebecca: It probably all started when I moved to the U.K. and became, and started travelling regularly. So, off on the weekend, I'd go for a couple of days. And, it was just convenient. Slobodanka: So about travelling light, do you mean with carry on only? or Rebecca: Yes. Slobodanka: So, no hold luggage/ Rebecca: No, no. Just one wheelie bag and one, one cross body handbag. Slobodanka: Handbag, yes. So, how do you plan for a trip like that? Let's say you were going to fly off tomorrow, how would you plan for your wardrobe? What would you take with you? Rebecca: So, it depends on the season. But, there's a few set, set standard items that I take. I, let's start with the sustainability aspects. I would take my Klean Kanteen, which is a thermos, a drink bottle. You can put your tea or coffee in it. And it saves [00:01:23] and it's your cup as well, so, that's number one. And I also take a folding purse, a little handbag. So, for any shopping, for a beach bag, your laundry bag, it's useful. Slobodanka: Multipurpose. Rebecca: Multipurpose, yes. Clothes wise, I take layers. -
Looking at the Past and Current Status of Kenya's Clothing and Textiles
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Textile Society of America Symposium Proceedings Textile Society of America 2018 Looking at the Past and Current Status of Kenya’s clothing and textiles Mercy V.W. Wanduara [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/tsaconf Part of the Art and Materials Conservation Commons, Art Practice Commons, Fashion Design Commons, Fiber, Textile, and Weaving Arts Commons, Fine Arts Commons, and the Museum Studies Commons Wanduara, Mercy V.W., "Looking at the Past and Current Status of Kenya’s clothing and textiles" (2018). Textile Society of America Symposium Proceedings. 1118. https://digitalcommons.unl.edu/tsaconf/1118 This Article is brought to you for free and open access by the Textile Society of America at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Textile Society of America Symposium Proceedings by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Textile Society of America Symposium Proceedings 2018 Presented at Vancouver, BC, Canada; September 19 – 23, 2018 https://digitalcommons.unl.edu/tsaconf/ Copyright © by the author(s). doi 10.32873/unl.dc.tsasp.0056 Looking at the Past and Current Status of Kenya’s clothing and textiles Mercy V. W. Wanduara [email protected] Abstract This paper analyzes and documents traditional textiles and clothing of the Kenyan people before and after independence in 1963. The paper is based on desk top research and face to face interviews from senior Kenyan citizens who are familiar with Kenyan traditions. An analysis of some of the available Kenya’s indigenous textile fiber plants is made and from which a textile craft basket is made. -
Feature Selection/Extraction
Feature Selection/Extraction Dimensionality Reduction Feature Selection/Extraction • Solution to a number of problems in Pattern Recognition can be achieved by choosing a better feature space. • Problems and Solutions: – Curse of Dimensionality: • #examples needed to train classifier function grows exponentially with #dimensions. • Overfitting and Generalization performance – What features best characterize class? • What words best characterize a document class • Subregions characterize protein function? – What features critical for performance? – Subregions characterize protein function? – Inefficiency • Reduced complexity and run-time – Can’t Visualize • Allows ‘intuiting’ the nature of the problem solution. Curse of Dimensionality Same Number of examples Fill more of the available space When the dimensionality is low Selection vs. Extraction • Two general approaches for dimensionality reduction – Feature extraction: Transforming the existing features into a lower dimensional space – Feature selection: Selecting a subset of the existing features without a transformation • Feature extraction – PCA – LDA (Fisher’s) – Nonlinear PCA (kernel, other varieties – 1st layer of many networks Feature selection ( Feature Subset Selection ) Although FS is a special case of feature extraction, in practice quite different – FSS searches for a subset that minimizes some cost function (e.g. test error) – FSS has a unique set of methodologies Feature Subset Selection Definition Given a feature set x={xi | i=1…N} find a subset xM ={xi1, xi2, …, xiM}, with M<N, that optimizes an objective function J(Y), e.g. P(correct classification) Why Feature Selection? • Why not use the more general feature extraction methods? Feature Selection is necessary in a number of situations • Features may be expensive to obtain • Want to extract meaningful rules from your classifier • When you transform or project, measurement units (length, weight, etc.) are lost • Features may not be numeric (e.g. -
