<<

SEDIMENTOLOGY, STRATIGRAPHY AND RESERVOIR CHARACTERIZATION

OF THE MIDDLE UPPER SHAUNAVON MEMBER IN

SOUTHWESTERN

A Thesis

Submitted to the Faculty of Graduate Studies and Research

In Partial Fulfillment of the requirements

For the Degree of

Masters of Science

In Geology

University of Regina

By

Peter Donald Hill

Regina, Saskatchewan

June 2018

Copyright 2018, P.D. Hill

UNIVERSITY OF REGINA

FACULTY OF GRADUATE STUDIES AND RESEARCH

SUPERVISORY AND EXAMINING COMMITTEE

Peter Donald Hill, candidate for the degree of Master of Science in Geology, has presented a thesis titled, Sedimentology, Stratigraphy and Reservoir Characterization of the Middle Jurassic Upper Shaunavon Member in Southwestern Saskatchewan, in an oral examination held on April 27, 2018. The following committee members have found the thesis acceptable in form and content, and that the candidate demonstrated satisfactory knowledge of the subject material.

External Examiner: Erik Nickel, Petroleum Technology Research Centre

Supervisor: Dr. Osman Salad Hersi, Department of Geology

Committee Member: Dr. Hairuo Qing, Department of Geology

Chair of Defense: Dr. Abdul Bais, Faculty of Engineering & Applied Science

ABSTRACT

The Upper Shaunavon Member in southwestern Saskatchewan has once again

become an area of a new interest with advances in drilling and completion techniques.

The member has been a medium oil producer since the 1950’s and has some of the most

prolific oil production within the province.

In southwestern Saskatchewan the Upper Shaunavon Member unconformably

overlies the Lower Shaunavon Member. Detailed core descriptions and geophysical well-

logs identified seven recurring lithofacies that include: 1) very fine to medium-grained

peloidal quartz arenite (Facies 1); 2) sandy, bioclastic oolitic grainstone (Facies 2); 3)

bioclastic, bioturbated sandstone (Facies 3); 4) well-cemented sandstone (Facies 4) ; 5)

calcareous mudstone (Facies 5); 6) mixed sandstone and dolomitic shale (Facies 6); 7)

shale, sandstone and coquina interlayers (Facies 7). These facies are grouped into 3

lithofacies associations within the Upper Shaunavon Member.

Deposition of the Upper Shaunavon Member primarily occurred within a

marginal marine environment under tidal and brackish water influences. Facies

Association 1 has tidal indicators such as inclined heterolithic stratification, channel lags

and coals. Brackish influences are indicated by low-diversity, diminutive trace fossils as

well as synaresis cracks. Facies Association 2 was deposited in inner shelf fully marine

wave dominated conditions indicated by Cruziana Ichnofacies. Facies Association 3

formed as the result of a base level drop, resulting in erosion and the creation of incised

valleys. The subsequent rise in sea level caused these valleys to be filled by tidal inlet

channel sediments.

Geologic mapping of stratigraphic units underlying Upper Shaunavon Member

reveal they have a significant amount of control on deposition and the distribution of oil.

I

The best oil production is found within Facies Association 3 tidal inlet channels

deposited on structural lows in the study area. Tidal flats deposits are the least productive

reservoirs due to a primarily muddy lithology, a relatively thin reservoir and low

permeability restricting oil migration. Oil within the Upper Shaunavon Member is

trapped both hydrodynamically and stratigraphically by impermeable shales. Previously

missed pay zones and reservoirs found west of the main oil field trend offer new potential

explorations targets.

II

ACKNOWLEDGEMENTS

I would like to thank my supervisor Dr. Osman Salad Hersi for his technical and

scientific expertise, patience and allowing me to think and work independently

throughout this project. Dr. Salad Hersi’s suggestions and recommendations were

invaluable throughout this entire process.

I would like to thank my coworkers at the Saskatchewan Subsurface Geology

Lab, in particular Dan Kohlruss and Arden Marsh for their geologic expertise, project

management skills and everyday discussions. Also without their encouragement this

project would have never started. Thank you to Melinda Yurkowski for giving me the

support and time needed to complete this project. I would also like to thank Megan Love

and Tyler Music for their technical support and assistance with multiple figures in this

thesis. I would like to thank all of the warehouse staff at the lab for the many hours and

physical labor spent getting core and samples during the logging process.

Last but not least, I would like to thank my family for their support.

III

DEDICATION

To Jennifer

IV

Table of Contents

Abstract………………………………………………………………………………….. I

Acknowledgments………………………………………………………………………..III

Dedication………………………………………………………………………………. IV

Table of Contents………………………………………………………………………....V

List of figures………………………………………………………………………...... VIII

List of tables……………………………………………………………………………XV

1. INTRODUCTION……………………………………………………………………..1

1.1 Purpose and Objectives……………………………………………………………….3

1.2 Previous Work………………………………………………………………………..4

1.3 A Review of Mixed Carbonate-Clastic Depositional Systems……………………….9

1.3.1 Introduction…………………………………………………………………9

1.3.2 Controls on Carbonate-Clastic Mixing……………………………………..9

1.4 Study Area…………………………………………………………………………...13

1.5 Study Methods……………………………………………………………………...15

1.5.1 Production Maps………………………………………………………...…16

1.5.2 Geologic Structure and Isopach maps……………………………………...16

1.5.3 Geologic Cross-Sections…………………………………………………………...16

2. REGIONAL GEOLOGY……………………………………………………………...18

3. FACIES DESCRIPTIONS AND INTERPRETATIONS……………………………..22

3.1 Introduction……………………………………………...... 22

3.1.1. Facies 1: Very Fine to Medium-Grained Arenite Peloidal Arenite……………..22

3.1.2. Facies 2: Sandy Bioclastic Oolitic Grainstone…………………………...30

V

3.1.3. Facies 3: Bioclastic Bioturbated Sandstone……………………………………..36

3.1.4 Facies 4: Well-Cemented Sandstone…………………………………………....40

3.1.4.1 Facies 4a: Massive Well-Cemented Very Fine-Grained Sandstone………...... 40

3.1.4.2 Facies 4b: Well-Cemented laminated Fine Grained Sandstone………………..42

3.1.5 Facies 5: Calcareous Mudstone……………………………………………...…42

3.1.6 Facies 6: Mixed Sandstone and Dolomitic Shale………………………………..47

3.1.7 Facies 7: Shale, Sandstone and Coquina Interlayers…………………………...54

3.2 Facies Associations and Depositional Environments………………………………..62

3.2.1 Facies Association 1: Tidal Flats and Tidal Bars………………………………...62

3.2.2 Facies Association 2: Subtidal/ Shoreface……………………………………....72

3.2.3 Facies Association 3: Tidal Inlet Channels……………………………………....78

4. STRATIGRAPHIC ARCHITECTURE AND DEPOSITIONAL MODEL…………..82

4.1 Introduction……………………………………………………………………...83

4.2 Structure and Isopach Maps……………………………………………………...83

4.3. Facies Association Cross-Sections……………………………………………....95

4.3.1 Cross-Section A-A’………………………………………………………………95

4.3.2 Cross-Section B-B’………………………………………………………….100

4.3.3 Cross-Section C-C’……………………………………………………………..104

4.3.4 Cross-Section D-D’……………………………………………………………..106

4.3.5 Cross-Section E-E’……………………………………………………………..108

4.3.6 Cross-Section F-F’……………………………………………………………..111

4.4 Depositional Model…………………………………………………………….114

4.4.1 Tidal Flat and Tidal Bars Association (Facies Association 1)………………….114

4.4.2 Subtidal Wave Dominated Shoreface (Facies Association 2)………………….120

VI

4.4.3 Tidal Inlet channels (Facies Association 3)………………………………….…120

5. RESERVOIR CHARACTERIZATION……………………………………………..122

5.1 Introduction…………………………………………………………………….122

5.2 Oil Distribution Controls and Trapping………………………………………...122

5.3 Trapping………………………………………………………………………...123

5.4 Oil Production……………………………………………………………….….127

5.4.1 Instow – Bone Creek Tidal Channel…………………………………………....127

5.4.2 Covington - Illerbrun Tidal Channel…………………………………………....136

5.4.3 Leitchville Tidal Flats and Tidal Bars……………………………………….…143

5.4.4 Township 11 and 12 Tidal Flats and Tidal Bars…………………………….….149

5.5 Decline Curve Analysis………………………………………………………...155

5.5.1 Instow – Bone Creek Tidal Inlet Channel……………………………….……...155

5.5.2 Covington – Illerbrun Tidal Inlet Channel……………………………..……….162

5.5.3 Leitchville………………………………………………………………...... 166

5.5.4 Township 11 – 12 Range 18 – 20………………………………………………166

5.6 Reservoir Burial and Diagenesis……………………………………………..…166

5.7 Reservoir Characterization Summary…………………………………………..169

6. CONCLUSIONS……………………………………………………………….175

LIST OF REFERENCES…………………………………………………………….…177

APPENDIX I: Formation and Facies Association Tops…………………………….….184

APPENDIX II: Oil-Cut Calculations…………………………………………………...195

VII

LIST OF FIGURES

Figure 1.1 Stratigraphic chart of Lower Mesozoic in southwestern Saskatchewan……....2

Figure 1.2 Upper Shaunavon Member sub-units from Christopher’s Report 95……….…6

Figure 1.3 Schematic showing systems tracts and changes in accommodation

space that control mixing in clastic-carbonate systems………………………………….12

Figure 1.4 Detailed map of the study area in southwestern Saskatchewan……………...14

Figure 2.1 The Euramerican continent during the Middle Jurassic……………………...20

Figure 2.2 Schematic of Jurassic sediments in the Western Canadian

Sedimentary Basin…………………………………………………………………….....21

Figure 3.1 Core photograph of facies 1: Peloidal Quartz Arenite ………………………26

Figure 3.2 Core photograph of planar lamination in facies 1…………………………....27

Figure 3.3 Core photograph of rippled crossbedding from facies 1…………………..…28

Figure 3.4 Photomicrograph of facies 1………………………………………………....29

Figure 3.5 Core photographs of well-cemented oolitic grainstone from facies2………...32

Figure 3.6 Core photograph of facies 2………………………………………………….33

Figure 3.7 Core photograph of planar bedding from facies 2…………………………....34

Figure 3.8 Photomicrograph of skeletal fragments, quartz and pellets from facies 2…...35

Figure 3.9 Photomicrograph of facies 3…………………………………………………38

Figure 3.10 Core photograph of trace fossils from facies 3…………………………….39

Figure 3.11 Core photograph of massive well-cemented sandstone from facies 4A…….41

Figure 3.12 Core photograph of planar bedding from facies 4b………………………....44

Figure 3.13 Photomicrograph of facies 4b……………………………………………….45

Figure 3.14 Core photographs of facies 5 and the contact between facies 2 and 5…..… 48

VIII

Figure 3.15 Core photograph of syneresis cracks from facies 5………………………....49

Figure 3.16 Photomicrograph of facies 5………………………………………………...50

Figure 3.17 Core photographs of bioturbation in facies 6…………………………….....52

Figure 3.18 Photomicrograph of facies 6………………………………………………...53

Figure 3.19 Core photograph of oxidation in facies 7 and the contact between the

Lower and Upper Shaunavon…………………………………………………………….57

Figure 3.20 Core photographs of burrowing from facies 7……………………………...58

Figure 3.21 Core photographs of coal debris and massive pyrite from facies 7………...59

Figure 3.22 Core photographs of wavy bedding and mud laminations from facies 7…...60

Figure 3.23 Photomicrograph of facies 7………………………………………...... 61

Figure 3.24 Core photograph of facies association 1…………………………………….66

Figure 3.25 Isopach map of facies association 1……………………………………..….67

Figure 3.26 Geophysical well-log of facies association 1……………………………….68

Figure 3.27 Geophysical well-log showing stacked tidal channels………………...……69

Figure 3.28 Schematic showing lateral accreting tidal gullies…………………………..70

Figure 3.29 Schematic of tidal flat and tidal bar deposits in facies association 1……….71

Figure 3.30 Core photograph of facies association 2…………………………………….74

Figure 3.31 Isopach map of facies association 2……………………………………...…75

Figure 3.32 Geophysical well-log showing the facies that comprise

facies association 2……………………………………………………………………...76

Figure 3.33 Schematic showing the Cruziana ichnofacies related to

facies association 2……………………………………………………………………...77

Figure 3.34 Core photograph of facies association 3……………………………………80

IX

Figure 3.35 Isopach Map of Facies Association 3…………………………………….…81

Figure 3.36 Geophysical well-log showing the facies that comprise

facies association 3……………………………………………………………………....82

Figure 4.1 Map showing oil pools primarily associated with tidal flat production……...85

Figure 4.2 Map showing oil pools primarily associated with tidal inlet

channel production……………………………………………………………………….86

Figure 4.3 Sub-Mesozoic Unconformity map overlain on top of isopach map of the

Upper Shaunavon Member……………………………………………………………....89

Figure 4.4 Isopach map of Mississippian Sediments……………………………………90

Figure 4.5 Isopach map of the Upper Shaunavon Member……………………………...91

Figure 4.6 Isopach map of the Lower Shaunavon Member……………………………...92

Figure 4.7 Structure map of Upper Shaunavon with FA3 tidal inlet channel……………93

Figure 4.8 Isopach map of the lower Shaunavon Member overprinted by

FA3 sediments…………………………………………………………………………...94

Figure 4.9 Map showing location of cross-sections…………………………………...…96

Figure 4.10 Cross-section A-A’ ………………………………………………………...99

Figure 4.11 Cross-section B-B’………………………………………………….……..102

Figure 4.12 Structural map of the Upper Shaunavon Member showing

FA3 decreased thickness on structural high…………………………………………….103

Figure 4.13 Cross-section C-C’………………………………………………..……….105

Figure 4.14 Cross-section D-D’………………………………………………………...107

Figure 4.15 Cross-section E-E’…………………………………………………………110

Figure 4.16 Location of Cross-section E-E’ overlain on structural map of

X

Upper Shaunavon Member……………………………………………………………..111

Figure 4.17 Cross-section F-F’………………………………………………..………..113

Figure 4.18 Schematic showing changes in base level curves and comparing to

them to the geophysical well logs for FA1 and FA2……………………………..…….116

Figure 4.19 Schematic showing changes in base level curves and comparing to

them to the geophysical well logs for FA1 and FA3…………………………………...117

Figure 4.20 Map showing the source of freshwater causing diagenesis………………..119

Figure 5.1 Map of the oil field trend and source of oil………..125

Figure 5.2 Generalized schematic of Upper Shaunavon Hydrodynamic trapping……..126

Figure 5.3 Isopach map highlighting the Instow-Bone Creek tidal inlet reservoir……..129

Figure 5.4 Oil-cut map of initial 90 days of oil production for the

Instow-Bone Creek pool…………………………………………………………...…...130

Figure 5.5 Oil-cut map for first year of oil production in the Instow-Bone Creek pool..131

Figure 5.6 Oil-cut map for the first 5 years of production in the

Instow-Bone Creek pool……………………………………………………………….132

Figure 5.7 Oil-cut map after 10 years of production in the Instow – Bone creek pool..133

Figure 5.8 Map of Instow – Bone Creek porosity……………………………………...134

Figure 5.9 Map of Instow – Bone Creek Permeability…………………………………135

Figure 5.10 Oil-cut map of initial 90 days of production comparing

Covington – Illerbrun channel to Instow – Bone creek channel………………………..138

Figure 5.11 Oil-cut map after 1year of production comparing Covington – Illerbrun

channel to Instow – Bone creek channel……………………………………………….139

XI

Figure 5.12 Oil-cut map after 10 years of production comparing Covington – Illerbrun

channel to Instow – Bone creek channel………………………………………………140

Figure 5.13 Map comparing Covington – Illerbrun porosity to

Instow – Bone Creek porosity………………………………………………………….141

Figure 5.14 Map comparing Covington – Illerbrun permeability to

Instow – Bone Creek permeability………………………………….………………….142

Figure 5.15 Well-log showing perforated reservoir zone in Leitchville………………..144

Figure 5.16 Map showing the initial 90 days of oil production comparing

the Leitchville pool to the Instow – Bone Creek and Covington – Illerbrun pool……...145

Figure 5.17 Map showing 10 years of oil production comparing the

Leitchville pool to the Instow – Bone Creek and Covington – Illerbrun pool…………146

Figure 5.18 Map comparing Leitchville average porosity to Covington – Illerbrun

average porosity and Instow – Bone Creek average porosity………………………….147

Figure 5.19 Map comparing Leitchville average permeability to Covington – Illerbrun

average permeability and Instow – Bone Creek average permeability………………....148

Figure 5.20 Well-log showing the perforated zoned in a Covington West well………..150

Figure 5.21 Well-log from well 101/16-22-012-19W3

showing multiple stacked reservoirs……………………………………………………151

Figure 5.22 Map comparing Township 11 – 12 Range 18 – 20 initial 90 day oil

cut to Leitchville 90 day oil cut………………………………………………………...152

Figure 5.23 Map comparing Township 11 – 12 Range 18 – 20 1 year of production

oil-cut to Leitchville 1 year of production oil cut………………………………………153

XII

Figure 5.24 Map comparing Township 11 – 12 Range 18 – 20 10 years of production

oil-cut to Leitchville 10 years of production oil cut……………………………………154

Figure 5.25 Map of Instow and Bone Creek wells used in the decline analysis curves..156

Figure 5.26 Graph showing the decline curves of monthly oil production between

121/10-23-010-19W3 and 141/03-27-009-18W3………………………………………157

Figure 5.27 Graph showing the decline curves of oil-cut between 121/10-23-010-19W3

and 141/03-27-009-18W3…………………………………………………………...…158

Figure 5.28 Graph showing the decline curves of monthly oil production between

101/09-07-010-18W3 and 111/13-25-009-18W3………………………………………160

Figure 5.29 Graph showing the decline curves of oil-cut between 101/09-07-010-18W3

and 111/13-25-009-18W3…………...……………………………………………….…161

Figure 5.30 Graph showing the decline curves of monthly oil production between

121/11-07-012-17W3 and 101/01-05-012-17W3……………………………………....163

Figure 5.31 Graph showing the decline curves of oil-cut between

121/11-07-012-17W3 and 101/01-05-012-17W3…………………..…………………..164

Figure 5.32 Map showing 121/11-07-012-17W3/00 located downdip of an

Upper Shaunavon Member structural high……………………………………………..165

Figure 5.33 Graph comparing the decline curve of monthly production between

Instow wells and Township 11 – 12 Range 18 – 20 Wells……………………………..167

Figure 5.34 Graph comparing the decline curve of monthly oil-cut between

Instow wells and Township 11 – 12 Range 18 – 20 Wells……………………………..168

Figure 5.35 Decline curve of monthly oil production for Upper Shaunavon reservoirs.172

Figure 5.36 Core photograph of potential FA3 reservoir in 111/02/08-012-20W3/00....173

XIII

Figure 5.37 Missed pay below FA3 tidal inlet channel from

well 101/02-34-12-18W3/00 …………………………………………………………..174

XIV

LIST OF TABLES

Table 3.1 Summary of facies within the study area…………………………………25

Table 3.2 Description and interpretation of facies associations in the study area…..65

XV

1. INTRODUCTION

The Middle Jurassic Shaunavon Formation in southwestern Saskatchewan is

divided into lower and upper members. The Upper Shaunavon Member is composed of

heterogeneous mixed carbonate-clastic sediments whereas the Lower Shaunavon Member

is composed of fairly homogenous carbonate sediments. The Upper Shaunavon Member

has been a well-known oil producer since the discovery of the Delta field in 1952 and

cumulative oil production as of mid-2017 is 66.2x106m3 (approximately 416 million

barrels), making it the 6th best producing stratigraphic unit in Saskatchewan. The Upper

Shaunavon Member occurs in the throughout southern Saskatchewan.

Within the study area, the Upper Shaunavon Member is overlain by the Rierdon Shale

and is disconformably underlain by the carbonates of the Lower Shaunavon Member

(Figure 1.1).

The Upper Shaunavon Member is traditionally a conventional medium oil play

(average 22° API gravity oil); however, in recent years with rising oil prices and

developments in completion and drilling methods, the Upper Shaunavon Member is once

again at the forefront of oil production and exploration in Saskatchewan.