Feature Extraction (PCA & LDA)
Feature Extraction (PCA & LDA) CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline What is feature extraction? Feature extraction algorithms Linear Methods Unsupervised: Principal Component Analysis (PCA) Also known as Karhonen-Loeve (KL) transform Supervised: Linear Discriminant Analysis (LDA) Also known as Fisher’s Discriminant Analysis (FDA) 2 Dimensionality Reduction: Feature Selection vs. Feature Extraction Feature selection Select a subset of a given feature set Feature extraction (e.g., PCA, LDA) A linear or non-linear transform on the original feature space ⋮ ⋮ → ⋮ → ⋮ = ⋮ Feature Selection Feature ( <) Extraction 3 Feature Extraction Mapping of the original data onto a lower-dimensional space Criterion for feature extraction can be different based on problem settings Unsupervised task: minimize the information loss (reconstruction error) Supervised task: maximize the class discrimination on the projected space In the previous lecture, we talked about feature selection: Feature selection can be considered as a special form of feature extraction (only a subset of the original features are used). Example: 0100 X N 4 XX' 0010 X' N 2 Second and thirth features are selected 4 Feature Extraction Unsupervised feature extraction: () () A mapping : ℝ →ℝ ⋯ Or = ⋮⋱⋮ Feature Extraction only the transformed data () () () () ⋯ ′ ⋯′ = ⋮⋱⋮ () () ′ ⋯′ Supervised feature extraction: () () A mapping : ℝ →ℝ ⋯ Or = ⋮⋱⋮ Feature Extraction only the transformed -
Tom Rubnitz / Dynasty Handbag
TOM RUBNITZ / DYNASTY HANDBAG 9/25/2012 PROGRAM: TOM RUBNITZ The Mother Show, video, 4 mins., 1991 Made for TV, video, 15 mins., 1984 Drag Queen Marathon, video, 5 mins., 1986 Strawberry Shortcut, video, 1:30 mins., 1989 Pickle Surprise, video, 1:30 mins., 1989 DYNASTY HANDBAG The Quiet Storm (with Hedia Maron), video, 10 mins., 2007 Eternal Quadrangle, video, 20 mins., 2012 WHITE COLUMNS JIBZ CAMERON JOSH LUBIN-LEVY What does it mean to be a great performer? In a rather conventional sense, great performing is often associated with a sense of interiority, becoming your character, identifying with your role. In that sense, a great performer could become anyone else simply by looking deep within herself. Of course, there’s a long history of performance practices that reject this model. Yet whether it is a matter of embracing or rejecting what is, so to speak, on the inside, there is an overarching belief that great performers are uniquely adept at locating themselves and using that self to build a world around them. It is no surprise then that today we are all expected to be great performers. Our lives are filled the endless capacity to shed one skin for another, to produce multiple cyber-personalities on a whim. We are hyperaware that our outsides are malleable and performative—and that our insides might be an endless resource for reinventing and rethinking ourselves (not to mention the world around us). So perhaps it’s almost too obvious to say that Jibz When I was a youth, say, about 8, I played a game in the Cameron, the mastermind behind Dynasty Handbag, is an incredible woods with my friend Ocean where we pretended to be hookers. -
Time Series Feature Extraction for Industrial Big Data (Iiot) Applications
Time Series Feature Extraction for Industrial Big Data (IIoT) Applications [1] Term paper for the subject „Current Topics of Data Engineering” In the course of studies MSc. Data Engineering at the Jacobs University Bremen Markus Sun Born on 07.11.1994 in Achim Student/ Registration number: 30003082 1. Reviewer: Prof. Dr. Adalbert F.X. Wilhelm 2. Reviewer: Prof. Dr. Stefan Kettemann Time Series Feature Extraction for Industrial Big Data (IIoT) Applications __________________________________________________________________________ Table of Content Abstract ...................................................................................................................... 4 1 Introduction ...................................................................................................... 4 2 Main Topic - Terminology ................................................................................. 5 2.1 Sensor Data .............................................................................................. 5 2.2 Feature Selection and Feature Extraction...................................................... 5 2.2.1 Variance Threshold.............................................................................................................. 7 2.2.2 Correlation Threshold .......................................................................................................... 7 2.2.3 Principal Component Analysis (PCA) .................................................................................. 7 2.2.4 Linear Discriminant Analysis -