Christopher (1964) completed the most comprehensive research on the Upper

Shaunavon Member. Since Christopher’s (1964) research, there are over 2,400 wells that

have produced oil from the Upper Shaunavon Member and numerous pools have been

discovered within the study area. Lincoln (1990) conducted a research on the

sedimentology and diagenesis of the member in the Bone Creek Pool. This research is

based on core examinations and is the first major work completed on the Upper

Shaunavon Member in more than 25 years.

1

Figure 1.1 Stratigraphic chart of Lower Mesozoic in southwestern Saskatchewan. (Saskatchewan Ministry of the Economy, 2017). Note the unconformity separating the Upper Shaunavon Member and the Lower Shaunavon Member.

2

1.1 Purpose and Objectives

The Middle Jurassic Upper Shaunavon Member in southwestern Saskatchewan is

composed of heterogeneous mixed carbonate-clastic sediments that include: bioclastic

coquina, very fine to medium sandstone and fissile shales.

The Upper Shaunavon Member is a well-known oil producer in southwestern

Saskatchewan since the 1950’s. Stacked reservoirs within the Upper Shaunavon Member

are a result of vertical and horizontal facies changes throughout the study area. These

stacked reservoirs have led to prolific oil production but the complicated geology also

means that there has been missed pay zones. A detailed geologic model of Upper

Shaunavon stacked reservoirs would lead to further development of existing reservoirs in

the main oil field trend and assist in potential exploration targets off of the main reservoir

trend.

The purpose of this study is to update the stratigraphic framework and its

influence on reservoirs in the Upper Shaunavon Member in southwestern Saskatchewan.

The objectives of this study are: 1) To provide a detailed analysis of the sedimentology

and depositional environments of the Upper Shaunavon Member in Townships 9 to 13

and Ranges 17 to 20W3; 2) To determine the stratigraphic framework of the various units

of the member; 3) To produce isopach maps, structure maps, cross sections and

production maps which will assist in characterizing reservoir distribution and thickness

and potentially lead to new exploration targets.

3

1.2 Previous Work

There are numerous studies completed on the sedimentology and stratigraphic

framework of the Shaunavon Formation in Saskatchewan. Francis (1956) informally

divided the Jurassic into four parts from oldest to youngest. The Jurassic was formally

divided into the Watrous, Gravelbourg, Shaunavon and Vanguard formations by Milner

and Thomas (1954) and Milner and Blakslee (1958).

Wall (1960) studied Jurassic microfaunas throughout southern Saskatchewan and

Paterson (1968) conducted research identifying megafossils in the Upper Shaunavon

Member. Palynological studies have revealed a wide variety of both marine and

terrestrial palynomorph species indicating a marginal marine depositional system for the

Upper Shaunavon Member (Kreis, 1989) and (Pocock, 1970, 1972).

Christopher’s Report 95, The Middle Jurassic Shaunavon Formation of

Southwestern Saskatchewan (1964) was the first detailed sedimentological and

stratigraphic study. The report covered a vast regional area from Townships 1 to 18 and

Ranges 16 to 30 west of the third meridian in southwestern Saskatchewan. The study

focuses mainly on the Upper Shaunavon Member, with only a brief description of Lower

Shaunavon sedimentation.

The Lower Shaunavon is dominated by a lower mudstone facies that coarsens

upwards into a peloidal oolitic wackestones and grainstone (Grisak et al; 2012).

Petrographic analysis illustrates that the Lower Shaunavon is composed mostly of

limestone with fluctuating amounts of dolomite and the upper peloidal oolitic

wackestones and grainstone are the main reservoir. The presence of fossils and oolites

combined with the lack of muddy argillaceous sediments suggests that Lower Shaunavon

4

deposition occurred in a relatively high energy turbulent shelf or shoal environment

(Christopher, 1964). Muddy laminated are characteristic of a low energy

environment potentially farther away from a shoal.

Christopher (1964) identified and subdivided the Upper Shaunavon Member into

three informal major units (U1 to U3) based on lithological characteristics (Figure 1.2).

U1 is the basal Upper Shaunavon Member unit and comprised of well-cemented very

fine-grained sandstone mixed with a bluish grey bioclastic limestone and green fissile

shale.

U2 was subdivided into the 4 following sub-units from bottom to top; U2a is

comprised of a blue-grey limestone interbedded with very fine-grained sandstone which

is very similar to U1. U2b is comprised of green dolomitic and calcareous shales and

mudstones while U2c is made up of very fine-grained sandstones and dolomite with local

oolite beds. U2d is the top sub unit and is comprised of green marlstone with algal

limestone features. Farther westward, U2d grades into very fine calcareous sandstone.

U3 is the uppermost unit of the Upper Shaunavon Member and is comprised of

fine-grained calcareous sandstone and sandy coquinas. The thickest accumulation of this

unit is found in the Dollard Pool (Figure 1.2). Outside of these pools, the U3 is identified

by vast interbedded calcareous muds and argillaceous sandstones (Christopher, 1964).

Christopher (1964) states that U1 is the most variable within the study area and is

interpreted as a transgressive tidal flat deposit with widespread dolomotization that was

likely deposited in a sabkha type environment. The limestones present in U1 are

interpreted as a shoal environment.

5

Figure 1.2 Upper Shaunavon Member sub-units modified from Christopher’s Report 95 (1964). Sub-units include U1, U2a, U2b, U2c, U2d, U3.

6

U2a and U2c are interpreted as being deposited in a beach setting during a relative

sea level fall and are redistributed by wave action or littoral processes. Due to relatively

flat topography there is wide distribution of these muddy sands across the study area.

U2b mudstones are interpreted as a more basinal environment. U2d is interpreted as tidal

flat sediments and moving westward which is more proximal to the sediment source

grade into calcareous sandstone.

Christopher (1964) identified an unconformity surface that separates the U2 from

the overlying U3 and is characterized by a sharp irregular contact and pebble lag. The U3

is interpreted as channel-fill deposits with bioclastic limestone coquinas making up the

base of the channel and the overlying sandstone is interpreted as beach depositional

setting that flanks the channel. Within the Dollard Pool the U3 channel erodes all the way

down into the Lower Shaunavon Member, however in the Bone Creek Instow pool it only

erodes down into the U1.

Christopher (1964) pointed out a number of structural influences that would have

affected Upper Shaunavon Member sedimentation. Precursor topography, such as

Precambrian highs or lows has a major influence on how Paleozoic and Mesozoic

sediments draped over them. Draping of the sub-Shaunavon Formation onto

Mississippian limestone also played an important role in the distribution of Shaunavon

sediments, for example Upper Shaunavon thins are typically associated with

Mississippian highs as well as thick Shaunavon accumulations are associated with

Mississippian lows. Christopher (1964) also suggests that the dissolution of the Middle

Devonian Prairie Evaporite salt may have played a major role in Shaunavon Formation

sedimentation.

7

Lincoln (1990) completed an extensive study on the sedimentology, diagenesis

and petrophysical characteristics of the Upper Shaunavon Member within Bone Creek

pool. Lincoln (1990) simplified the stratigraphy and divided the Upper Shaunavon into

three units (Unit A, Unit B and Unit C).

Unit A is found at the base of the Upper Shaunavon Member and is very similar

to Christopher’s (1964) U1. Lincoln’s (1990) Unit A is defined by blue limestones,

interbedded with grey shales and peloidal sandstones. Sedimentary features include,

flaser, wavy and lenticular bedding with low angle planar bedding. Lincoln (1990)

suggests that Unit A was deposited in an offshore depositional environment that was

influenced by storms and tidal processes.

Lincoln (1990) divides Unit B into green marlstones, greenish grey claystone and

dolomitic sandstones that display complex interbedding. Unit B is deposited in a subtidal

environment that was highly influenced and modified by wave and tidal processes and

periodically affected by high-energy storms.

Unit C is comprised of interbedded sandstones and bioclastic limestones that

incise into Unit B and makes up the main reservoir in the study area. Lincoln (1990)

interprets Unit C as being deposited in a high-energy tidal channel environment that may

be wave-influenced.

Lincoln (1990) concluded that oil production was controlled by facies

distribution, depositional environment and diagenesis.

Christopher’s (1984) research proves that oil production from the Shaunavon

Formation occurs on the Shaunavon Syncline which is on the western flank of the

8

northern extension of the Coburg Syncline located south in Montana (Milner and

Blakeslee, 1958).

1.3 A Review of Mixed Carbonate-Clastic Depositional Systems

1.3.1 Introduction

In the past, carbonate and clastic sedimentation were analyzed and interpreted as

separate disciplines, however numerous mixed clastic-carbonate systems occur

throughout the rock record (e.g., Driese, 1985; Driese and Dott, 1984; Mack and James,

1986; Ji and Salad Hersi, 2013 among others) and in modern day analogues (e.g., Early

and Goodell, 1990; 1968; Shinn, 1973; Frey and Pinet, 1978; etc). The Upper Shaunavon

Member is an excellent example of a mixed carbonate-clastic system and it is, therefore,

important to review the different processes that account for such mixing. This review of

mixed systems laid the foundation for description and interpretation of the various facies,

facies associations and depositional systems occurring in the Upper Shaunavon Member

throughout the study area.

1.3.2 Controls on Carbonate-Clastic Mixing

The most important control on carbonate-clastic mixing is high frequency changes

in sea level which affects accommodation space and influences whether or not carbonate

or clastic sediments will be deposited. Changes in sea level are controlled by tectonics,

subsidence and Milankovitch (orbital) cycles.

Fluctuations in sea level are explained using a systems tracts schematic that

illustrates changes in accommodation space (Figure 1.3). Typically during a transgressive

9

systems tract or highstand systems tract factors such as temperature, light penetration,

salinity, water turbidity and oxygen levels are ideal for carbonate deposition (Jones,

2010). Clastic deposition is much more common during a falling stand systems tract or a

Lowstand systems tract, due to exposure, erosion, loss of accommodation space which is

all unsuitable for carbonate precipitation. System tracts influenced by changes in sea

level are how the mixing of carbonate and clastic sediments occurs.

Sediment source combined with pre-existing topography plays an important role

in the mixing of carbonate-clastic systems as relatively flat shallow carbonate platform

with a readily available siliciclastic source is a great area for lithofacies mixing, such as

the case in the Upper Shaunavon Member. Christopher (1964) suggests that the relative

flat topography within the study area would allow the widespread distribution of clastics

with any minor drop in sea level which would promote lithofacies mixing.

Climate is important because it plays a role in the type of clastic sediments that

are eroded and deposited but, also influences the redistribution of clastics and carbonates

through storms and wave action. An example of this occurs in Kope

Formation in Ohio, Indiana and Kentucky where interbedded siltstone and skeletal

grainstone display hummocky crossbedding, tool marks and graded bedding which are

indicators of storm deposits (Marshall and Carlton, 2016). Climate controlled periodic

storms can deliver carbonate muds onto tidal flats by storms, tides or waves (Mount,

1984).

Changes in sea level are the focus throughout this study because they are the main

mechanisms that promote mixing during deposition of the Upper Shaunavon Member.

Sea level change during the Middle Jurassic in Saskatchewan is likely the result of

10

subsidence and not Milankovitch cycle forces. Christopher (1974) proposed that the

rocking between eastern flank of the Sweetgrass Arch in Saskatchewan and the South

Belt Island structural blocks accounted for uplift and subsidence, which would have

resulted in sea level changes within the Williston Basin.

There is very little evidence to support that sea level changes during the

deposition of the Upper Shaunavon Formation was caused solely by Milankovitch cycles.

The problem with using Milankovitch cycles to account for high frequency sea level

changes is that there are no documented major glaciations during the Jurassic Period so

therefore subsidence must have had a major effect on sea level change. The rock record

has numerous examples of thick, carbonate-clastic cycles controlled by Milankovitch

cycles; however the Upper Shaunavon Member is very thin and extensive erosion has

occurred, indicating that Milankovitch controlled mixing alone is not plausible.

11

Figure 1.3 Schematic showing systems tracts and changes in accommodation space that control mixing in clastic-carbonate systems (Catuneanu et al, 2009). Mixing in the Upper Shaunavon Member may occur during the falling stand systems tract when clastic sediments prograde over carbonate sediments or during the transgressive systems tract when carbonate grains are transported via storms or wave actions.

12

1.4 Study Area

The study area is located in southwestern Saskatchewan in the extreme northwest corner

of the Williston Basin. The study area ranges from Township 9 Range 17 West of the 3rd

Meridian to Township 13 Range 20 West of the 3rd Meridian (Figure 1.4). This study will

focus on the following Upper Shaunavon Member oil pools: Leitchville, Instow, Bone

Creek, Bench, Gardenhead, Gardenhead South, Butte, Butte West, Illebrun, Covington,

Covington South, Gull Lake, Gull Lake Basal and Gull Lake South.

13

Figure 1.4 Detailed map of the study area in southwestern Saskatchewan. Note the blown up detailed study area in the bottom of the figure that covers from Townships 9 to 13 and ranges 17 to 20 west of the third meridian.

14

1.5 Study Methods

The sedimentology and stratigraphic framework for this study was completed by

analyzing and interpreting core sections from 70 drill cores, detailed petrographic

analysis of thin sections and 494 geophysical well-logs. Drill core descriptions included;

lithology, grain size, sedimentary structures, biogenic structures and bounding surfaces.

Interpretation of depositional environments and sea level fluctuations were based on drill

core lithofacies descriptions. Detailed petrographic analysis from 50 thin sections assisted

with lithologic descriptions used to determine facies and facies associations. The

geophysical well-logs were generally good because most logs were from the 1980’s to

the 2000’s. A few geophysical well-logs were from the 1960’s and 1970’s. All

geophysical well-logs included gamma-ray signatures whereas neutron-density porosity

logs were present in most wells drilled after the 1980’s. Photo-electric effect logs were

very helpful in determining lithology. Older well-logs consisted of spontaneous potential

and sonic logs.

Reservoir characterization was completed by evaluating porosity and permeability

using core analysis from 312 wells from several producing pools. Core analysis samples

outside the reservoir were eliminated, and then the average permeability and porosity

values for individual wells were plotted using Golden Software’s Surfer 12. Oil-cut maps

were created by exporting several different periods of production out of GeoLogic

Geoscout 8. Oil-cut maps were then calculated in excel and plotted using Golden

Software’s Surfer 12. Decline curves were exported out of GeoLogic Geoscout 8.

15

1.5.1 Production Maps

Oil-cut maps were created using the production data from 1,134 vertical

producing wells in the study area. Vertical wells were chosen to limit the effects of

horizontal drilling and hydraulic fracturing on the reservoir. Porosity and permeability

maps were created utilizing core analyses from to help illustrate variations in the

reservoirs. The combination of oil-cut maps and porosity and permeability maps

identified the best reservoir and potential exploration targets in the study area.

1.5.2 Geologic Structure and Isopach maps

Geophysical well-logs and drill-core data identified formation, member and facies

association tops which were used to create a number of isopach and structure maps based

on stratigraphic correlations. Geological tops were picked in MJ Systems Logsleuth 2 and

then exported into Microsoft Excel. Isopach and structure maps were created using

Golden Software’s Surfer 12 Kriging algorithm mapping program.

1.5.3 Geological Cross Sections

Six cross sections were created combining geophysical well-logs and core

descriptions to develop a stratigraphic framework for the Upper Shaunavon Member in

the study area and help characterizing reservoirs. Four Cross sections were perpendicular

to the main tidal inlet channels or back filled incised valleys. Two cross sections run

along the main tidal inlet channels to display reservoir thickness and erosional properties.

The top of the Upper Shaunavon Member was used a stratigraphic datum due to its

consistency throughout the study area. These cross sections were used to correlate

16

erosional surfaces, characterize reservoirs and assist in determining depositional

environment.

17

2. REGIONAL GEOLOGY

The Shaunavon Formation is near the top of the Middle Jurassic in the northwest

corner of the Williston Basin in Saskatchewan. The Shaunavon Formation is equivalent

to the Sawtooth Formation in Alberta, the Piper Formation in Montana (Milner and

Thomas, 1954) and is overlain by marine shales from the Middle Jurassic Vanguard

Group and underlain by Gravelbourg and Watrous Formations (Christopher, 1964). Early

Jurassic carbonates and evaporites lie disconformably on the Mississippian Madison

Group in southwest Saskatchewan. Deposition of Jurassic sediments is greatly influenced

by the sub-surface paleotopographic properties of the Mississippian strata within the

study area. Upper Shaunavon Member sediments are thickest on Mississippian structural

lows and conversely where Upper Shaunavon sediments are thin over Mississippian

structural highs (Christopher, 1964). The full extent of sediments draping over dissolved

sections of the Prairie Evaporite are unknown due to very poor well control.

The Mesozoic Era was a time of periodic tectonic activity in western Canada that

led to the uplift and rise of the Rocky Mountains. Early in the Mesozoic Era, the

formation of the Rocky Mountains led to the development of a foreland basin on the

eastern side of the mountains in southwestern Saskatchewan.

During the early Middle Jurassic, most of southwest Saskatchewan was covered

by the Western Interior Seaway (Figure 2.1), which was flanked by a stable craton to

northeast and to the west by the Sweetgrass Arch. The latter separated the Williston

Basin from the Western Platform (Alberta Basin) and its uplifting was significant during

intermittent times of Middle to Late Jurassic Period (Poulton et al, 1994; Salad Hersi and

Bot, 2017a, 2017b). Uplifting during the Bajocian age heralded deposition of the Upper

18

Shaunavon Member (Brooke and Braun, 1972) and the topographically highland of the

Sweetgrass Arch was likely a major clastic sediment source for the deposition of the

Upper Shaunavon Member. Following the uplift of the structurally higher Sweetgrass

Arch, there was a major period of subsidence that led to a widespread transgression and

partial submersion of the Sweetgrass Arch in the Middle to early Late Jurassic (Peterson,

1957). It is important to note that this transgression is also not just the result of

subsidence but is also due to a global sea level rise taking place during the Middle

Jurassic (Haq et al, 1987). This was the second period of major subsidence and

subsequent deposition in the Williston Basin (Kent, 1984). Thick accumulations of

marine Vanguard Formation shales (Figure 2.2) indicate that subsidence occurred quite

quickly (Poulton et al., 1994). The Swift Current Platform is an expansive structural

block that makes up the northwestern part of the Williston Basin (Christopher et al.,

1971) and any minor drop in base sea level would account for broad shift of sediments

across such a large gently sloping platform. Base level drops are evident as indicated by

brief period’s exposure throughout the Middle Jurassic in the northwestern part of the

Williston Basin (Poulton et al, 1994). The thinnest accumulation of Shaunavon

Formation sediments occur on the Swift Current Platform and Sweetgrass Arch due to

low sediment input and depositional hiatuses. The thickest accumulations of the

formation occur in towards the basin depocentre.

There is very little evidence of orogenic uplift during the time of Shaunavon

Formation deposition. Regional dipping is less than 1 degree and preservation of the

Jurassic sediments indicates that tectonic influence is low.

19

Figure 2.1 The Euramerican continent during the Middle Jurassic showing a roughly north-south oriented Mesozoic foreland basin covered by the western interior seaway covering parts of British Columbia, Alberta, Saskatchewan, Manitoba and several states in USA. The western edge of the Seaway lies next to the Cordilleran orogenic belt which was a major source of siliciclastic flux into the basin. Note the location of the Williston Basin; the study area is located in the northwestern corner (SW SK) of the basin. (Modified after Blakey, 1996).

20

Figure 2.2 Schematic of Jurassic sediments in the Western Canadian Sedimentary Basin. The Sweetgrass Arch is a topographic high separating Alberta Foredeep Basin from a western depression of the Williston basin (Poulton et al, 1994).

21

3. FACIES DESCRIPTIONS AND INTERPRETATIONS

3.1 Introduction

The Upper Shaunavon Member has been divided in to 7 recurring facies (facies

#1 to facies #7) within the study area. Facies divisions are based upon lithology, physical

sedimentary structures, grain size, and ichnofossils. Facies 4 was further sub-divided into

2 sub-facies (4a and 4b). These facies are then grouped into 3 facies associations (FA1,

FA2 & FA3) based on their stacking patterns and depositional settings. The facies

descriptions and interpretations are summarized in Table 3.1 and discussed in details

below.

3.1.1. Facies 1: Very Fine to Medium Peloidal Quartz Arenite

Facies 1 is composed of very fine to medium grained (62 to 500 µm) quartz

arenite and forms one of two main reservoirs in the Upper Shaunavon Member. The sand

grains of Facies 1 are sub-angular to rounded and moderately-sorted. Carbonate peloids

range in size from less than a mm to over a cm.

Facies 1 is generally heavily oil-stained (Figure 3.1) and, therefore, it is difficult

to identify primary sedimentary structures. However, planar laminations are a common

sedimentary feature (Figure 3.2). Rippled crossbedding or climbing ripples, (Figure 3.3)

is also visible but not quite as common as the planar features.

In thin section (Figure 3.4) Facies 1, intergranular porosity was generally well-

cemented with sparry calcite. Small shell fragments filled with calcite were observed.

Peloids were quite common and typically 1mm in size.

22

The well-log response for Facies 1 is generally a clean, moderate to well-

consolidated sandstone. Gamma-ray values are very low between 15-30 API and the

neutron-density porosity values are less than 30%. Photoelectric effect values are 2.0-3.0

and resistivity values can be up to 30 ohm/m due to the heavy oil-staining. The basal

contact is easily identifiable on well-log signatures with a sharp contrast between the

clean low gamma-ray from the sandstone to the underlying high gamma-ray (muddier)

reading.

The thickest distribution of Facies 1 occurs in the Instow and Bone Creek pools

where the sands can be 10 metres thick trending from northwest-southeast. The basal

contact of this facies is a sharp erosional surface, consisting of rip-up clasts of the

underlying calcareous and dolomitized shales from Facies 7. The basal lag-deposit may

also contain rip up clasts of underlying coquinas from Facies 2. Facies 1 may be

underlain by a variety of facies but most commonly facies 2, 5 and 7.

Fine to medium grained, sub-angular quartz suggests that Facies 1 was deposited

during low to moderate energy conditions (Christopher, 1964); however the sedimentary

structures indicate variable energy conditions. Christopher (1964) suggests that

permeable oil-stained sandstone, like the ones found in Facies 1, represents deposits at

the flanks of tidal channels. Planar laminations are common sedimentary features within

Facies 1 and similar features were observed by Donselaar and Geel (2007) in Holocene

Holland tidal deposits. Climbing ripples are indicative of rapid (high) sedimentation rates

and similar features, interpreted as tidal depositional products, were observed by Lincoln

(1990) within the Upper Shaunavon Member in Bone Creek Pool. The lack of

23

bioturbation is indicative of stressed brackish or fresh water conditions which are

commonly found in tidal systems (Ranger and Gingras, 2006).

24

Facies Physical Biogenic Distribution/ Depositional Log Sedimentary Structures Contact Interpretation Response Structures Facies 1: Very Fine planar None observed Sharp, irregular Within tidal Very Low gamma- fine to medium laminations, basal lag channels, ray readings peloidal quartz Climbing ripples contains sedimentary (typically 15-30 arenite rip-up clasts structures would API). (common from suggest moderate Low density porosity facies) Facies 5,6,7 to higher energy values (3-21%). High conditions resistivity values. Sonic log has low interval transit times. Facies 2: Planar bedding None observed Sharp, irregular Rip-up clasts and Very Low gamma- Sandy basal lag centimetre sized ray readings bioclastic contains shell fragments (typically 15-30 oolitic rip-up clasts suggest a high API). grainstone from energy storm Low density porosity (common Facies 5,6,7 environment values (3-21%). High facies) resistivity values. Facies 3: None, destroyed Chondrites is very Gradational The diverse fossil Gamma-ray values Bioclastic by common contact with assemblage between 30-90 API. bioturbated burrowing small; Teichichnus is Facies 5,6 but indicates Upward Sandstone common and robust; may be relatively low to decreasing gamma- (common Planolites is common sharp contact moderate energy ray. Density porosity facies) but small; Skolithos is with facies 4a conditions in a readings rare. Thalassinoides subtidal between 3-30% is rare. environment decreasing upwards. Rosselia is rare. Facies 4: Well- Destroyed by None observed Sharp contact Fine-grained Gamma-ray values cemented fluid movement. with quartz indicates readings typically sandstone Facies 4b), 5. low energy (30-45 API). Low a) Massive conditions. density porosity well values (3-10%). PE Cemented very between 3.5-4.5 fine-grained sandstone (rare facies) Facies 4: Thin planar None observed Sharp contact Planar features Gamma-ray values Well-cemented laminations with suggest low to readings typically sandstone Facies 5,6,7 moderate energy (15-45 API). Low b) Planar well- regime. density cemented porosity values (3- laminated very 10%). PE between fine-grained 2.5-4.5 sandstone (common facies) Facies 5: Thin Occasional coal and Gradational Low energy Gamma-ray values Calcareous laminations, plant debris. contact with regime between 30-105 API. mudstone synaresis cracks Facies 1,2,6,7 in a tidal flat. Very high sonic (rare facies) Syneresis cracks log transit times. indicate brackish conditions Facies 6: Obscured by Skolithos rare; Gradational Gamma-ray values Mixed bioturbation Teichichnus rare; contact with Tidal flat between (30-90 API). sandstone and and diagenesis. Asterosoma is rare. Facies,5,7 and conditions. Density dolomitic shale Planolites fairly generally sharp porosity values (common common. contact with between 5-40%. PE facies) Facies 1 and 2 between 2-3. Facies 7: Soft sediment Paleophycus, rare. Sharp irregular Highly variable Serrated gamma-ray shale, deformation Thalassinoides is rare contact, basal energy conditions values between 30- sandstone and Structures. Thin Occasional coal. lag contains rip on an exposed 105 API. coquina laminations up clasts from tidal flat. Mud Serrated density Interlayers Wavy bedding, Lower deposition porosity values as (common lenticular Shaunavon suggests lower well. facies) bedding carbonate, energy synaresis cracks oxidized conditions. fragments. Carbonate grains Sharp contact deposited under with Facies 2. high energy storms.

Table 3.1 Summary of the facies within the study area

25

Figure 3.1 Core photograph illustrating typical facies 1 profile from 13-34-9-18W3. Pervasive dark oil staining throughout. Rierdon shale lies above facies 1. Facies 2 also has pervasive oil staining and lies below facies 1. Facies 7 lies below facies 2. Scale bars are in centimeters.

26

Figure 3.2 Core photograph of planar laminations quartz arenite with flaser bedding structures in its upper part (facies 1). Well# 121/01-06-012-19W3/00 at 1363.0 m. Scale bar is in centimeters.

27

Figure 3.3 Facies 1 rippled crossbedding (climbing ripples) from well 14-23-010-19W3; 1301.5m. Scale bars are in centimeters.

28

Figure 3.4 Thin section photomicrograph of quartz arenite lithofacies and carbonate peloids (facies 1) from well 12-26-10-19W3 1313.6m; 1345.3m.

29

3.1.2. Facies 2: Sandy bioclastic oolitic grainstone

Facies 2 is often well-cemented and composed of millimetre to centimetre thick

walled shell fragments, such as bryozoans, gastropods and bivalves (Figure 3.5). Tan

coloured less than 1 mm ooids occur. Facies 2 is the second main reservoir in the Upper

Shaunavon Member. Very fine-grained sub-angular to rounded quartz sandstone is

interbedded with the oolitic grains. Grain size variation is significant vertically, with

thick-walled shell fragments found in the thickest reservoirs and thin-walled fragments

are present lower in thinner reservoirs perhaps indicating graded bedding. Facies 2 often

has excellent mouldic and vuggy porosity (Figure 3.6). Facies 2 often has pervasive

heavy oil staining obscuring primary sedimentary structures, however when oil staining is

not present planar bedding does occur (Figure 3.7).

In thin sections, Facies 2 is well-cemented with calcite. Skeletal fragments are

elongated and micritized. Quartz and dark pellets are also very common (Figure 3.8).

Coarse thick walled centimetre sized shell fragments suggest that Facies 2 was

deposited under high energy conditions in similar tidal conditions to Facies 1 as stated by

Christopher (1964); however the bioclastic coquinas likely mark the base of channels.

The well-log response of Facies 2 is a clean well consolidated limestone coquina

with very low gamma-ray values between 15-30 API and neutron-density porosity values

of less than 25%. Photoelectric effect values are 3.2-5.0 and resistivity values can be up

to 30 ohm/m when the facies is heavily oil stained. Resistivity values are also potentially

very low where Facies 2 is well-cemented and not oil-stained. The basal contact is easily

identified on well-logs with a sharp contract between low gamma-ray readings displayed

30

by the coquina from the high gamma ray readings from the underlying or overlying shale

facies 5.

The thickest distribution of Facies 2 occurs in the Instow and Bone Creek pools

trending from northwest to southeast. The basal contact of this facies is sharp and

irregular. Facies 2 basal lag deposit consists of rip-up clasts from the underlying

calcareous and dolomitized shales of Facies 5 and 7.

Bioclastic skeletal fragments and pebble lags found at the base of Facies 2 are

quite common and similar features are present in the Bluesky Formation near Peace

River, Alberta (Hubbard et al, 2002). Thin planar bedding observed in Facies 2 is a

common sedimentary feature. Finer grained ooids and pellets are likely not locally

sourced and Lincoln (1990) believes that bioclastic coquinas within the Bone Creek pool

were likely deposited by high-energy storms resulting in wave action. The absence of

burrowing within Facies 2 suggests constant sediment reworking from storm activity or

tidal processes (Pedley and Grasso, 2002).

31

Figure 3.5 A) Facies 2: well-cemented coquina from well 07-34-13-20W3; 1109m. B) Oolitic grainstone of coquina origin, well 01-06-12-19W3; 1366.5m. Scale bars are in centimeters.

32

Figure 3.6 Core photograph of facies 2 bioclastic grainstone, excellent porosity from well 01-24-09-18W3; 1427 m. Scale bars are in centimeters.

33

Figure 3.7 Planar bedding in facies 2 oolitic grainstone from well 121/01-03-010- 18W3/00; 1387m. Scale bar in centimetres.

34

Figure 3.8 Photomicrograph of facies 2 showing clean skeletal fragments, quartz and peloids in thin section from well 101/10-01-09-19W3/00; 1357.0m.

35

3.1.3. Facies 3: Bioclastic Bioturbated Sandstone

Facies 3 is composed of greenish-grey, well-cemented, strongly calcareous,

matrix-rich sandstone. Quartz forms the most dominant framework grains. It is very fine-

to fine-grained (100 to 250 m), angular to sub-rounded and moderately sorted. Ooids,

thin-walled pelecypods and other shell fragments are present. Facies 3 has minor amounts

of pyrite (<2%) and there is very little grain size variation vertically in this facies. In thin

section, well cemented calcite with blue and white angular to sub-rounded quartz grains

are common (Figure 3.9).

Bioturbation is pervasively intense and common, destroys almost all pre-existing

structures (bioturbation index (BI) of 5 to 6, Bann et al., 2008; MacEachern et al., 2010)

and found throughout Facies 3. Trace fossils are extremely variable in size from

diminutive to robust and display a low-diversity assemblage that includes Chondrites and

Teichichnus which are very common, while Planolites, Skolithos, Rosselia and

Thalassinoides are rare (Figure 3.10). Burrows are both mud and sand lined.

The well-log response of Facies 3 is variable with gamma-ray values between 30-

90 API. Gamma-ray values generally decrease moving upwards within Facies 3 caused

by increasing calcite cementation. Neutron-density porosity readings are less than 30%

and decreases upwards due to the increased amount of cementation. Photoelectric effects

have a wide range of 2.0 – 4.5 and resistivity values are often low between 4 and 15

ohm/m.

Facies 3, where present, is consistently 3 to 4 metres thick throughout the study

area.

36

The basal contact of this facies is sharp where it overlies Facies 4; however, it is gradual

when it overlies Facies 5 and 6.

Facies 3 is interpreted as being deposited in a low energy environment with

intermittent periods of high energy wave action from storms. An intense, diverse,

relatively robust trace fossil assemblage is indicative of low energy subtidal shoreface

conditions (Pemberton et al; 2009). Thalassinoides, Chondrites, Teichichnus, Rosselia

are all part of the Cruziana ichnofacies. Skeletal fragments were deposited under high

energy storm conditions and the source of calcite cements is likely from the

disintegration of skeletal material caused by episodic storms indicating synsedimentary

deposition (Lincoln, 1990). McLaughlin et al, (2004) proposed intermittent periods of

high energy wave action is responsible for the abundantly burrowed mixed clastic and

carbonate nodular wackestone and packestone facies in Upper Ordovician mixed

carbonate-clastic rocks in Kentucky, Ohio.

37

Figure 3.9 Thin section photomicrograph of facies 3 showing sub-angular quartz grains, bivalves, ooids and matrix. Some elongated clasts appear to be imbricated. The sample is from well 101/10-05-012-20W3/00; 1189.9m.

38

Figure 3.10 A) Core photograph of Teichichnus (Te) and Chondrites (Ch) trace fossils from well 11-24-11-20W3; 1372m. B) Core photograph of Rosalia (Ro) from well 04-05- 10-19W3; 1356 m. C) Core photograph of Thalassinoides (Th) from well 02-19-13- 19W3; 1150.5m. Matrix consists of carbonate cement. Scale bars are in centimeters.

39

3.1.4 Facies 4: Well-cemented Sandstone

Facies 4 is composed of well-cemented, very fine-grained to fine-grained

sandstone. Quartz grains are subangular to subrounded. Light patchy oil-staining occurs

however is extremely rare. Facies 4 has been subdivided into two subfacies (4a and 4b)

based mainly on variation in cementation and sedimentary structures. There is a slight

difference in grain size between the two subfacies.

3.1.4.1 Facies 4a: Massive, well-cemented, very fine-grained sandstone

Facies 4a consists of massive light green, well-cemented, very fine-grained (less

than 125 µm) quartz sandstone (Figure 3.11). The framework grains are angular to sub-

rounded, poorly sorted with minor amounts of pyrite (<2%). No sedimentary structures

were visible and there is no variation in grain size vertically thus giving Facies 4a its

massive appearance.

The well-log response of Facies 4a is clean well-cemented sandstone. Gamma-ray

readings are low generally 30-45 API. Neutron density porosity values are very low less

than 10%. Photoelectric effect values are 3.5-4.5 and resistivity values are low generally

less than 3 ohm/m. Facies 4a is very thin so resistivity and gamma-ray readings may not

be representative of the lithology which also makes the basal contact is tough to identify

on logs.

Facies 4a is thin throughout the study area often less than 1 metre. The basal

contact of this facies is sharp with the underlying Facies 4b and when underlain by facies

5 is gradual.

In thin section calcite cement is dominant, with very fine-grained silty sub-

angular to sub-rounded quartz.

40

A) B)

Figure 3.11 A) Core photograph of massive well-cemented sandstone from well 101/06- 09-12-18W3/00; 1323m; B) Core photograph of massive well-cemented sandstone from 101/08-04-12-18W3/00; 1281m. Scale bars are in centimeters.

41

3.1.4.2 Facies 4b: Well-cemented laminated very fine-grained sandstone

Facies 4b is composed of very fine to fine-grained(62 – 250 µm), well-cemented

quartz sandstone (Figure 3.12). The framework grains are sub-angular to sub-rounded

and moderately-sorted. There are variable amounts of micrite matrix. Horizontal planar

laminations are the only sedimentary structures observed.

The well-log response of facies 4b is typical of clean, well-cemented sandstone.

Gamma-ray values are very low to moderate between 15-30 API. Neutron-density

porosity values are low (less than 10%) and photoelectric effect values are 2.5-4.5. The

basal contact is easily identifiable from well-log signatures, with a sharp contrast between

the very low gamma-ray and neutron-density porosity values compared to high gamma-

ray values of the underlying shale facies 5.

Facies 4b is consistently one to two metres thick throughout the study area. The

basal contact is sharp and has a lag consisting of rip-up clasts from underlying shale

facies.

In thin section Facies 4b (Figure 3.13) is very similar to Facies 4a, however the

quartz is slightly coarser.

The horizontal to low angle unidirectional planar laminations, observed in this

facies was likely deposited in a very low energy environment.

3.1.5 Facies 5: Calcareous Mudstone

Facies 5 is comprised of fissile green to grey mudstone (Figure 3.14A). Pyrite is a

common mineral present as disseminated grains and euhedral nodules of pyrite. Facies 5

42

has minor amounts of very fine-grained quartz (<5%).Thin planar laminations are the

primary sedimentary structures and are quite common whereas syneresis cracks occur but

are not as common (Figure 3.15). Coal and plant debris are a fairly common biogenic

feature.

In thin section sub-angular to sub-rounded very fine-grained quartz is present

within a dark clay matrix (Figure 3.16). Calcite cement was observed rimming quartz

grains and dark angular organic fragments are also observed.

Facies 5 has a consistent well-log response with high gamma-ray readings 30-105

API. Neutron-density porosity values are very high (>20%) and often quickly shift to the

left (i.e., increasing). Resistivity values are very low often less than 5 ohm/m and

photoelectric effects values are 3.0-4.0. Facies 5 can be very thin so the log responses

may not be completely representative of the lithology.

Facies 5 is one of the thinnest facies within the study area between 0.5 – 2.0

metres thick.

The basal contact of Facies 5 can be both sharp and gradual depending on the

underlying facies (Figure 3.14B).

43

Figure 3.12 core photograph of planar bedded to laminated well-cemented very fine- grained sandstone from well 03-25-11-19W3; 1322m. Scale bars are in centimeters.

44

Figure 3.13: Thin section photomicrograph of facies 4b from well 101/16-33-10- 19W3/00; 1354.4m.

45

Facies 5 is interpreted as being deposited in a brackish lagoon or tidal mudflat

environment. Laminated mudstones, coal, plant debris are all common features observed

in tidal flats (Dalrymple, 2010). The lack of marine ichnofossils suggests that during

deposition water salinity was highly variable creating high stress conditions for trace

makers and such conditions are characteristic of a brackish environment (Pemberton et al

1982). Further evidence of a brackish condition are supported by the appearance of

syneresis cracks. Changes in salinity cause the expansion and contraction of clays,

causing synaresis cracks to form (Burst, 1965).

The presence of carbonate-clastic mixing occurring in Facies 5 might be caused

by in situ autochthonous precipitation of carbonate muds from organisms in lagoonal

muds (Mount, 1984). A modern day example of in-situ mixing of carbonates and clastics

in a lagoonal environment is described by Gussmann and Smith (2002) where carbonate

production from Halimeda is deposited in siliciclastic muddy lagoons. Halimeda have a

tolerance for environmental stresses maintaining carbonate production explaining the

calcareous mudstone. As previously mentioned, it could be highly likely that the source

of carbonate muds is from the breakdown of skeletal material (Lincoln, 1990).

46

3.1.6 Facies 6: Mixed sandstone and dolomitic shale

Facies 6 is comprised of green dolomitic shale and very fine-grained(less than 125

µm) quartz sandstone. The shale is indurated and non- to weakly-calcareous. The quartz

grains in the sandstone are rounded to well-rounded, well-sorted and the grain size is

consistent vertically throughout Facies 6. Primary sedimentary structures are obliterated

by diagenetic alterations and bioturbation. Bioturbation is very intense (BI index of 5 to

6, MacEachern et al., 2010) throughout most of Facies 6 making it difficult to determine

exact ichnofossil assemblage Figure (3.17A). Trace makers are diminutive in size,

display low-diversity and generally exhibit horizontal burrowing. Planolites is fairly

common (Figure 3.17B); Skolithos, Teichichnus, and Asterosoma are rare but present

throughout Facies 6. The quartz sandstone layers are often pervasively oil stained.

In thin section Facies 6 shows well sorted very fine-grained quartz cemented in

calcite with dolomite rhombs (Figure 3.18).

The well-log signature of facies 6 has gamma-ray values varying between 30-90

API resulting in a serrated curve. Neutron-density porosity values cover a wide range

from 5-40%.

Facies 6 often has low resistivity values (less than 8 ohm/m) and photoelectric

effect values are 2.0-3.0.