Machine Learning Feature Extraction Based on Binary Pixel Quantification Using Low-Resolution Images for Application of Unmanned Ground Vehicles in Apple Orchards
agronomy Article Machine Learning Feature Extraction Based on Binary Pixel Quantification Using Low-Resolution Images for Application of Unmanned Ground Vehicles in Apple Orchards Hong-Kun Lyu 1,*, Sanghun Yun 1 and Byeongdae Choi 1,2 1 Division of Electronics and Information System, ICT Research Institute, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; [email protected] (S.Y.); [email protected] (B.C.) 2 Department of Interdisciplinary Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea * Correspondence: [email protected]; Tel.: +82-53-785-3550 Received: 20 November 2020; Accepted: 4 December 2020; Published: 8 December 2020 Abstract: Deep learning and machine learning (ML) technologies have been implemented in various applications, and various agriculture technologies are being developed based on image-based object recognition technology. We propose an orchard environment free space recognition technology suitable for developing small-scale agricultural unmanned ground vehicle (UGV) autonomous mobile equipment using a low-cost lightweight processor. We designed an algorithm to minimize the amount of input data to be processed by the ML algorithm through low-resolution grayscale images and image binarization. In addition, we propose an ML feature extraction method based on binary pixel quantification that can be applied to an ML classifier to detect free space for autonomous movement of UGVs from binary images. Here, the ML feature is extracted by detecting the local-lowest points in segments of a binarized image and by defining 33 variables, including local-lowest points, to detect the bottom of a tree trunk. We trained six ML models to select a suitable ML model for trunk bottom detection among various ML models, and we analyzed and compared the performance of the trained models. -
Towards Reproducible Meta-Feature Extraction
Journal of Machine Learning Research 21 (2020) 1-5 Submitted 5/19; Revised 12/19; Published 1/20 MFE: Towards reproducible meta-feature extraction Edesio Alcobaça [email protected] Felipe Siqueira [email protected] Adriano Rivolli [email protected] Luís P. F. Garcia [email protected] Jefferson T. Oliva [email protected] André C. P. L. F. de Carvalho [email protected] Institute of Mathematical and Computer Sciences University of São Paulo Av. Trabalhador São-carlense, 400, São Carlos, São Paulo 13560-970, Brazil Editor: Alexandre Gramfort Abstract Automated recommendation of machine learning algorithms is receiving a large deal of attention, not only because they can recommend the most suitable algorithms for a new task, but also because they can support efficient hyper-parameter tuning, leading to better machine learning solutions. The automated recommendation can be implemented using meta-learning, learning from previous learning experiences, to create a meta-model able to associate a data set to the predictive performance of machine learning algorithms. Al- though a large number of publications report the use of meta-learning, reproduction and comparison of meta-learning experiments is a difficult task. The literature lacks extensive and comprehensive public tools that enable the reproducible investigation of the differ- ent meta-learning approaches. An alternative to deal with this difficulty is to develop a meta-feature extractor package with the main characterization measures, following uniform guidelines that facilitate the use and inclusion of new meta-features. In this paper, we pro- pose two Meta-Feature Extractor (MFE) packages, written in both Python and R, to fill this lack. -
Generalized Feature Extraction for Structural Pattern Recognition in Time-Series Data Robert T