The thickest distribution of Facies 6 occurs in the Leitchville pool; however

Facies 6 is generally less than 3 metres in thickness. The basal contact is gradational with

underlying Facies 5 and 7 and sharp irregular basal contacts occur with Facies 1 and 2.

47

Figure 3.14 A) Core photograph of fissile calcareous mudstone from well 09-29-13- 18W3; 1176m. B) Contact between Facies 2 and Facies 5 from well 07-09-11-18W3; 1356m. Scale bars are in centimeters.

48

Figure 3.15 Core photograph of the calcareous mudstone lithofacies 5 syneresis cracks from well 111/01-05-012-19W3/00; 1325m. Scale bar in centimetres.

49

Figure 3.16 Thin Section photograph of facies 5 from well 101/10-24-10-19W3/00; 1355.8m.

50

Facies 6 was deposited during low energy conditions based on the amount of

high intensity bioturbation. Brackish conditions likely existed, however stresses were not

high enough to inhibit trace makers. Evidence for a marginal marine brackish

environment are supported by micropaleontology and paleontological completed by

Paterson (1968) and Brooke and Braun (1972). These studies revealed both terrestrial and

marine palynomorph.

The cause of dolomitization in Facies 6 is debatable and will only be briefly

discussed. Christopher (1964) suggests that dolomitic shales found within Facies 6 were

deposited in a sabkha environment. Lincoln (1990) proposes the absence of evaporites,

root traces, oxidation remnants, dessication cracks and algal within the Bone Creek pool

suggests that dolomitization processes did not occur in a sabkha environment. The lack of

interbedded coal also normally found within terrestrial environments indicates non

sabkha conditions (Schreiber and El Tabakh, 2000). Oxidation remnants and algal

laminations have been observed outside the Bone Creek pool. Paleogeographic studies

(May and Butler, 1986) and (Pocock, 1970) suggest North America was drifting farther

away from the equator and climates were temperate, indicating non-arid sabkha like

conditions. Lincoln (1990) suggests dolomitic sandstones found within Facies 6 are likely

the result of mixing between marine water and freshwater causing phreatic diagenesis.

Fresh water green algae called Charophytes occur within the Upper Shaunavon Member

and is strong evidence for a fresh water presence (Wilson, 1987). Further evidence of

phreatic diagenesis is indicated by the large amount of coarse calcite cement in several of

thin section photos and that magnesium is unstable in magnesium deficient waters,

typical of brackish environments

51

Figure 3.17 A) Core photograph of Facies 6 intense bioturbation from well 03-14-09- 20W3; 1340m. Poorly preserved cross laminations are visible in the upper right part of the photo. B) Core photograph of Skolithos (Sk) from well 05-07-09-20W3; 1354m. Scale bars are in centimeters.

52

Figure 3.18 Facies 6 photograph of thin section showing dolomite rhombs and quartz grains from well 14-22-10-19W3/00; 1345.7m.

53

3.1.7 Facies 7: Shale, Sandstone and Coquina Interlayers

Facies 7 is comprised mainly of green and grey calcareous shale, interbedded with

variable amounts of very fine-grained peloidal sandstone and blue limestone coquina.

Quartz peloidal sandstone is very fine-grained (less than 125 µm), sub-angular to rounded

and poorly-sorted. Sandstone beds are blue or grey in colour. Interbedded coquina is

composed of well-cemented, thin-walled shell fragments with occasional tan ooids.

Skeletal fragments and ooids are often red and oxidized right at the Upper Shaunavon and

Lower Shaunavon Member contact (Figure 3.19) Coal fragments and pyrite nodules are

common within Facies 7 (Figure 3.20) and bioturbation is rare (BI of 2) with the

exception of a few Paleophycus and Thalassinoides burrows (Figure 3.21). Facies 7 may

have patchy light oil staining.

Wavy and lenticular bed forms are very common within the interbedded shales,

sandstones and coquinas (Figure 3.22A). Thin planar laminations in the shales are a

common occurrence throughout Facies 7 (Fig. 3.22B), whereas soft sediment

deformation and synaresis cracks are rare within Facies 7.

Facies 7 is highly variable in thin section (Figure 3.23). Some samples display

very fine-grained quartz grains within a shale matrix. Other thin section samples display

very fine-grained quartz mixed with shell fragments and peloids.

The well-log response has serrated gamma-ray values throughout Facies 6.

Neutron-density porosity values have a wide variety of values depending on amount of

sandstone and coquina and photoelectric effect values are variable.

54

The thickest distribution of Facies 7 are outside of Instow, Bone Creek, Illerbrun,

Covington and Gull Lake pools where down cutting from tidal inlets or incised valleys

occurred.

The basal contact of Facies 7 is sharp, separating the Upper Shaunavon Member

from the underlying carbonate Lower Shaunavon Member. Basal lag deposits are

comprised of tan rip-up clasts from the underlying Lower Shaunavon limestone, pyrite

grains and oxidized fragments. Facies 7 also has a sharp basal contact with the underlying

Facies 2.

Facies 7 was deposited in variable mixed energy conditions on a tidal flat and

tidal bar environment. Laminated muds represent periods of low energy and are

landward. Periodically during deposition, Facies 7 tidal flats were likely exposed to

higher energy wave action which resulted in planar bedding within sandstones and the

accumulation of shell deposits (Thompson, 1968). The red oxidized fragments and ooids

present at the base of the Upper Shaunavon Member suggests the Lower Shaunavon was

subject to exposure and erosion. The presence of ooids (Figure 3.23 C) mixed with

peloidal sandstone may indicate periods of punctuated carbonate-clastic mixing which

was caused by landward transport of carbonate muds and grains onto tidal flats (Mount,

1984). Punctuated high intensity storm events cause winnowing and the subsequent

landward transport of oolitic shoals. Mud drapes, wavy and lenticular bedding are

sedimentary structures within Facies 6 and are characteristic of a tidal flat environments

(Dalrymple, 2010).

55

Further evidence for nearshore tidal flats is indicated by the presence of

Paleophycus trace fossils. Paleophycus are often found in nearshore episodic storms and

brackish water conditions, such as, tidal flats (Pemberton et al., 2009).

56

Figure 3.19 Core photograph of red oxidized skeletal fragments at the Upper Shaunavon – Lower Shaunavon contact from well 101/04-26-010-19W3/00; 1311.7m.

57

Figure 3.20A) Facies 7 coal debris from well 07-25-10-20W3; 1348m. B) Massive pyrite from well 11-22-11-20W3; 1412 m. Scale bars are in centimeters.

58

Figure 3.21 A) Thalassinoides burrow from well 05-32-11-19W3; 1357m. B) Paleophycus burrow from well 03-14-09-20W3; 1345m. Scale bars are in centimeters.

59

Figure 3.22 A) Core photograph of wavy bedding from well 150/15-12-011-19W3/00; 1333.0m. B) Core photograph of mud laminations from well 101/14-10-009-18W3/00; 1418.0m. Scale bars in centimetres.

60

Figure 3.23 A) Facies 7 photomicrograph of thin section showing shale matrix and quartz grains from well 03-26-009-18W3/00; 1392.5m. B) Photomicrograph of Facies 7 showing primarily bivalves with some mixed quartz grains. C) Photomicrograph of mixed quartz grains and ooids.

61

3.2 Facies Associations and Depositional Environments

Due to the complex lithology that occurs within the Upper Shaunavon Member

the seven lithofacies were grouped into three lithofacies associations. This assisted in the

interpretation of the depositional environment for the Upper Shaunavon Member.

Descriptions and interpreted depositional environments are described below.

3.2.1 Facies Association 1: Tidal Flats and Tidal Bars

Facies Association 1 (FA1) is comprised of F1, F2, F4a, F4b, F5, F6 and F7

(Table 3.2). FA1 occurs at the base of the Upper Shaunavon Member overlying the

Lower Shaunavon Member (Figure 3.24). FA1 is predominantly mixed very fine sandy

mudstones that may be calcareous or dolomitic. These muddy intervals are often

separated by 1 to 2 meter thick fine-grained sandstone or a bioclastic oolitic grainstone

facies. Thin laminations and wavy ripples are common within the mixed silty mudstones.

Planar cross bedding and climbing ripples are common within the sandstone intervals.

There are little overall vertical changes in grain size within FA1 other than quartz

becomes slightly coarser in the tidal bar or channel facies. Individual facies thicknesses in

FA1 are variable throughout. Facies 7 is generally the thickest and often occurs at the

base of FA1. Plant debris and coal debris are often observed at the base of FA1 and

biogenic structures are moderate in the muddier sections of FA1 and absent to rare within

the channels.

FA1 is present throughout the entire study area, observed in all logged cores and

ranges in thickness from 1 m to 22 m with an average thickness of 12.6 m (Figure 3.25).

FA1 is thinnest where FA 3 down cut and subsequently backfilled with sediments and is

62

thickest where the erosional removal was less pronounced, e.g., township 11 ranges 19

and 20.

The vertical profiles of FA1 from geophysical well-logs is highly variable

throughout the study area often having a serrated profile (Figure 3.26). Gamma ray traces

can be quite high in areas where muddy tidal flats e.g. facies 5 and 7 are the dominant

facies. Gamma ray signatures can also be very low and almost blocky in tidal channels

due to high sand and limestone content from facies 1 and 2

Facies 1 and 2 are indicative of small tidal gullies or channels that display lateral

migration, making these facies very difficult to correlate over large areas. Similar features

occur in the Bluesky Formation (Hubbard et al; 2002). These channels may be stacked

(Figure 3.27) and often have erosive lags at the base that vary in size from 0.5m to 8m

which are similar to tidal channels described by Dalrymple (2010). Thin channel-fills are

much more common than thick channel-fills within FA3 and indicative of migrating

tributary channels on tidal flats. King and Chafetz (1983) identified almost identical

features in the Cap Mountain Limestone Member in central Texas. As Christopher (1964)

suggested, the lenticular sheets of sheet deposited on the tidal flats may not always be the

result of sea level drops, but are more likely associated with these tidal gullies. Muddy

tidal flats are often separated by laterally migrating tidal creeks or smaller channels

(Figure 3.28) consisting of shell hashes and sand (Dalrymple, 2010). Bioturbation within

the tidal flats and bars is rare, consistent with other tidal channels described in the Lower

Cretaceous Bluesky Formation in Alberta (Hubbard et al; 2002) and the Holland Tidal

Basin (Donselaar and Geel; 2007).

63

FA1 was deposited during the initial transgression within the Upper Shaunavon

Member with brief base level drops. The interbedded sand and mud found in Facies 5, 6

and 7 represent tidal flat and tidal bar (Figure 3.29) deposition that are often found on the

flanks of tidal channels (Dalrymple, 2010). Wavy and lenticular beddings are often seen

in Facies 7 at the base of FA1 are very typical sedimentary structures found in tidal flats

(Dalrymple, 2010; Yang, et al., 2005). Mixed tidal flats were likely deposited more

proximal to land but were often exposed to storm and wave dominated processes. Rippled

crossbedding in Facies 7 may indicate that sedimentation was open to wave action

(Dalrymple, 2010; Yang et al., 2005). Laminated muds with little to no sands are

indicative of very quiet landward depositional environment (Dalrymple, 2010). The

presence of syneresis cracks is indicative of highly variable salinities which is quite

common in brackish tidal environments. The rare occurrence of coals in Facies 5 may

indicate overbank deposits from tidal channels, however coalescing channels may limit

the ability for overbank deposits to be preserved (Miall, 2010). Limited preservation

would likely indicate overbank deposits are secluded and very difficult to correlate.

Bioturbation within FA1 is very low which may suggest a stressed brackish water

environment. Bioturbation is mostly limited to Facies 6 and localized mainly within the

Leitchville pool in Township 9. The lack of trace fossil diversity is a common

characteristic of exposed tidal flats (Dalrymple, 2010).

64

Stratigraphic Facies Association Facies Interpretation Unit FA3 Tidal Inlet F1, F2 Large tidal channels or Incised valley channel-fills FA2 Subtidal, F3 Shoreface Wave- marine Dominated Shoreface FA1 Tidal F1, F2 Tidally- flats/Tidal ,F4a, influenced Upper Shaunavon Member Bars F4b, F5, lagoonal and F6, F7 migrating tidal bars

Table 3.2 Description and interpretation of facies associations in the study area.

65

Figure 3.24 Core photograph showing FA1 from well 150/15-12-011-19W3/00. FA1 is underlain by the Lower Shaunavon Member and overlain by FA2. Scale cards in cm.

66

Figure 3.25 Isopach map of Facies Association 1. Scale thickness in metres. Contour Interval is 1 metre. Note the northwest to southeast trending thin accumulations of Facies Association 1.

67

Figure 3.26 Geophysical well-logshowing the facies that comprise Facies Association 1. Note: F2, F4a and F4b are not present in this well.

68

Figure 3.27 Gamma ray signature of well 191/06-29-011-18W3/00 showing stacked tidal channel deposits of FA1. The higher gamma ray signature at the top of each channel sequence represent a classic fining upward sequence.

69

Figure 3.28 Block diagram showing the lateral accreting tidal creeks in a tidal flat environment from (Dalrymple, 2010).

70

Figure 3.29 Schematic of a tidal bar and tidal flat succession in Facies Association 1 (modified from Dalrymple, 2010).

71

3.2.2 Facies Association 2: Subtidal/ Shoreface

Facies Association 2 (FA2) is comprised entirely of Facies 3 (Table 3.2). FA2

occurs above FA1 at the top of the Upper Shaunavon Member and lies directly beneath

the Rierdon Formation (Figure 3.30). FA2 is a well-cemented, intensely bioturbated, very

fine-grained sandstone mixed with ooids, shell fragments and mudstone at the base.

Physical sedimentary structures are completely obliterated by bioturbation. There is a

slight coarsening upward in grain size throughout FA2. Bioturbation is very intense and

fairly diverse. Chondrites, Teichichnus and Planolites are all common trace makers.

Skolithos, Thalassinoides and Rosselia are present but rare trace makers.

FA2 is fairly prominent throughout the study area and is only absent where

eroded by Facies Association 3. FA2 varies in thickness from 0.5 m to 8 m with an

average thickness of 3.1 m (Figure 3.31) and is thinnest along the margins of where

Facies Association 3 is present. FA2 is thickest in the southwest corner of the study area

and where it’s farthest away from FA3.

The vertical profile of FA2 from geophysical well-logs is very consistent

throughout the study area. Gamma ray signatures are moderately high at the base of FA2

and then gradually decrease moving upwards as the lithology becomes sandier (Figure

3.32). The presence of Chondrites, Teichichnus and Rosselia indicate a fully marine

possibly shoreface setting during time of deposition (Pemberton et al; 2009).

Thalassinoides, Chondrites, Teichichnus and Rosselia are almost all found exclusively in

the Cruziana ichnofacies (Pemberton et al; 2009) (Figure 3.33). Preservation of intensely

bioturbated Cruziana ichnofacies indicates a sublittoral quiet environment.

Wave-dominated environments are often distinguished by coarse shell fragments

and carbonate grains. Further evidence of storm- and wave-dominated processes on a

72

shallow ramp setting are indicated by pelecypod shell fragments and ooids (Tucker and

Wright, 1990).

73

Figure 3.30 Core photograph of FA2 from well 121/01-06-012-19W3/00. FA2 is overlain by the Rierdon shale and underlain by FA1. The change from FA1 to FA2 marks the shift from a marginal marine depositional environment to a marine depositional environment.

74

Figure 3.31 Isopach map of Facies Association 2. This map illustrates how FA2 is completely eroded by FA3 tidal inlet channels within the study area. Scale thickness in metres. Contour interval is 1 metre.

75

Figure 3.32 Geophysical well-log showing the facies that comprise Facies Association 2. Note that FA2 is only comprised of facies 3 and is always underlain by FA1.

76

Figure 3.33 Schematic figure showing the distribution of ichnofacies and their relative depositional sites (Pemberton et al, 1992).

77

3.2.3 Facies Association 3: Tidal Inlet Channels

Facies Association 3 (FA3) is comprised of F1 and F2 and occurs at the top of the

Upper Shaunavon Member when present (Figure 3.34). FA3 is a bioclastic oolitic

grainstone mixed with fine to medium-grained quartz sandstone. Primary sedimentary

structures are often obscured by oil staining but, planar laminations and climbing ripples

occur within the sandstone. Inclined planar bedding is occasionally observed in the

coquina. Individual facies thickness with in FA1 is very difficult to determine due to the

extensive amount of interbedding between facies 1 and facies 2.

FA3 appears in three locations throughout the study area; Instow and Bone Creek

pools, Illerbrun and Covington pools and Gull Lake pool. FA3 ranges in thickness from 3

to 16 metres with an average thickness of 7.7 m and is thickest in the Instow pool in

Township 10 Range 18 (Figure 3.35). FA3 deposition appears to be controlled by paleo-

lows within the study area.

The vertical profile of FA3 from geophysical well-logs is very consistent. Gamma

ray signatures are very low and blocky due to high sand and limestone content and the

base is marked by a sharp transition from a low gamma ray signature to a high gamma

ray signature (Figure 3.36).

Vertical stacking of Facies 1 and 2 observed in FA3 are characteristic of tidal inlet

deposits. Christopher (1964) previously interpreted sediments equivalent to FA3 in the

Instow-Bone Creek and Dollard pool to the south of the study area as incised valley

channel-fill deposits consisting of oolitic grainstone are at the base of the channel and

fine-grained sandstones represent the flanks. FA3 tidal inlets are very similar to the

smaller tidal channels observed in FA1, with erosive lags at the base and with almost no

bioturbation. Tidal inlets are classified as large major tidal channels that separate barrier

78

islands and provide tidal connections between lagoons, marshes and bays (Hayes and

Fitzgerald, 2013). Tidal inlet channels in an estuarine environment typically have shell

lags at the base and are later filled with sandstone (Haywick et al, 1992). Carbonate-

clastic mixing within a tidal inlet channel may also be the result of seasonal runoff or

wave action. Spring runoff in an estuarine tidal inlet channel may cause periodic floods

which would see increased volumes of clastic sediments delivered to the system

(Dalrymple and Choi, 2007). Tidal inlets are generally 5 -10 m deep which is very

common in FA3. Modern day analogues of tidal inlets are found in Willipa Bay,

Washington where planar low angle crossbedding is quite common, and bioturbation and

shale laminae are absent (Hubbard et al; 2002). The sedimentary features observed in

FA3 in the Upper Shaunavon Member are similar to the sedimentary features reported in

the tidal-inlet sediments of the Willipa Bay. FA 3 tidal inlet deposits represent the highest

quality reservoir in the study area. They have very limited areal extent; however they are

the thickest accumulation of good quality reservoir rock similar to the tidal inlet reservoir

in the Bluesky Formation in southern Alberta (Hubbard et al, 2002).

79

Figure 3.34 Core photograph of FA3 from well 150/02-23-010-19W3/00. FA3 is overlain by the Rierdon Shale. A sharp irregular erosional surface separates FA 3 from the below FA1 marking the base of the tidal inlet channel.

80

Figure 3.35 Isopach Map of Facies Association 3. Within the study area FA3 trends from northwest to southeast. Scale thickness in metres. Contour Interval is 1 metre.

81

Figure 3.36 Geophysical well-log showing the facies that comprise Facies Association 3.

82

4. STRATIGRAPHIC ARCHITECTURE AND DEPOSITIONAL MODEL

4.1 Introduction

The previous chapters describe facies and facies associations within the Upper

Shaunavon Member in great detail, showing that they were deposited in primarily a

marginal marine, tidally controlled environment that transitions to a shallow marine shelf

at the top of the member. This chapter will primarily focus on the Upper Shaunavon

Member and its facies associations throughout the study area. Some attention will be

given to the Lower Shaunavon Member and Mississippian strata and their controls on

Upper Shaunavon Member distribution and thickness.

Six cross-sections were constructed to show the lateral and vertical distribution of

the facies associations in the Upper Shaunavon Member. Two of these cross sections are

oriented along the thalweg of the tidal inlet channels. Four cross-sections are oriented

perpendicular to the main tidal inlet channels. All facies associations were correlated and

are the basis of the stratigraphic framework from which depositional history of the Upper

Shaunavon Member can be determined. Two maps were created to illustrate the pools

associated with tidal flat and tidal inlet channel production that are discussed throughout

this chapter (Figures 4.1 and 4.2).

4.2 Structure and Isopach Maps

Geological structure and isopach maps were constructed using data from drill-

cores and geophysical well-logs. Isopach maps of the sub-Mesozoic unconformity, Upper

Shaunavon and Lower Shaunavon members were created to show the controls on

deposition. An isopach map of FA3 has been generated to show the thickness and

83

distribution of the most prolific oil producing reservoir within the study area. FA1 and

FA2 isopach maps were completed to show the effects of the sub-FA3 erosional surface.

Structural surface maps of the sub-Mesozoic unconformity along with the Upper

Shaunavon Member and Lower Shaunavon Member were created to assist with a

depositional model and to identify the various controls on oil reservoirs.

Upper Shaunavon deposition is controlled by paleo-topography from both the

Lower Shaunavon Member and Mississippian carbonates. Even with limited well

control, Christopher (1964) suggested that thicker accumulations of Upper Shaunavon

Member sediments occur on Mississippian lows and thinner accumulations are deposited

on Mississippian highs. A structure map of the sub-Mesozoic unconformity or the

Mississippian carbonates overlain on an isopach of the Upper Shaunavon Member

identifies the thinnest Upper Shaunavon deposits occur in what are interpreted as

Mississippian highs (Figure 4.3). Upper Shaunavon sediments are thinnest in the northern

part of the study area on the flanks of a Mississippian high. An isopach map of the

Mississippian succession (Figure 4.4) identifies thinning in the eastern part of the study

area associated with structural highs.

84

Figure 4.1 Map showing oil pools primarily associated with tidal flat production.

85

Figure 4.2 Map showing oil pools primarily associated with tidal inlet channel production.

86

Isopach mapping of the two Shaunavon members reveals an inverse relationship

between the Upper Shaunavon Member and the Lower Shaunavon Member. The Upper

Shaunavon Member reaches a maximum thickness of 22 metres (Figure 4.5) and is

thickest in areas where the Lower Shaunavon Member thins. Thin accumulations of

Upper Shaunavon Member correlate well with thick Lower Shaunavon Member

accumulations. Upper Shaunavon Member thick sediment accumulations are associated

with Lower Shaunavon thin accumulations due to the topographic variability of the

unconformable surface between the two members. Structural mapping of the two

Shaunavon members reveals that the strata dip towards the southeastern edge of the study

area.

Mapping of the Lower Shaunavon Member (Figure 4.6) identified that the

thickest deposits occur in Mississippian paleo-lows and is generally 30 to 40 metres

thick. The Lower Shaunavon Member is thinnest in the southeastern part of the study

area in Townships 9 to 11 and Ranges 17 to 18. Thinning is associated with Mississippian

highs and can be less than 20 metres.

Facies Association 3 isopach maps illustrates that tidal inlet channels trend from

northwest to southeast. (Figure 3.35). The thickest accumulation of FA3 occurs in the

Instow pool in section 7 township 10 range 18 west of the third meridian. Tidal inlet

channels are thickest in the centre and become gradually thinner towards the edge. FA3

deposition is controlled by Upper Shaunavon structural lows (Figure 4.7) and correlate

with where the Lower Shaunavon Member is the thinnest (Figure 4.8). Detailed mapping

completed by Lincoln (1990) also identified FA3 equivalent deposits in the Bone Creek

area is in a structural low.

87

Isopach mapping of Facies Association 2 (FA2) illustrates where it has been

eroded by Facies Association 3 tidal inlet channels (Figure 3.31). FA2 is less than 1

metre on the margins of these channels and completely eroded by FA3 in the middle of

the channel. FA2 has an average thickness of 3.1 metres and is thickest in the southwest

part of the study area probably as a result of being the farthest point away from tidal inlet

channels.

Isopach mapping of Facies Association 1 (FA1) illustrates substantial erosion by

FA3 tidal inlet channels (Figure 3.25). FA1 is thin as 2 metres and associated with thick

tidal inlet channel accumulations. FA1 has an average thickness of 12.6 metres and is

thickest on Upper Shaunavon structural highs in the southern half of township 11 range

19 west of the third meridian and in township 10 range 17 west of the third meridian.

88

Figure 4.3 Sub-Mesozoic Unconformity map (modified from Marsh and Love, 2014) structure map overlain on top of an isopach map of the Upper Shaunavon Member. Scale thickness in metres. Note that typically Upper Shaunavon thin sediment accumulations in the northern part of the study area are associated with Sub-Mesozoic structural highs. Contour interval is for isopach map is 1 metre. Contour interval for structure map is 10 metres.

89

Figure 4.4 Isopach map of Mississippian Sediments. The thickest accumulation of sediments is in the northwest corner of the study area. Note a major change in thickness in the southeast corner of the study area, where sediments become much thinner. When compared to Figure 4.3 note the thickest accumulations of Upper Shaunavon sediments are typically associated with thinner Mississippian accumulations. Scale thickness in metres. Contour interval is 5 metres.

90

Figure 4.5 Isopach map of the Upper Shaunavon Member. Note the thinnest accumulations are in the northern part of the study area correlating with thick Lower Shaunavon sediment accumulations. Scale thickness in metres. Contour interval of 1 metre.

91

Figure 4.6 Isopach map of the Lower Shaunavon Member. Note the northwest to southeast thin accumulation of Lower Shaunavon sediments. Scale thickness in metres. Contour interval of 1 metre.

92

Figure 4.7 Structure map of Upper Shaunavon with FA3 tidal inlet channel superimposed over top. Contour interval is 15 metres.

93

Figure 4.8 Isopach map of the lower Shaunavon Member overprinted by FA3 sediments. Note how deposition of FA3 typically occurs in Lower Shaunavon Member thins. Scale thickness in metres. Contour interval is 1 metre.

94

4.3. Facies Association Cross-Sections

This section will illustrate the stratigraphic framework of the Upper Shaunavon

Member within the study area through 6 cross-sections. A map showing the location of

wells used for the cross-sections is shown in Figure 4.9. Four of these cross sections are

oriented perpendicular to the main tidal inlet channels in the study area. The other two

cross sections are oriented running down along the tidal inlet channels trending northwest

to southeast. Facies association cross-sections were constructed using data from drill-

cores and geophysical well-logs.

The top of the Upper Shaunavon Member was chosen as the datum for the cross-

sections due its consistency in geophysical well-logs and cores. The base of the Upper

Shaunavon Member is an unconformity surface and, therefore not a suitable datum.

The vertical measured depths and Kelly Bushings are present on all geophysical

well-logs within the cross-sections. Correlations were completed using data from cores,

assisted with gamma-ray signatures.

4.3.1 Cross-Section A-A’

Cross-section A-A’ is located the farthest south in the study area and runs from

southwest to northeast, perpendicular to the Instow-Bone Creek tidal inlet channel. This

cross-section was constructed using data from seven wells and the main purpose of this

cross-section is to show how Facies Association 3 (FA3) cuts through Facies Association

1 (FA1) and Facies Association 2 (FA2). FA1 and FA2 sediments thin significantly

towards the Instow-Bone Creek tidal inlet. FA2 is completely eroded by FA3 within the

95

Figure 4.9 Map showing the location of cross-sections within the study area.

96

tidal inlet channel shown in well101/05-18-010-18W3/00. A significant amount of FA1 is

also eroded by FA3 within this well. FA1 deposits to the southwest are composed of

interbedded sandstones and mudstones consisting of Facies 7 (F7) at the base of the

Upper Shaunavon Member. F7 is intersected by small tidal channels or tidal bars

containing Facies 1 (F1) and Facies 2 (F2). These channels potentially represent brief

periods of regression and then a subsequent transgression, backfilling these channels with

sediments. F1 and F2 tidal channels become thinner and less developed approaching the

main tidal inlet. Directly above the thin tidal channels is a thick package of Facies 6 (F6)

consisting of dolomitized mudstone with sand filled burrows. Mudstones with diminutive

trace fossils and low-diversity are indicative of a lagoonal brackish water depositional

environment. This facies is not present on the northern side of the Instow-Bone Creek

Channel. At the top FA1 is well-cemented, very fine-grained sandstone. The sharp

contact at the base of FA1 separates the mixed carbonate-clastic sediments of the Upper

Shaunavon Member from the carbonate Lower Shaunavon Member. The lack of paleo

soils, plant material and karsting combined with the widespread distribution of Facies 7

across the study area would indicate a short hiatus between Lower Shaunavon and Upper

Shaunavon deposition (Christopher, 1964). The contact between the two members marks

a lowstand in regards to sea level. The subsequent deposition of FA1 marks the start of a

transgression.

The base of FA2 within this cross-section marks the start of the final transgression

within the Upper Shaunavon Member. The intensely bioturbated mixed sandstone and

shale indicates a transition to a deeper, fully marine depositional environment. The upper

contact with FA2 shows the transition of the Upper Shaunavon Member to the Rierdon

97

Shale marking a full transgression to a fully marine environment. In the middle of the

cross-section, FA3 truncates FA2 and part of FA1. FA3 distribution coincides nicely with

the structural troughs in the study area.

98

A 140/06-23-009-20W3/00 101/12-31-009-19W3/00 101/08-14-010-19W3/00 101/05-18-010-18W3/00 101/15-18-010-18W3/00 111/03-29-010-18W3/00 101/01-04-011-18W3/00 KB: 932.7m KB: 869.9m KB: 896.6m KB: 915.3m KB: 915.1m KB: 921.1m KB: 930.6m A’

GR GR GR GR GR GR GR Rierdon 0 API 150 0 API 120 0 API 150 0 API 150 0 API 150 0 API 150 0 API 120 Shale 1350m

FA2 1375m FA3 4550ft 1375m

Member FA1 4550 ft 4350ft 4550ft Upper Shaunavon Formation Shaunavon Lower Shaunavon Member

T13

T12 FA3

T11

FA2 A’

T10

FA1

A T9

R20 R19 R18 R17W3 Figure 4.10 Cross-section A-A’. See text for discussion. 0 2 4 6810

99 Kilometres

4.3.2 Cross-Section B-B’

Cross-section B-B’ is oriented along the axis of the Instow-Bone Creek tidal

channel inlet (Figure 4.11). This cross-section was constructed to determine the length of

the tidal inlet channel and show the effects of erosion from FA3. Cross-section B-B’ was

constructed using data from ten wells and is orientated from northwest to southeast

spanning from section 3 township 11 range 19 west of the third meridian to section 18

township 9 range 17 west of the third meridian.

Once again FA1 sediments lie directly above the top of the Lower Shaunavon

Member in all of the drill holes. FA1 deposits are thickest on the edges of the tidal inlet

channel and gradually become thinner moving southeast towards the centre. FA1

sediments become muddier within the centre of the channel indicating a purely tidal flat

environment. Thin tidal bars and channels represented by F1 and F2 only occur in three

wells in the northern part of the cross section.

FA2 is only present in well 101/10-13-009-18W3/00 on the extreme southeast end

of the cross-section and FA2 sediments lie directly above FA1. FA2 has been completely

eroded by FA3 in every other well within the cross section.

FA3 sediments occur in every well except the most southern portion of the cross-

section. The greatest thickness of FA3 occurs in the middle of the cross-section or what is

perceived to be the deepest part of the tidal inlet channel in well 121/06-18-010-

18W3/00. FA3 sediments accumulated in structural lows, down cutting into FA2 and

FA1. The thinnest accumulations of FA3 are in section 23-10-18W3, likely due to being

located on a structural high so no down cutting took place (Figure 4.12).

100

Individual facies thickness within FA3 varies throughout the cross-section. Due to

stacked channels and extensive erosion, the correlation of individual facies with FA3 is

extremely difficult. Facies 2 oolitic grainstone are more prominent in the northern part of

the cross-section, whereas Facies 1 peloidal quartz arenites are more common in the

southern part of the cross-section.

101

B 150/04-03-011-19W3 141/11-33-010-19W3/00 131/15-27-010-19W3/00 150/02-23-010-19W3/00 121/06-18-010-18W3/00 101/05-04-010-18W3/00 121/12-34-009-18W3/00 121/14-26-009-18W3/00 101/12-24-009-18W3/00 101/10-13-009-18W3/00 B’ KB: 919.9m KB: 914.2m KB: 904.0m KB: 890.0m KB: 912.6m KB:912.6m KB: 926.7m KB: 915.6m KB: 941.5m KB: 949.0m

GR GR GR GR GR GR GR GR GR GR 0 150 0 150 150 0 150 0 0 150 0 150 0 150 0 API API 0 API API API 150 API API API API 150 0 API 150 Rierdon 1350 m Shale 4400ft

1350m 1375m FA3 1425m 1350m 1375m 1400m

Member FA1 1425m

Upper Shaunavon 1375m 1400m Formation Shaunavon Lower Shaunavon Member

T13 FA3

T12

FA2

T11 FA1 B

T10

T9 Figure 4.11 Cross-section B-B’ See text for discussion. B’

R20 R19 R18 R17W3

0 2 4 6810 Kilometres 102

4.3.3

Figure 4.12 Structural map of the Upper Shaunavon Member showing FA3 decreased thickness on structural high. Scale thickness in metres. Contour interval of isopach map is 1 metre. Contour interval of structure map is 5 metres.

103

Cross-Section C-C’

Cross-section C-C’ is oriented west to east along the widest margin of tidal flats

within the study area (Figure 4.13). This cross section was constructed using data from

eight wells and illustrates that FA1 is relatively the same thickness across along

structurally higher regions of the study area. FA1 comprise the thickest strata and occur

in every well in the cross-section; however it is down cut by FA3 in the most eastern well

111/08-06-012-17W3/00.

FA1 sediments are once again comprised of interbedded sandstone, mudstone and

coquina. FA1 sediments in cross-section C-C’ differ from FA1 sediments in cross-section

A-A’ in that there are not thick F6 mixed sandstones and dolomitic shales. The lack of

bioturbation in this cross section likely indicates a high stress, brackish, tidal flat or

lagoonal environment. Facies 1 and Facies 2 tidal bars, channel sandstone and bioclastic

beds are thin and very difficult to correlate, suggesting lateral accretion. FA1 sediments

are muddiest on the western edges of the cross section and sediments gradually become

sandier moving towards the eastern edge of the cross section.

FA2 sediments are directly above FA1 deposits in every well except the most

eastern well 111/08-06-012-17W3/00. The contact between FA1 and FA2 sediments once

again represents the final transgression in the Upper Shaunavon Member.

Well 111/08-06-012-17W3/00 is the eastern most well in the cross-section and is

the only well that FA3 is observed in. FA2 sediments were completely eroded by FA3

tidal inlet deposits, also FA1 tidal flat deposits were significantly down cut.

104

C 111/02-08-012-20W3/00 111/07-01-012-20W3/00 121/01-06-012-19W3/00 101/05-03-012-19W3/00 121/14-01-012-19W3/00 111/06-06-012-18W3/00 101/08-04-012-18W3/00 101/11-35-011-18W3/00 111/08-06-012-17W3/00 C’ KB: 821.7m KB: 970.6m KB: 951.9m KB: 913.8m KB: 930.4m KB: 909.0m 860.5m 881.2m KB: 894.4m

GR GR GR GR GR GR GR GR GR API 0 API 150 0 API 150 0API 150 API 0API 150 0 150 0API 120 0API 120 0API 150 Rierdon 0 120 Shale

F2 1180m

1280m 1310m 1350m 1335m 1310m F1 1365m 1325m Member Upper Shaunavon

Formation 1365m Shaunavon Lower Shaunavon Member

T13

FA3

T12

C

FA2 C’

T11

FA1

T10

T9 Figure 4.13 Cross-section C-C’ R20 R19 R18 R17W3

0 2 4 6810 105 Kilometres

4.3.4 Cross-Section D-D’

Cross-section D-D’ is oriented along the inferred axis of the Covington-Illerbrun

tidal channel inlet (Figure 4.14). This cross-section was built to determine the length of

the channel and compare it to the Instow-Bone creek tidal inlet. Cross-section D-D’ was

constructed using data from eleven wells and is oriented northwest to southeast spanning

from section 8 township 13 range 18 west of the third meridian to section 26 township 11

range 17 west of the third meridian.

FA1 sediments are present throughout the cross section and are thickest in the

north; however they gradually become thinner moving south down the channel until well

131/05-26-011-17W3/00 where FA1 sediments once again become thicker. FA1 is

thinnest in wells 141/02-07-012-17W3, 121/07-05-012-17W3/00 and 101/09-33-011-

17W3/00 due to extensive down cutting and subsequent deposition of FA3 tidal inlet

sediments. FA1 tidal flat sediments are thickest on the edges of the cross section at 9 to

14 metres.

FA2 sediments are only observed in the two northernmost wells within the cross-

section and lie directly above FA1 deposits; they are not present in the rest of the wells

due to erosion. FA2 is 4 metres thick within the cross-section and marks the top of the

Upper Shaunavon Member when present.

FA3 sediments occur in 9 of 11 wells in the cross-section and are only absent in the two

106

D D’ 101/01-08-013-18W3/00 121/05-04-013-18W3/00 141/10-33-012-18W3/00 131/04-34-012-18W3/00 101/10-27-012-18W3/00 141/05-24-012-18W3/00 101/10-13-012-18W3/00 141/02-07-012-17W3/00 121/07-05-012-17W3/00 101/09-33-011-17W3/00 131/05-26-011-17W3/00 KB:897.6m KB: 911.8m KB: 925.1m KB: 917.6m KB: 916.2m KB: 886.3m KB: 880.6m KB: 902.0m KB: 825.1m KB: 848.6m KB: 883.4m

GR GR GR GR GR GR GR GR GR GR GR 0 120 0 150 0 API 150 0 150 0 120 0 API 150 0 150 0 120 0 150 Rierdon API API API API 0 API 150 API API 0 API 160 API Shale

1265m F2

1340m 1310m 1340m 1340m 1325m 1310m 1325m 1280m

Member F1 1310m 1330m Upper Shaunavon Formation Shaunavon Lower Shaunavon Member

FA3

T13

D FA2

T12

FA1

D’

T11

T10

T9 Figure 4.14 Cross-section D-D’ See text for discussion.

R20 R19 R18 R17W3

0 2 4 6810 107 Kilometres

most northern wells. The deepest part of the tidal inlet channel extends from section 24

township 12 range 18 west of the third meridian down to section 33 township 11 range 17

west of the third meridian where FA3 sediments are up to 8 metres in thickness. The

Covington-Illerbrun tidal inlet channel is similar to the Instow-Bone Creek channel with

the thickest accumulation of FA3 sediments being deposited in structural lows and the

thinnest deposits near the structural highs.

4.3.5 Cross-Section E-E’

Cross-section E-E’ is oriented west to east along township 12 from ranges 20 to

18 west of the third meridian. This cross-section was constructed using data from seven

wells and shows a lateral facies change in the eastern most well from Facies Association

2 to Facies Association 3.

FA1 sediments are observed throughout the entire cross-section and are relatively

the same thickness. Facies 1 and Facies 2 channel sediments are thickest in the middle

and eastern parts of the cross-section possibly because they are on the flanks of a

structural high in the area and any drop in base level would result in coarser sediments

(Figure 4.16). Interbedded mud and sand combined with the lack of bioturbation in FA1

once again indicate a stressed brackish tidal flat environment.

FA2 deposits are found in every well in the cross-section except in 131/04-34-

012-18W3 where they are eroded and infilled with FA3 sediments from the Covington-

Illerbrun tidal inlet channels. The thickness of FA2 is consistently around 3 metres.

108

FA3 deposits are only found in 131/04-34-012-18W3 which marks the edge of the

Covington-Illerbrun tidal inlet channel indicated by the lower then average thickness of

only 3 metres.

109

E E’

101/04-36-012-20W3/00 101/09-30-012-19W3/00 141/10-28-012-19W3/02 111/10-26-012-19W3/02 141/10-25-012-19W3/00 101/15-29-012-18W3/00 131/04-34-012-18W3/00 KB: 808.3m KB: 810.5m KB: 843.9m KB: 901.0m KB: 908.0m KB: 917.6m KB: 914.1m GR GR GR GR GR GR GR 0 API 150 Rierdon 0 API 120 0 API 150 0 API 120 0 API 120 0 API 120 0 150API Shale

FA2 4300ft 1330m 1230m

Member FA1 3900ft

Upper Shaunavon 4300ft

Formation 1200m Shaunavon Lower Shaunavon Member

T13

E E’

FA3 T12

FA2 T11

FA1

T10

T9

Figure 4.15 Cross-section E-E’ See text for discussion R20 R19 R18 R17W3

0 2 4 6810 110 Kilometres

Figure 4.16 Location of Cross-section E-E’ overlain on structural map of Upper Shaunavon Member. Contour intervals is 15 metres.