Generalized Feature Extraction for Structural Pattern Recognition in Time-Series Data Robert T. Olszewski February 2001 CMU-CS-01-108 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Thesis Committee: Roy Maxion, co-chair Dan Siewiorek, co-chair Christos Faloutsos David Banks, DOT Copyright c 2001 Robert T. Olszewski This research was sponsored by the Defense Advanced Project Research Agency (DARPA) and the Air Force Research Laboratory (AFRL) under grant #F30602-96-1-0349, the National Science Foundation (NSF) under grant #IRI-9224544, and the Air Force Laboratory Graduate Fellowship Program sponsored by the Air Force Office of Scientific Research (AFOSR) and conducted by the Southeastern Center for Electrical Engineering Education (SCEEE). The views and conclusions contained in this document are those of the author and should not be interpreted as representing the official policies, either expressed or implied, of DARPA, AFRL, NSF, AFOSR, SCEEE, or the U.S. government. Keywords: Structural pattern recognition, classification, feature extraction, time series, Fourier transformation, wavelets, semiconductor fabrication, electrocardiography. Abstract Pattern recognition encompasses two fundamental tasks: description and classification. Given an object to analyze, a pattern recognition system first generates a description of it (i.e., the pat- tern) and then classifies the object based on that description (i.e., the recognition). Two general approaches for implementing pattern recognition systems, statistical and structural, employ differ- ent techniques for description and classification. Statistical approaches to pattern recognition use decision-theoretic concepts to discriminate among objects belonging to different groups based upon their quantitative features. -
Feature Extraction Using Dimensionality Reduction Techniques: Capturing the Human Perspective
Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2015 Feature Extraction using Dimensionality Reduction Techniques: Capturing the Human Perspective Ashley B. Coleman Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Computer Engineering Commons, and the Computer Sciences Commons Repository Citation Coleman, Ashley B., "Feature Extraction using Dimensionality Reduction Techniques: Capturing the Human Perspective" (2015). Browse all Theses and Dissertations. 1630. https://corescholar.libraries.wright.edu/etd_all/1630 This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. FEATURE EXTRACTION USING DIMENSIONALITY REDUCITON TECHNIQUES: CAPTURING THE HUMAN PERSPECTIVE A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By Ashley Coleman B.S., Wright State University, 2010 2015 Wright State University WRIGHT STATE UNIVERSITY GRADUATE SCHOOL December 11, 2015 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Ashley Coleman ENTI TLED Feature Extraction using Dimensionality Reduction Techniques: Capturing the Human Perspective BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science. Pascal Hitzler, Ph.D. Thesis Advisor Mateen Rizki, Ph.D. Chair, Department of Computer Science Committee on Final Examination John Gallagher, Ph.D. Thesis Advisor Mateen Rizki, Ph.D. Chair, Department of Computer Science Robert E. W. Fyffe, Ph.D. Vice President for Research and Dean of the Graduate School Abstract Coleman, Ashley. -
Unsupervised Feature Extraction for Reinforcement Learning
Faculteit Wetenschappen en Bio-ingenieurswetenschappen Vakgroep Computerwetenschappen Unsupervised Feature Extraction for Reinforcement Learning Proefschrift ingediend met het oog op het behalen van de graad van Master of Science in de Ingenieurswetenschappen: Computerwetenschappen Yoni Pervolarakis Promotor: Prof. Dr. Peter Vrancx Prof. Dr. Ann Now´e Juni 2016 Faculty of Science and Bio-Engineering Sciences Department of Computer Science Unsupervised Feature Extraction for Reinforcement Learning Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in de Ingenieurswetenschappen: Computerwetenschappen Yoni Pervolarakis Promotor: Prof. Dr. Peter Vrancx Prof. Dr. Ann Now´e June 2016 Abstract When using high dimensional features chances are that most of the features are not important to a specific problem. To eliminate those features and potentially finding better features different possibilities exist. For example, feature extraction that will transform the original input features to a new smaller dimensional feature set or even a feature selection method where only features are taken that are more important than other features. This can be done in a supervised or unsupervised manner. In this thesis, we will investigate if we can use autoencoders as a means of unsupervised feature extraction method on data that is not necessary interpretable. These new features will then be tested in a Reinforcement Learning environment. This data will be represented as RAM states and are blackbox since we cannot understand them. The autoencoders will receive a high dimensional feature set and will transform it into a lower dimension, these new features will be given to an agent who will make use of those features and tries to learn from them.