111

4.3.6 Cross-Section F-F’

Cross-Section F-F’ is located the farthest north in the study area and is oriented

from west to east across the Gull Lake tidal inlet (Figure 4.17). This cross-section was

constructed using data from ten wells and shows a lateral facies change going from east

to west.

FA3 tidal-inlet sediments are observed in 121/07-29-013-20W3/00 and 101/16-

27-013-20W3/00 the two most western wells in the cross section and FA3 tidal channels

down cut into below FA1 strata. This also coincides with the thinnest accumulation of

Upper Shaunavon sediments in the cross-section once again indicating FA3 are found on

structural lows. Between wells 101/16-27-013-20W3/00 and 101/06-30-013-19W3/00

there is a lateral facies change from FA3 sediments to FA2 sediments

FA1 deposits are observed throughout the entire cross-section and are thinnest in

the two most western wells. Wavy interbedded mudstone, siltstone and sandstone are

very common throughout FA1; however two fairly significant tidal channels intersect the

tidal flat deposits in wells 111/15-24-013-19W3/00 and 121/16-21-013-18W3/00.

FA2 sediments are observed in all wells except the two most western wells due to

down cutting from FA3. FA2 is consistently 2 to 4 metres thick within the cross-section.

A lateral facies change may indicate that FA3 sediments on-lapped onto structurally

higher FA2 sediments.

112

F F’

121/07-29-013-20W3/00 101/16-27-013-20W3/00 101/06-30-013-19W3/00 111/16-20-013-19W3/00 101/13-22-013-19W3/00 111/15-24-013-19W3/00 101/13-20-013-18W3/00 121/16-21-013-18W3/00 131/09-25-013-18W3/00 140/10-25-013-17W3/00 KB: 831.3m KB: 792.4m KB: 801.6m KB: 796.0m KB: 799.5m KB: 792.0m KB: 799.6m KB: 843.7m KB: 850.7m KB: 871.4m

GR GR GR GR GR GR GR GR GR GR 0 API 120 0 API 150 0 120 API Rierdon 0 API 150 0 API 150 0 API 150 0 API 150 API 0 API 150 0 API 150 0 150 Shale

1140m 1225m 1345m 1190m 1125m 1150m 1150m 1240m 1280m Member 1210m Upper Shaunavon Formation Shaunavon Lower Shaunavon Member

F F’

T13

FA3

T12

FA2

T11 FA1

T10

T9

R20 R19 R18 R17W3 Figure 4.17 Cross-section F-F’ See text for discussion 0 2 4 6810 113 Kilometres

4.4 Depositional Model

Due to the challenge of correlating predominantly tidal sediments, the following

depositional model will use a simplified base level sea curve using system tracts. High

frequency base level fluctuations are not taken into account due to the previously

mentioned correlation issues, erosion and anomalous facies patterns observed.

The depositional history of the Upper Shaunavon Member within the study area is

illustrated in two schematics showing change in relative base level curves when

compared to the gamma ray geophysical well-log (Figures 4.18 and 4.19). Systems tracts

are used to help explain the depositional history within each Facies Association.

4.4.1 Tidal Flat and Tidal Bars Association (Facies Association 1)

Facies Association 1 is made up of F1, F2, F4a, F4b, F5, F6 and F7 lies directly

above the Lower Shaunavon Member and is continuous throughout the entire study area.

The Lower Shaunavon Member is interpreted as being deposited in a shallow water

relatively flat carbonate ramp environment (Christopher 1964). The sharp unconformable

contact between the Upper Shaunavon Member and Lower Shaunavon Member suggests

a brief hiatus in deposition. As previously mentioned the lack of karsting or soils

indicates a brief period of exposure before the overall Transgressive Systems Tract (TST)

took place (Figure 4.18 a).

F7 represent the thickest accumulations of marginal marine tidal bar and tidal flat

deposition in the study area which took place under brackish conditions. The brackish

environment is characterized by interbedded muds and very fine-grained sandstones,

synaresis cracks and diminutive, low-diversity trace fossil assemblages. Muddy tidal flat

environments are typically preserved during a rising sea level and increase in

114

accommodation space (Dalrymple, 2010). F1 and F2 are interpreted as both migrating

tidal channels and tidal bars characterized by; clean sandstones and bioclastic limestones,

with low bioturbation and often have sharp erosive contacts. F1 and F2 may represent

brief periods of a Falling Stand Systems Tract (FSST) and then are subsequently

backfilled and preserved by the rising sea level (Figure 4.18 b) and c)). Christopher

(1964) suggests that any drop in base sea level on relatively flat surface across the study

area would result in the deposition of significant amount of coarser material such as the

sediments found in F1 and F2. As previously mentioned though, coarser clastics may

actually be the result of laterally migrating tidal gullies which is why these sand and

coquina bodies are so difficult to correlate across the study area. A loss in

accommodation space typically results in channels amalgamating (Dalrymple, 2010).It is

the combination of brief base sea level drops which allows for the progradation of tidal

flat and tidal channel clastic along with migrating tidal gullies that resulted in complex

stacking patterns. It is important to note that during base level drops F1 and F2 sandstone

and bioclastic limestones deposits overlie F5, F6 and F7 lime mudstone deposits. This is

significant because bioclastic grainstone and lime mudstones often represent the top of

transgressive successions (Mitchell et al, 2001) suggesting no periods of prolonged

lowstands during deposition of the Upper Shaunavon Member.

115

Figure 4.18 Schematic showing changes in base level curves and comparing to them to the geophysical well-logs for FA1 and FA2. Note red colour on sea level curve indicates sea level rise and blue colour indicates sea level drop. See text for description of depositional event.

116

Figure 4.19 Schematic showing changes in base level curves and comparing to them to the geophysical well-logs for FA1 and FA3. Note red colour on sea level curve indicates sea level rise and blue colour indicates sea level drop. See text for description of depositional event.

117

The deposition of F6 after F1, F2 and F7 was the result of a continued sea level

rise and very distinct in the southern part of the study area. F6 consists of dolomitic

shales and sandstones formed by phreatic diagenesis from the mixing of fresh water and

marine sources. The source of fresh water is likely from the sweet grass arch to the west

of the study area (Figure 4.20) with a thickness of up to 3 metres this would indicate

extended periods of sea level rise and brackish

conditions. The preservation of diminutive, low-diversity trace fossil assemblages found

in F6 are also indicative of brackish conditions.

118

Figure 4.20 Fresh water sources for mixing and cause of phreatic diagenesis. (Modified from Blakey, 1996).Note the western interior seaway separating the western platform to the west from the North American landmass to the east.

119

4.4.2 Subtidal Wave Dominated Shoreface (Facies Association 2)

Continued sea level rise resulted in near fully marine conditions resulting in the

deposition of FA2. The widespread sea level rise resulted in FA2 being deposited

throughout the entire study area and is only absent when eroded by FA3. Fully marine

conditions are characterized by well-rounded sandstone, ooids, and shell fragments

combined with a fairly diverse and robust trace fossil assemblage. Most of the trace

fossils belong to the Cruziana ichnofacies typical of fully marine conditions. The

presence of intense burrowing suggests a quiet low energy environment indicative of

subtidal conditions Periodic storms accounted for the coarse skeletal fragments and

subsequent disintegration into calcite found in Facies Association 2.

The final transgression within the Upper Shaunavon Member increased

accommodation space and allowed FA2 shoreface sandstones to be preserved and

covered by Vanguard shales which were deposited in deep marine conditions (Figure

4.18 e).

4.4.3 Tidal Inlet channels (Facies Association 3)

Initial down-cutting of FA3 was caused by a base sea level fall during a either a

lowstand systems tract or a forced regression (Figure 4.19 b and c). Incision and erosion

was most prominent in structural lows and completely removed FA2 and part of FA1

most notably in the Instow-Bone Creek, Illerbrun-Covington and Gull Lake pools (Figure

4.19 a). Following the down-cutting continued sea level rise resulted in an increase in

accommodation space within the incised valleys and lead to the deposition and

preservation of stacked tidal inlet channels. The coarse shell fragments and oolites

deposited at the base of FA3 are likely the result of periodic storms transporting

120

carbonate grains landward. The preservation of rip up clasts from below FA1 muds are

indicative of quick change from a LST to a TST.

Lincoln (1990) and Christopher (1964) suggest that the sandstones within the

Bone Creek – Instow pool are trapped and deposited by shoreline processes. Due to FA3

tidal inlet channels oriented perpendicular to the shoreline, these processes did have an

effect on sedimentation, previous authors underestimate the influence of tides within

these channels.

Shoreface facies successions are typically dominated by medium to coarser

grained, well sorted sandstone with trough and swaley cross-bedding. As previously

stated lithofacies analysis reveals finer grained sandstone, moderate sorting, with

climbing ripples and planar bedding which are features similar to the tidal inlet channels

identified by Hubbard et al (2002) in the Bluesky Formation in southern Alberta as well

as modern day processes occurring in Willapa Bay, Washington (Hubbard et al, 2002).

Coarse bioclastic limestone also occurs within the base of tidal inlet channels in Willipa

Bay. It is only in brief periods throughout the year that tidal inlet channels would have

been modified by wave and storm dominated shoreline processes during an overall

transgression. Once again due to relatively flat topography the sea level rise quickly

exceeded the rate of sediment supply indicated by the lack of a landward shift in facies

and the quick shift from the marginal marine Upper Shaunavon Member sediments to

fully marine Vanguard shales.

121

5. RESERVOIR CHARACTERIZATION

5.1 Introduction

A series of isopach, structure, and production maps were created to display

reservoir thickness and distribution. These maps were combined to assist in determining

trapping mechanisms, controls, distribution of oil and which reservoir has the best

production in the study area.

5.2 Oil Distribution Controls and Trapping

The source rocks for the Upper Shaunavon Member oil trend are a controversial

topic and there is much debate regarding the migration paths that account for the

distribution of Upper Shaunavon Member oil pools. The most widely accepted theory

suggests that Upper Shaunavon Member oil was sourced from Paleozoic carbonates of

the Lodgepole Formation in the central part of the Williston Basin (Osadetz et al, 1994).

Low maturity oil was generated and subsequently migrated up dip to the northwestern

edge of the basin in Upper Shaunavon rocks (Figure 5.1).

It is also possible, hydrodynamic migration of oil northwards from Montana that

coincided with the Laramide uplift in the Late Period (Melnik, 2012). It is

possible oil within the Alberta Basin migrated from the Mississippian source rocks into

Jurassic strata where it onlaps with the Bow Island, and is transported by subsurface

water and eventually trapped along the oil field in the Shaunavon Formation (A. Marsh,

pers. comm, 2016).

122

5.3 Trapping

The Upper Shaunavon Member has two types of trapping mechanisms: 1)

Regional hydrodynamic trapping allows for the down dip accumulation of hydrocarbons

in the study area. Hydrodynamic trapping (Figure 5.2) occurs when the force of

downward flowing water is greater than the buoyancy of oil causing the oil to be

‘trapped’ without any permeability barriers (Selley, 1998); 2) Stratigraphic traps formed

within the study area due to changes in lithology whether its caused depositionally or

diagenetically. Not one single trapping mechanism is responsible for the accumulation of

hydrocarbons within the Upper Shaunavon Member, but it is likely the combination of

both hydrodynamic and stratigraphic mechanisms.

Stratigraphic trapping within the study area is strongly controlled by oil migration

into mixed sandstone and carbonate rocks of F1 and F2 isolated tidal bars and channels

that pinch out against the less permeable shales surrounding the reservoir. This

mechanism of stratigraphic trapping is considered primary and is formed by the

deposition of sediments (North, 1985).

An example of secondary stratigraphic trapping occurs within F6 within the

Leitchville pool in Township 9, Ranges 18 and 19. Secondary traps are formed by the

dolomotization of shales to form a seal around the oil impregnated sandstones that were

caused by bioturbation.

Hydrodynamic trapping may explain the reason for oil emplacement in an area

with such complex lateral stratigraphy. The deposition of tidal channels and tidal bars

account for stacked compartmentalized reservoirs that change very quickly within the

study area. This internal stratigraphy makes it difficult to believe that stratigraphic

123

trapping is the only mechanism responsible for oil accumulation with the Upper

Shaunavon Member and therefore hydrodynamic trapping must be taken into

consideration.

124

Figure 5.1 Map of the Shaunavon Formation oil field trend. Oil was generated from Lodgepole Formation Source Rocks in the centre of the Williston Basin and migrated northwest to where it is currently trapped in the Shaunavon Formation.

125

Figure 5.2 Generalized schematic of Upper Shaunavon Hydrodynamic trapping within the study area (Modified from https://www.geologyin.com/2014/12/hydrocarbon- traps.html). Oil is trapped without any permeability barriers.

126

5.4 Oil Production

Oil-cut maps were created to help identify the best reservoirs within the study

area. Mapping areas were determined by identifying different depositional features based

on Facies Associations. Oil-cut maps were created by identifying Upper Shaunavon oil

production and contouring a pre-determined length of time of oil production from each

individual well, divided by the equal pre-determined time of oil production plus a pre-

determined time of water production form each individual well. The following equation

illustrates oil-cut.

Oil-cut= oil/oil + water

Several different lengths of time were used in the above equation to illustrate the

long term effects of oil production on different reservoirs. Only vertical wells were used

as to minimize the effects of fracturing and horizontal drilling. Average porosity and

permeability maps were created using data from core analysis and should help identify

reservoir sweet spots and possible water legs.

5.4.1 Instow – Bone Creek Tidal Channel

The Instow - Bone Creek pool (Figure 5.3) has the most prolific oil production

within the study area and nearly all oil production is from the FA3 tidal inlet channel.

The average thickness of this reservoir is 8.3 metres and is up to 16 metres thick in 07-

010-18W3. The initial 90 days of oil production (Figure 5.4) reveals that oil production is

generally excellent, however there is a very noticeable water leg in the northeast corner

127

of Township 9 Range 18W3. Initial water-cuts in this area can be as high as 99 %. The

highest oil-cut is located up dip in the tidal inlet channel in Township 10.

The first year of production within the Instow - Bone Creek channel illustrate that

oil production continues to be strong (Figure 5.5); however the water leg in the southern

part of the channel is still recognizable.

After 5 years of production (Figure 5.6) the oil-cut is decreases significantly and

the water leg at the southern end of the channel has moved up dip. The average oil-cut

after 5 years of production is 54% and after 10 years of production the oil-cut decreases

significantly with the average dropping to 45%. The water leg continues to move and

expand up dip to the northwest.

The water leg in the southeastern end of the channel appears to be associated with

high porosity and permeability (figures 5.8 and 5.9) values identified in core analysis.

Low oil-cut coincides with porosity values higher than 20% and permeability values

greater than 600 millidarcies. F1 sandstones can be poorly consolidated and is potentially

the reason for high porosity values in the southeastern part of the Instow – Bone Creek

tidal channel.

128

Figure 5.3 Isopach map highlighting the Instow-Bone Creek tidal inlet reservoir. Scale thickness in metres. Contour interval is 1 metre.

129

Figure 5.4 Oil-cut map of initial 90 days of oil production for the Instow-Bone Creek pool. Scale thickness in % oil-cut. Contour Interval of oil-cut is 0.10%.

130

Figure 5.5 Oil-cut map for first year of oil production in the Instow-Bone Creek pool. Scale thickness in % oil cut. Contour Interval of oil-cut is 0.10%.

131

Figure 5.6 Oil-cut map for the first 5 years of production in the Instow-Bone Creek pool. Scale thickness is in % oil-cut. Contour Interval of oil-cut is 0.10%.

132

Figure 5.7 Oil-cut map after 10 years of production in the Instow – Bone creek pool. Scale thickness is in % oil-cut. Contour Interval of oil-cut is 0.10%.

133

Figure 5.8 Map of Instow – Bone Creek porosity. Note the highest porosity values are in the downdip southeastern part of the channel associated with the lowest oil-cuts. Scale thickness in % porosity. Contour interval is 0.01%.

134

Figure 5.9 Map of Instow – Bone Creek Permeability. Note the high permeability values in the downdip southeastern part of the channel associated with the lowest oil-cuts. Scale in millidarcies. Contour interval is in 50 millidarcies.

135

5.4.2 Covington - Illerbrun Tidal Channel

The Covington - Illerbrun pool is a large tidal channel similar to the Instow -

Bone Creek Pool. The channel trends from northwest to southeast and has the same facies

present as the Instow - Bone Creek tidal inlet. The average thickness of this reservoir is

6.2 metres and is over 9 metres thick in 33-011-17W3 and 05-012-17W3.

The initial 90 day of oil-cut within the Covington-Illebrun channel are not nearly as high

as the Instow – Bone creek pool (Figure 5.10) with the average oil-cut of 61%. There

appears tobe water leg in the downdip sections of the channel similar to the Bone Creek-

Instow channel.

Also similar to the Instow – Bone Creek tidal channel the Covington – Illerbrun channel

first year production increases; however the water leg continues to remain (Figure 5.11).

After 10 years of production the oil-cut drops significantly to 38%, comparable to the

Instow – Bone Creek pool at 45% after 10 years of production (Figure 5.12) and the

water leg moves up dip to the northwest.

The highest porosity values within the channel are upwards of 20% and appear to

be associated with the areas of the lowest oil production once again similar to the Instow

– Bone Creek tidal channel. The high permeability values found in 27-012-18W3 do not

coincide with the water leg as was the case in the Instow – Bone Creek Pool. Although

the permeability is over 1000 millidarcies, oil-cut remains fairly high.

The Gull Lake pool is another large tidal inlet channel similar to the Covington –

Illerbrun and Instow – Bone Creek tidal inlet channels. There is production reported from

the Upper Shaunavon Member, Success and Cantuar Formations so no attempt was made

to complete oil-cut maps for this area due to complex stratigraphy and possible issues

136

with reporting. The channel is made up of F1 and F2 mixed peloidal quartz arenite and

oolitic grainstone and trends from northwest to southeast similar to the other tidal

channels.

137

Figure 5.10 Oil-cut map of initial 90 days of production comparing Covington – Illerbrun channel to Instow – Bone creek channel. Scale thickness in % oil-cut. Contour interval is 0.10%.

138

Figure 5.11 Oil-cut map after 1year of production comparing Covington – Illerbrun channel to Instow – Bone creek channel. Map scale is in % oil-cut. Contour interval is 0.10%

139

Figure 5.12 Oil-cut map after 10 years of production comparing Covington – Illerbrun channel to Instow – Bone creek channel. Map scale is in % oil-cut. Contour interval is 0.10%.

140

Figure 5.13 Map comparing Covington – Illerbrun porosity to Instow – Bone Creek porosity. Note the higher porosities in the downdip parts of both channels. Scale thickness in % porosity. Contour interval is 0.01%.

141

Figure 5.14 Map comparing Covington – Illerbrun permeability to Instow – Bone Creek permeability. Scale in millidarcies. Note higher permeabilities in the Covington-Illerbrun pool do not coincide with lower oil-cuts.

142

5.4.3 Leitchville Tidal Flats and Tidal Bars

The Leitchville pool is the farthest south producing pool in the study area. Oil

production comes from small F1 and F2 tidal channels/tidal bars and from F6 mixed

sandstone and dolomitic shales (Figure 5.15) and reservoir thickness is generally two to

three metres.

The initial 90 day oil-cut from the Leitchville pool is not as prolific as the Instow

– Bone Creek tidal channel, but is very comparable to the Covington - Illerbrun channel

(Figure 5.16).

After 10 years, Leitchville oil-cut holds steady at 70% with no water leg (Figure

5.17). Although oil production is not as great as tidal inlet channels, Leitchville tidal

channels and tidal bars appear not to water out nearly as fast.

Porosity values for producing reservoirs within the Leitchville Pool are slightly

lower than porosity values for tidal inlet channels and tidal bars. The average porosity for

vertical Upper Shaunavon Member producing wells is just over 13%. The highest

porosity values are found in 17-009-18W3 (Figure 5.18) which coincides with the highest

oil-cut values.

Permeability values in the Leitchville pool are significantly lower compared to the

tidal inlet channels (Figure 5.19). Permeability for producing reservoirs is often less than

10 millidarcies, with the highest average permeability being 283 millidarcies. Lower

porosity and permeability values combined with compartmentalized reservoirs may

explain why oil-cut is lower and there is no significant water leg found in the Leitchville

pool.

143

Figure 5.15 Well-log showing perforated reservoir zone in Leitchville.

144

Figure 5.16 Map showing the initial 90 days of oil production comparing the Leitchville pool to the Instow – Bone Creek and Covington – Illerbrun pool. Map scale is in % oil- cut. Contour interval is 0.10%. Note the oil-cut in the Leitchville tidal flat pool is similar to the tidal inlet channels.

145

Figure 5.17 Map showing 10 years of oil production comparing the Leitchville pool to the Instow – Bone Creek and Covington – Illerbrun pool. Map scale is in % oil-cut. Contour interval is 0.10%.

146

Figure 5.18 Map comparing Leitchville average porosity to Covington – Illerbrun average porosity and Instow – Bone Creek average porosity. Scale is in % porosity. Contour interval is 0.01% porosity.

147

Figure 5.19 Map comparing Leitchville average permeability to Covington – Illerbrun average permeability and Instow – Bone Creek average permeability. Scale in millidarcies. Contour interval is 50 millidarcies.

148

5.4.4 Township 11 and 12 Tidal Flats and Tidal Bars

These map areas include the Butte, Bench, Gardenhead, Gull Lake South and

West Covington pools. Oil production within these pools comes from F1 and F2 smaller

tidal channels and tidal bars (Figure 5.20). Laterally-migrating channels are not aerially

extensive, and are generally two to three metres in thickness similar to those in the

Leitchville pool.

The initial 90 day oil-cut within this area has the lowest average oil values out of

all the reservoirs at 47% and numerous areas under the cutoff of 40% (Figure 5.22). After

1 year of production oil-cut increases drastically and is more comparable to the

Leitchville pool at 74% average oil-cut (Figure 5.23). After 10 years oil-cut remains very

high in the northern half of section 12 and the west side of the Bench pool (Figure 5.24).

Generally, the wells with the best production and highest oil-cut have stacked multiple

producing reservoirs (Figure 5.21).

Porosity values for producing reservoirs within these pools are slightly lower

when compared to rest of the reservoirs in the study area. Porosity values are typically

between 10 and 15%. The highest porosity values are generally associated with the

stacked reservoirs that produce the most oil. High permeability and high porosity in the

northern half of Township 12 Range 19 are associated with the highest production and

oil-cut for these reservoirs.

149

Figure 5.20 Well-logs showing the perforated zoned in a Covington West well.

150

Figure 5.21 Well-log from well 101/16-22-012-19W3 showing multiple stacked reservoirs.

151

Figure 5.22 Map comparing Township 11 – 12 Range 18 – 20 initial 90 day oil-cut to Leitchville 90 day oil-cut. Scale in % oil-cut. Contour interval is 0.10%.

152

Figure 5.23 Map comparing Township 11 – 12 Range 18 – 20 1 year of production oil- cut to Leitchville 1 year of production oil-cut. Scale in % oil-cut. Contour interval is 0.10%.

153

Figure 5.24 Map comparing Township 11 – 12 Range 18 – 20 10 years of production oil- cut to Leitchville 10 years of production oil-cut. Scale in % oil-cut. Contour interval is 0.10%.

154

5.5 Decline Curve Analysis

Decline curves are graphical representations used to predict the future of an oil-

well based on past oil production rates. Decline curves were completed by exporting

production data from geoScout version 7.21 and then constructing the graphs in

Microsoft Excel. This section will compare decline curves for different reservoirs within

the Upper Shaunavon Member.

5.5.1 Instow – Bone Creek Tidal Inlet Channel

Oil-cut maps produced for the Instow-Bone Creek tidal inlet channel revealed a

substantial water leg in the downdip section of the channel. Generally, updip wells in the

Instow – Bone Creek tidal channel have a much slower decline rate than downdip wells

(Figure 5.25). This is evident when comparing decline curves for monthly oil production

from the updip well 121/10-23-010-19W3 to the downdip well 141/03-27-009-18W3

(Figure 5.26). Water injection wells (101/01-33-009-18W3, 101/11-27-009-18W3/00)

were drilled in the late 1960’s and 1970’s around 141/03-27-009-18W3 allowing for

extended oil production, whereas 121/10-23-10-19W3 has a normal decline rate (Figure

5.27).

155

Figure 5.25 Map of Instow and Bone Creek wells used in the decline analysis curves. Scale in 15 metres.

156

Figure 5.26 Graph showing the decline curves of monthly oil production between 121/10- 23-010-19W3 and 141/03-27-009-18W3.

157

Figure 5.27 Graph showing the decline curves of oil-cut between 121/10-23-010-19W3 and 141/03-27-009-18W3.

158

Wells updip in the channel maintain higher monthly oil/water ratios for much

longer than wells downdip in the channel. 121/10-23-010-19W3 has higher oil-cut after

10 years of production than the initial oil-cut in 141/03-27-009-18W3 once again

illustrating a significant water leg in the downdip part of the channel. Similar decline

curves for both monthly production and oil-cut were observed when the updip 101/09-07-

010-18W3 was compared to the downdip well 111/13-25-009-18W3 (Figure 5.28).

Monthly oil production in 111/13-25-009-18W3 increased due to water injection well

101/15-26-009-18W3 coming online in late 1984.

159

Figure 5.28 Graph showing the decline curves of monthly oil production between 101/09- 07-010-18W3 and 111/13-25-009-18W3.

160

Figure 5.29 Graph showing the decline curves of oil-cut between 101/09-07-010-18W3 and 111/13-25-009-18W3.

161

5.5.2 Covington – Illerbrun Tidal Inlet Channel

The Covington Illerbrun tidal inlet channel has very similar reservoir

characteristics to the Instow – Bone Creek tidal inlet channel. Downdip sections of the

Covington – Illerbrun tidal channel generally have a steeper decline and are far less

productive then updip sections of the channel. Updip well 101/01-05-012-17W3 has

significantly higher monthly oil production than the downdip well 121/11-07-012-17W3

(Figure 5.30). The Covington Illerbrun channel has a substantial water leg downdip

similar to the Instow – Bone Creek channel.

Comparing the oil-cut decline curves between 121/11-07-012-17W3 and 101/01-

05-012-17W3 further show the water leg in downdip parts of the channel (Figure 5.31).

121/11-07-012-17W3 is located between a structural high to the southeast and the

regional dip the northwest. Most wells surrounding 121/11-07-012-17W3 did not come

on production most likely because of high water cuts associated with paleo lows in the

tidal inlet channels (Figure 5.32).

162

Figure 5.30 Graph showing the decline curves of monthly oil production between 121/11-07-012-17W3 and 101/01-05-012-17W3.

163

Figure 5.31 Graph showing the decline curves of oil-cut production between 121/11-07-012-17W3 and 101/01-05-012-17W3.

164

Figure 5.32 Map showing 121/11-07-012-17W3/00 located downdip of an Upper Shaunavon Member structural high.

165

5.5.3 Leitchville

Leitchville oil production is not nearly as prolific as oil production from Instow –

Bone Creek tidal inlet channel wells (Figure 5.35). Leitchville wells consist of tidal bar

and tidal flat reservoirs which are not as thick as tidal inlet channels. Although

Leitchville oil production is not as prolific, wells generally decline at a much slower rate

than Instow – Bone Creek wells and Covington – Illerbrun wells.

5.5.4 Township 11 – 12 Range 18 – 20

Oil production comes from tidal bar and smaller tidal channel reservoirs at the

base of the Upper Shaunavon in this part of the study area. On a monthly basis, Township

11 – 12 Range 18 -20 wells have a slightly more gradual decline than the tidal inlet

channels; however production is not nearly as high (Figure 5.34). The decline curve for

oil-cut is comparable to Leitchville wells and is much higher than tidal inlet channel

reservoirs.

5.6 Reservoir Burial and Diagenesis

Post-depositional compaction of sediments can drastically reduce reservoir

porosity and permeability. Mechanical compaction cause dissolution and cementation

effectively filling up pore spaces (Bjorlykke and Gran, 1994). Diagenesis can potentially

have negative effects on porosity particularly on Facies 2 carbonate porosity is greatly

reduced by cementation (Lincoln, 1990). Diagenetic processes can also have positive

effects on reservoirs by decreasing the rate of cementation filling the pore spaces and

preserving porosity.

166

Figure 5.33 Graph comparing the decline curve of monthly production between Instow wells and Township 11 – 12 Range 18 – 20 Wells.

167

Figure 5.34 Graph comparing the decline curve of monthly oil-cut between Instow wells and Township 11 – 12 Range 18 – 20 Wells.

168

FA3 sediments underwent diagenetic processes that helped preserve primary and

secondary porosity. The final marine transgression in the Upper Shaunavon reintroduced

marine waters into the system which lead to increased salinities (Lincoln, 1990). Quartz

dissolution and cementation greatly decreases with rises in salinity, effectively

maintaining porosity (Nguyen at al, 2013). Diagenesis and the subsequent burial of FA3

reservoir sediments allowed porosity and permeability to be preserved particularly within

F1 sandstones (Lincoln, 1990). FA3 sediments are deposited in interpreted structural

lows which would expose them to marine waters and higher salinities quite quickly

during a transgression.

Diagenesis did not have the same positive effects on FA1 and FA2 reservoirs.

Reservoir quality is poor due to pore spaces being filled with authigenic and detrital clays

(Lincoln, 1990). Brief periods of base sea level drop would result in decreasing salinity

and not decrease the rate of cementation.

5.7 Reservoir Characterization Summary

FA3 deposits consisting of F1 peloidal quartz arenite and F2 bioclastic oolitic

grainstone are the best oil producing reservoir in the study area. Diagenesis played a

pivotal role in preserving porosity and permeability in FA3 reservoirs. At its peak, FA3

sediments in the Instow – Bone Creek area had nearly 60,000 m3 of monthly oil

production; double the amount of any reservoir in the study area (Figure 5.35). FA3

sediments in the Covington – Illerbrun area also have very high oil production; however

this tidal inlet channel is not as thick and aerially extensive as the Bone Creek-Instow

channel. FA3 tidal inlet channel deposits also have the highest water saturations in the

169

study area. Tidal inlet channel oil-cut steadily decreases throughout the life of the wells

(Figures 5.4, 5.5, 5.6, 5.7). The combination of excellent porosity, permeability and

reservoir thickness make the Instow – Bone creek and Covington - Illerbrun tidal inlet

channels the best reservoir in the study area.

FA1 sediments represent the poorest reservoir due to thin, lenticular,

discontinuous sandstones and coquinas. Pore spaces are often filled with calcite or clays

due to the effects of diagenesis. Dolomotization of F6 fills pores with dolomitic rhombs

also decreasing porosity and permeability (Lincoln, 1990).

Smaller tidal bar and tidal channel deposits located in township 11 to 12 and

ranges 18 – 20 are reservoirs that contain the lowest water cuts. Many of these wells have

multiple producing stacked reservoirs.

Leitchville wells are by far the least productive in the study area (Figure

5.35).This is due to the thin tidal flat associated accumulations of FA1 sediments.

Permeability and reservoir thickness is very low. Although oil production is low,

Leitchville wells maintain low water cuts throughout the well life.

Oil staining in core reveals FA3 deposits in township 12 range 20 west of the

main oil field trend as potential target areas (Figure 5.36). FA3 deposits are not as thick

as the Instow – Bone Creek and Covington – Illerbrun tidal inlet channels, but there is

potential for development.

For further development, the best areas would be missed pay zones in wells that

are currently or previously producing oil. FA1 tidal flat and tidal bar deposits located

beneath FA3 deposits in the Covington – Illerbrun pool and Instow – Bone Creek pool

170

are potential targets (Figure 5.37). Although these reservoirs are thin and not aerially

extensive, oil saturation is relatively high.

171

Figure 5.35 Decline curve of monthly oil production for Upper Shaunavon reservoirs.

172

Figure 5.36 Core photograph of potential FA3 reservoir in 111/02/08-012-20W3/00.

173

Figure 5.37 Missed pay zone below FA3 tidal inlet channel from well 101/02-34-12- 18W3/00.

174

6. CONCLUSIONS

The main purpose of this study is to characterize the different reservoirs within

the Upper Shaunavon Member in southwestern Saskatchewan. This was achieved by

completing a detailed sedimentological analysis of the mixed carbonate-clastic deposits

of the Upper Shaunavon Member. Once facies and facies associations were established it

was then possible to produce a stratigraphic framework and depositional model. This

study identified production ‘sweet spots’ and water legs which vastly improved the

understanding of existing and potential reservoirs within the Upper Shaunavon Member

in southwestern Saskatchewan. The main conclusions are summarized below.

1. Analysis of facies and facies associations suggest a marginal marine, tidally influenced

depositional setting throughout most of the Upper Shaunavon Member and then

transitions to a marine setting at the top of the member.

2. Deposition of the Upper Shaunavon Member within the study area took place during

an overall transgression. The brief lowstand between the Lower Shaunavon Member and

the Upper Shaunavon Member was immediately followed by a sea level rise. There were

brief sudden periods of sea level drop where incisions of tidal inlet channel took place,

however they were subsequently backfilled during the ongoing sea level rise and were

influenced by tidal processes.

175

3. Carbonate-clastic mixing within the Upper Shaunavon Member is primarily the result

of periodic storm and wave landward transported carbonate sediments onto tidal flats and

tidal channel depositional environments.

4. Thick Upper Shaunavon Member tidal inlet channel sediments were concentrated in

Lower Shaunavon Member paleo lows.

5. Oil distribution is primarily controlled by facies and facies associations. The best oil

production is hosted within FA3 tidal inlet channels that are comprised of F1 and F2

sediments. FA1 sediments also play host to oil production, however production is not

nearly as prolific.

6. Stratigraphic trapping formed from facies pinch-outs is the main trapping mechanism

within the study area. Permeable sandstone and limestones associated with channels

pinch out against impermeable shales.

7. Two significant water legs occur in the downdip sections of FA3 tidal-inlet channels.

These water legs slowly creep up dip throughout the production life of a well.

176

LIST OF REFERENCES

Bann, K.L., Tye, S.C., MacEachern, J.A., Fielding, C.R., and Jones, B.G. (2008): Ichnological and sedimentologic signatures of mixed wave- and storm-dominated deltaic deposits: Examples from the Early Sydney Basin, Australia. In Hampson, G., Steel, R. Burgess, P. and Dalrymple, R. (eds), Recent advances in models of siliciclastic shallow-marine stratigraphy:: SEPM Special Publication, 90, p. 293-332.;

Bjørlykke, K., and Gran, K. (1994): Salinity variations in North Sea formation waters: Implications for large-scale fluid movements: Marine and Petroleum Geology, v. 11, p. 5–9.

Blakey, R. (1996): North American Paleogeographic Maps: Middle Jurassic 170 ma. Last accessed October 23, 2017.

Brooke, M.M, and Braun, W.K. (1972): Biostratigraphy and microfaunas of the Jurassic system of Saskatchewan. Saskatchewan Department of Mineral Resources, Report 161.

Burst, J.F. (1965): Subaqueously formed shrinkage cracks in clay: Journal of Sedimentary Petrology, v.35, p. 348-353.

Catuneanu, O., Abreu, V., Bhattachaarya, J.P., Blum, M.D., Dalrymple, R.W., Eriksson, P.G., Fielding, C.R., Fisher, W.L, Galloway, W.E., Gibling, M.R., Giles, K.A., Holbrook, J.M., Jordan, R., Kendall, C.G.St.C., Marcuda, B.M., Martinsen, O.J., Miall, A.D., Neal, J.E., Nummedal, D., Pomar, L., Posamentier, H.W., Pratt, B.R., Sarj, J.F., Shanley, K.W., Steel, R.J., Strasser, A. (2009): Towards the standardization of sequence stratigraphy: Earth science reviews, v. 92, p. 1- 33.

Christopher, J.E. (1964): The Middle Jurassic Shaunavon Formation of southwestern Saskatchewan. Saskatchewan Energy and Mines, Report 95.

Christopher, J.E., Kent, D.M., and Simpson, F. (1971): Hydrocarbon potential of Saskatchewan; Saskatchewan Department of Mineral Resources. Report 157, 47p.

Christopher, J.E. (1974): The Upper Jurassic Vanguard and Lower Cretaceous Mannville Groups of southwestern Saskatchewan; Saskatchewan Department of Mineral Resources. Report 151, 349p.

Christopher, J.E. (1984): Depositional patterns and oil trends in the Lower Mesozoic of the Northern Williston Basin, Canada; in Lorsong, J.A. and Wilson M.A. (eds.) Oil and gas in Saskatchewan, Proceedings of a Symposium Held in Regina, Saskatchewan, 11 and 12 October 1984, Saskatchewan Geological Society., Special Publication No. 7, p83- 103.

177

Dalrymple, R.W. (2010): Tidal depositional Systems; In James, N.P. and Dalrymple, R.W. (eds.), Facies Models 4. Geological Association of Canada, p. 201-232.

Dalrymple, R.W. and Choi, K. 2007. Morphologic and facies trends through the fluvial- marine transition in tide-dominated depositional systems: A schematic framework for environmental and sequence-stratigraphic interpretation: Earth-Science Reviews, v. 81, p. 135-174.

Donselaar, M.E., and Geel, C.R. (2007): Facies architecture of heterolithic tidal deposits: the Holocene Holland Tidal Basin: Netherlands Journal of Geosciences, v.86, No. 4 p. 389-402.

Driese, S.G., (1985): Interdune Pond Carbonates, Weber Sandstone (Pennsylvanian- Permian), Northern Utah and Colorado. Journal of Sedimentary Petrology. V. 55, 187- 195.

Driese, S. G., and Dott Jr, R. H., (1984): Model for Sandstone-Carbonate. AAPG Bulletin, 68(5), 574-597.

Earley, C. F., Goodell, H.G., (1968): The sediments of Card Sound, Florida. Journal of Sedimentary Research 38, no.4.

Francis, D.R. (1956): Jurassic Stratigraphy of the Williston Basin area; Saskatchewan Dept. Mineral Resources Rep. No. 18, 69p.

Frey, R.W., Pinet, P.R. (1978): Calcium-Carbonate Content of Surficial Sands Seaward of Altamaha and Doboy Sounds Georgia. Journal of Sedimentary Petrology. V. 48, 1249- 1256.

Geology In. (2017): Hydrocarbon traps. Retrieved October 23, 2017, from https://www.geologyin.com/2014/12/hydrocarbon-traps.html

Grisak, W., Marsh, A., and Qing, H., (2011): Petrography of the Lower Shaunavon reservoir in the Leitchville/Bone Creek area of southwest Saskatchewan: Preliminary Results in Summary of Investigations 2011, Volume 1, Saskatchewan Geological Survey, Sask. Ministry of Energy and Resources, Misc. Rep. 2011-4.1.

Gussmann, O. A., and Smith, A. M., (2002): Mixed siliciclastic-skeletal carbonate lagoon sediments from a high volcanic island, Viti Levu, Fiji, Southwest Pacific: Pacific science, 56(2), 169-189.

Haq, B.U., Hardenbol, J. and Vail, P.R., (1987): Chronology of fluctuating sea levels since the : Science, v. 235/4793, p. 1156-1167.

178

Hayes, M.O., and Fitzgerald, D.M. (2013): Origin, evolution, and classification of tidal inlets: Journal of Coastal Research. V. 69, p.14-33.

Haywick, D. W., Carter, R.M., Henderson, R.A., 1992. Sedimentology of 40 000 year Milankovitch-controlled cyclothems from central Hawke’s Bay, New Zealand: Sedimentology, 39, 675-696.

Hubbard, S.M., Gingras, M.K., Pemberton, S.G., and Thomas, M.B. (2002): Variability in wave-dominated estuary sandstones: implications on subsurface reservoir development: Bulletin of Canadian Petroleum Geology, v.50, No. 1 p. 118-137.

Ji, C. and Salad Hersi, O. (2013): Lithofacies distribution of the Mississippian Alida- Kisbey-Frobisher stratigraphic interval, Southeastern Saskatchewan. In: Summary of Investigations, Volume 1, Saskatchewan Geological Survey, Saskatchewan Ministry of Economy, Misc. Rep. 2013-4.1, Paper A-6, 15p.

Jones, B. (2010): Warm-water Neritic carbonates. In: Facies Models #4 (Geotext 6) edited by James and Dalrymple, Geological Association of Canada, 341 - 369.

Kent, D.M. (1984): Paleotectonic controls on sedimentation in the Williston basin, Saskatchewan. Society of Economic Paleontologists and Mineralogists. Short Course Notes.

King D.T., and Chafetz, H.S. (1983): Tidal Flat to Shallow-Shelf Deposits in the Cap Mountain Limestone Member of the Riley Formation, Upper of Central Texas: Journal of Sedimentary Petrology. V. 53, p. 261-273.

Kreis, L.K. (1989): Palynology of the Shaunavon and Gravelbourg Formations of southern Saskatchewan, in Summary of Investigations 1989, Saskatchewan Geological Survey; Saskatchewan Energy and Mines, Miscellaneous Report 89-4.

Lincoln, D.R. (1990): Sedimentology, diagenesis and petrophysical characteristics of the Bone Creek pool, southwest Saskatchewan. Unpublished MSc. Thesis, University of Regina, 194p.

MacEachern, J.A., Pemberton, S.G., Gingras, M.K., and Bann, K.L. (2010) Ichnology and facies models. In: James, N.P. and Dalrymple, R.W. (eds.): Facies Models 4. Geotext 6 Geological Association of Canada. P. 19-58.

179

Mack, G.H., and James, W.C., (1986): Cyclic sedimentation in the mixed siliciclastic- carbonate Abo-Hueco transitional zone (Lower Permian), southwestern New Mexico: Journal of Sedimentary Petrology, v. 56, p. 635-647.

Marsh, A. and Love, M. (2014): Regional Stratigraphic Framework of the Phanerozoic in Saskatchewan. Saskatchewan Phanerozoic Fluids and Petroleum Systems Project, Sask. Ministry of the Economy, Saskatchewan Geological Survey, Open File 2014-1, set of 156 maps.

Marshall N., and Carlton, B.E., (2016): Siltstone: a key to cyclicity in mixed siliciclastic–carbonate successions: example from Upper Ordovician Kope Formation (Ohio, Indiana, Kentucky). Can. J. Earth Sci. 53: 823–835.

May, S. R., and Butler, R.F., (1986): North American Jurassic apparent polar wander: Implications for plate motion, paleogeography, and Cordilleran tectonics, J. Geophys. Res., 91, 11,519-11,544, 1986.

McLaughlin, P.I., Brett, C.E., McLaughlin, S.L.T., and Cornell, S.R., (2004): High resolution sequence stratigraphy of a mixed carbonate-siliciclastic, cratonic ramp (Upper Ordovician; Kentucky–Ohio, USA): insights into the relative influence of eustasy and tectonics through analysis of facies gradients. Palaeogeography, Palaeoclimatology, Palaeoecology, 210: 267–294.

Melnik, A. (2012): Regional Hydrogeology of Southwest Saskatchewan MSc Dissertation, University of Alberta

Miall, A.D. (2010): Alluvial Deposits; In James, N.P. and R.W. Dalrymple (eds.) Facies Models 4. Geological Association of Canada, p. 105-138.

Milner, R.L. and Blakslee, G.W. (1958): Notes on the Jurassic of Southwestern Saskatchewan; Jurassic and of Western Canada, American Association of Petroleum Geologists John Andrew Allan Memorial Volume, p. 65-84.

Milner, R.L. and Thomas, G.E. (1954): Jurassic system in Saskatchewan: stratigraphy; in Clark, L.M. (ed.), Western Canadian Sedimentary Basin – A symposium, Ralph Leslie Rutherford memorial Volume, American Association of Petroleum Geologists., Special Publication 15, p 250 – 267.

Mitchell, S.F., Pickerill, R.K., Stemann, T.A. (2001): The Port Morant Formation (Upper Pleistocene, Jamaica): high resolution sedimentology and paleoenvironemental analysis

180

of a mixed carbonate clastic lagoonal succession. Sedimentary Geology V. 144 p. 291- 306.

Mount, J. F. (1984): Mixing of Siliciclastic and Carbonate Sediments in Shallow Shelf Environments: Geology, v. 12, p. 432-435.

North, F. K. (1985): Petroleum Geology . Allen & Unwin , London , 607 pp.

Nguyen, B.T., Jones, S.J., Goulty, N.R., Middleton, A.J., Grant, N., Ferguson, A., and Bowen, L. (2013): The role of fluid pressure and diagenetic cements for porosity preservation in Triassic fluvial reservoirs of the Central graben, North Sea. American Association of Petroleum Geologists. V. 97, no.8 p.1273 - 1302.

Osadetz, K.G., Snowdon, L.R., and Brooks, P.W. (1994): Oil families in Canadian Williston Basin southwestern Saskatchewan; Bulletin of Canadian Petroleum Geology, v.42, p155-177.

Paterson, D.F. (1968): Jurassic Megafossils of Saskatchewan with a note on Charophytes. Saskatchewan Department of Mineral Resources, Report 120, p.135.

Pedley, M., and Grasso, M. (2002): Lithofacies modelling and sequence stratigraphy in microtidal cool-water carbonates: a case study from the Pleistocene of Sicily, Italy. Sedimentology. V 49, p. 533-553.

Pemberton, S.G., Flach, P.D. and Mossop, G.D (1982): Trace fossils from the Athabasca oil sands, Alberta, Canada. Science, v. 217, p. 825-827.

Pemberton, S.G., MacEachern, J.A. and Frey, R.W. (1992): Trace fossil facies models: environmental and Allostratigraphic significance, in Walker, R.G., and James, N.P., eds., Facies Models: Response to Sea Level Change: Geological Association of Canada, St. John’s Newfoundland, p.47-72.

Pemberton, S.G., MacEachern, J.A., Gingras, M.K., and Bann, K.L. (2009): Trace Fossil Atlas: The Recognition of Common Trace Fossils in Cores. Elsevier.

Peterson, J.A. (1957): Marine Jurassic of northern Rocky Mountains and Williston Basin; Am. Assoc. Petrol. Geol. Bull., v41 , p399-440.

Poulton, T.P., Christopher, J.E., Hayes, B.J.R., Losert, J., Tittemore, J., and Gilchrist, R.D. (1994): Jurassic and lowermost Cretaceous strata of the Western Canada

181

Sedimentary Basin; Chapter 18 in Geological Atlas of the Western Canada Sedimentary Basin, G.D. Mossop and I. Shetsen (comps.). Canadian Society of Petroleum Geologists and Alberta Research Council.

Pocock, S.A.J. (1970): Palynology of the Jurassic sediments of western Canada; Part 1, Terrestrial Species. Palaeontographica, Abt.8. v130, p12-72.

Pocock, S.A.J. (1972): Palynology of the Jurassic sediments of western Canada; Part 2, Marine Species. Palaeontographica, Abt. B., v137: p85-153.

Ranger, M. J. and Gingras, M. K. (2006): Geology of the Athabasca Oil Sands, Field Guide & Overview. Field Excursion to the Outcrops and Mine Sites of the Fort McMurray Area. 5th edition: Canadian Society of Petroleum Geologists, 120 p.

Salad Hersi, O. and Bot, J. (2017a): Tectono-eustatic controls on the depositional setting and stratigraphic evolution of the Late Jurassic Vanguard Group, SW Saskatchewan. Williston Basin Petroleum Conference, Regina, Saskatchewan.

Salad Hersi, O. and Bot, J. (2017b): Tectono-eustatic controls on the depositional setting and stratigraphic evolution of the Late Jurassic Vanguard Group, SW Saskatchewan. Williston Basin Petroleum Conference, Regina, Saskatchewan.

Saskatchewan Ministry of the Economy (2017): Stratigraphic Correlation Chart. Saskatchewan Ministry of the economy, http://economy.gov.sk.ca/StratigraphicCorrelationChart, last accessed October 23, 2017.

Schreiber, B.C and El Tabakh, M. (2000): Deposition and early alteration of evaporites; Sedimentology. 47 (suppl. 1), 215-238.

Selley, R.C. (1998): Elements of petroleum geology. Academic Press, San Diego, California, USA. 470p.

Shinn, E. A., (1973): Carbonate Coastal Accretion in an Area of Longshore Transport, NE Qatar, Persian Gulf. In The Persian Gulf pp. 179-191. Springer Berlin Heidelberg.

Thompson, R.W. (1968): Tidal flat sedimentation on the Colorado River Delta, northwest Gulf of California. Geological society of America Memoirs. 107, p.33.

Tucker, M.E., and Wright, V.P. (1990): Carbonate Sedimentology. Blackwell science.

Wall, J.H. (1960): Jurassic microfaunas from Saskatchewan. Saskatchewan Department of Mineral Resources. Report 253, p. 299.

182

Wilson, R.C.L. (1987): A reconnaissance sedimentological Study of the Middle Jurassic Upper Shaunavon Formation southwestern Saskatchewan; in Carlson, C.G and Christopher, J.E. 5th International Williston Basin Symposium, Saskatchewan Geological Society, Special Publication No. 9, p. 134-146.

Yang, B.C., Dalrymple, R.W., and Chun, S.S. (2005): Sedimentation on a wave- dominated, open-coast tidal flat, south-western Korea: summer tidal flat – winter shoreface: Sedimentology, v.52, p. 235-252.

183

APPENDIX I

Formation and Facies Association Tops

184

U_Shaun L_Shaun U_Grav FA2 Iso_Shaun Iso_FA3 Iso_FA1 Lx LSD Sec Twp Rge M (m) (m) (m) FA1 (m) (m) FA3 (m) (m) (m) Iso_FA2 (m) (m) 101 16 05 009 17 3 1371.5 1388.9 1374.6 1371.5 17.4 0 3.1 14.3 101 09 13 009 17 3 1368.4 1385.4 1372.8 1368.3 17 0 4.5 12.6 131 11 18 009 17 3 1385.9 1401.5 1390.5 1385.9 15.6 0 4.6 11 131 12 18 009 17 3 1396.5 1410.4 1399.2 1396.5 13.9 0 2.7 11.2 101 13 18 009 17 3 1394.4 1409.1 1397.9 1394.4 14.7 0 3.5 11.2 131 04 19 009 17 3 1403.1 1420.1 1405.6 1403 17 0 2.6 14.5 131 05 19 009 17 3 1415.4 1430.8 1417.7 1415.4 15.4 0 2.3 13.1 101 04 22 009 17 3 1376 1393.7 1378.8 1376 17.7 0 2.8 14.9 101 10 22 009 17 3 1379.3 1397.1 1383.2 1379.4 17.8 0 3.8 13.9 101 01 26 009 17 3 1390.9 1409.3 1437.7 1395.6 1390.9 18.4 0 4.7 13.7 111 01 30 009 17 3 1373.4 1389.9 1420.2 1377.8 16.5 0 0 12.1 101 11 30 009 17 3 1375.4 1391.2 1379.1 1375.4 15.8 0 3.7 12.1 121 14 33 009 17 3 1429.1 1443.9 1432.8 1429.2 14.8 0 3.6 11.1 101 14 04 009 18 3 1391.8 1407.6 1435.9 1396.7 1391.8 15.8 0 4.9 10.9 131 10 05 009 18 3 1387 1404.7 1391.2 1387.1 17.7 0 4.1 13.5 101 04 06 009 18 3 1360.8 1376.7 1406.2 1367.3 1360.8 15.9 0 6.5 9.4 120 06 06 009 18 3 1365.6 1381.5 1369.2 1365.6 15.9 0 3.6 12.3 121 08 06 009 18 3 1375.1 1392.7 1379.8 1375.1 17.6 0 4.7 12.9 111 04 07 009 18 3 1354.5 1371.1 1402.1 1357.7 1354.5 16.6 0 3.2 13.4 101 16 07 009 18 3 1380.1 1400.3 1425 1383.6 1380.1 20.2 0 3.5 16.7 111 04 08 009 18 3 1382.1 1397.5 1427.5 1387.1 1382.1 15.4 0 5 10.4 101 16 08 009 18 3 1387.3 1403.6 1391.6 1387.4 16.3 0 4.2 12 101 06 09 009 18 3 1393.1 1408.9 1397 1393.1 15.8 0 3.9 11.9 101 14 10 009 18 3 1406.7 1421 1450.8 1410.6 1407 14.3 0 3.6 10.4 101 10 13 009 18 3 1419.7 1435.2 1424 1419.7 15.5 0 4.3 11.2 101 15 13 009 18 3 1416.7 1434.2 1423.8 1416.8 17.5 0 7 10.4 131 16 14 009 18 3 1449.3 1461.8 1454.8 1449.2 12.5 0 5.6 7 101 11 16 009 18 3 1387.7 1404.8 1430.7 1392.4 1387.7 17.1 0 4.7 12.4 141 04 17 009 18 3 1387.7 1405.9 1430.5 1391.9 1387.8 18.2 0 4.1 14 150 08 18 009 18 3 1378.2 1397.4 1383.2 1378.1 19.2 0 5.1 14.2 101 14 18 009 18 3 1364.9 1381.7 1368.9 1364.9 16.8 0 4 12.8 131 08 19 009 18 3 1382.8 1398.3 1386.7 1382.7 15.5 0 4 11.6 131 15 19 009 18 3 1369.8 1386.4 1417.3 1374.5 1369.8 16.6 0 4.7 11.9 111 02 20 009 18 3 1395.2 1413.1 1400.4 1395.2 17.9 0 5.2 12.7 101 11 22 009 18 3 1398.2 1412.6 1444.1 1401.9 1398.1 14.4 0 3.8 10.7 141 02 23 009 18 3 1425.6 1441.3 1434.2 1425.6 15.7 8.6 0 7.1 121 10 23 009 18 3 1401.3 1418.5 1409.2 1401.3 17.2 7.9 0 9.3 131 14 23 009 18 3 1387.8 1405.1 1396.7 1387.9 17.3 8.8 0 8.4 121 02 24 009 18 3 1416.8 1434.8 1427.9 1416.8 18 11.1 0 6.9 101 12 24 009 18 3 1409.2 1426 1416.1 1409.1 16.8 7 0 9.9 121 05 25 009 18 3 1401.4 1418.8 1407.3 1401.5 17.4 5.8 0 11.5 121 12 25 009 18 3 1397.7 1415.8 1404 1397.7 18.1 6.3 0 11.8 141 02 26 009 18 3 1390.4 1408.9 1438.2 1397.1 1390.4 18.5 6.7 0 11.8 121 06 26 009 18 3 1379.7 1399.7 1392.3 1379.8 20 12.5 0 7.4 101 12 26 009 18 3 1383.6 1401 1393.7 1383.6 17.4 10.1 0 7.3 121 14 26 009 18 3 1382.5 1402.3 1390.9 1382.5 19.8 8.4 0 11.4 101 05 27 009 18 3 1394.9 1409.7 1402.1 1394.9 14.8 7.2 0 7.6 101 10 27 009 18 3 1388.1 1406.5 1399 1388.1 18.4 10.9 0 7.5 101 15 27 009 18 3 1386 1406.3 1399.5 1385.9 20.3 13.6 0 6.8

185

U_Shaun L_Shaun U_Grav FA2 Iso_Shaun Iso_FA3 Iso_FA1 Lx LSD Sec Twp Rge M (m) (m) (m) FA1 (m) (m) FA3 (m) (m) (m) Iso_FA2 (m) (m) 111 15 30 009 18 3 1372.3 1388 1375.7 1372.4 15.7 0 3.3 12.3 141 07 33 009 18 3 1389.7 1407.9 1400.2 1389.7 18.2 10.5 0 7.7 101 14 33 009 18 3 1388.5 1406.4 1396.3 1388.5 17.9 7.8 0 10.1 101 16 33 009 18 3 1384.3 1403.6 1393.6 1384.3 19.3 9.3 0 10 121 05 34 009 18 3 1390.1 1409.2 1400.5 1390.2 19.1 10.3 0 8.7 101 08 34 009 18 3 1387 1405.3 1394.3 1387 18.3 7.3 0 11 121 12 34 009 18 3 1389.9 1407.8 1398.5 1389.8 17.9 8.7 0 9.3 101 14 34 009 18 3 1393.6 1413.7 1399.9 1393.6 20.1 6.3 0 13.8 131 02 35 009 18 3 1384.1 1403.3 1390.3 1384.1 19.2 6.2 0 13 121 06 35 009 18 3 1384.3 1401.5 1390.6 1384.3 17.2 6.3 0 10.9 131 02 01 009 19 3 1353.9 1371.6 1357.1 1354 17.7 0 3.1 14.5 101 08 01 009 19 3 1352 1368.3 1400 1356.6 1352 16.3 0 4.6 11.7 101 14 02 009 19 3 1348 1364.9 1395 1352.7 1348.1 16.9 0 4.6 12.2 101 10 03 009 19 3 1344.2 1358.4 1348.7 1344.3 14.2 0 4.4 9.7 111 03 05 009 19 3 1339.2 1355.3 1343.5 1339.2 16.1 0 4.3 11.8 141 06 06 009 19 3 1342.3 1359.4 1389.6 1347.6 1342.3 17.1 0 5.3 11.8 101 15 06 009 19 3 1346.1 1362.1 1392.2 1351.9 1346.2 16 0 5.7 10.2 101 05 07 009 19 3 1345.1 1362.1 1392.3 1350.3 1345.1 17 0 5.2 11.8 101 04 09 009 19 3 1346.2 1362.9 1350.9 1346.3 16.7 0 4.6 12 101 02 10 009 19 3 1341 1356.5 1345.3 1341 15.5 0 4.3 11.2 101 06 11 009 19 3 1345.3 1360.1 1390.6 1347.2 1345.3 14.8 0 1.9 12.9 101 08 11 009 19 3 1344 1360.3 1390 1348.7 1344 16.3 0 4.7 11.6 121 12 12 009 19 3 1340.8 1357.7 1345.5 1341 16.9 0 4.5 12.2 101 12 14 009 19 3 1332.6 1348.3 1378.5 1336.4 1332.7 15.7 0 3.7 11.9 101 07 15 009 19 3 1346.5 1361.9 1350 1346.5 15.4 0 3.5 11.9 121 09 16 009 19 3 1351.5 1367.5 1355.9 1351.6 16 0 4.3 11.6 121 15 16 009 19 3 1357.1 1373.1 1360.9 1357.1 16 0 3.8 12.2 101 04 22 009 19 3 1350.8 1366 1354.5 1350.8 15.2 0 3.7 11.5 101 11 24 009 19 3 1346.1 1361.7 1393 1349.8 1346.1 15.6 0 3.7 11.9 101 12 27 009 19 3 1338.3 1354.2 1382.6 1341.5 1338.4 15.9 0 3.1 12.7 101 12 31 009 19 3 1311.2 1329.5 1316.7 1311.1 18.3 0 5.6 12.8 121 07 33 009 19 3 1337.3 1353.5 1384.1 1341.5 1337.3 16.2 0 4.2 12 101 01 36 009 19 3 1354.9 1371.1 1400.3 1359.1 1354.9 16.2 0 4.2 12 111 01 18 009 20 3 1449 1470.2 1498 1455.1 1449 21.2 0 6.1 15.1 140 06 23 009 20 3 1357.7 1375.1 1360.7 1357.7 17.4 0 3 14.4 101 11 26 009 20 3 1364 1381.6 1368.5 1364.1 17.6 0 4.4 13.1 101 09 28 009 20 3 1444.6 1461.7 1492.9 1449 1444.6 17.1 0 4.4 12.7 101 01 33 009 20 3 1442.8 1460.2 1489.8 1447.6 1443 17.4 0 4.6 12.6 101 14 04 010 17 3 1416.5 1433.2 1420.5 1416.6 16.7 0 3.9 12.7 101 03 06 010 17 3 1381.9 1402.4 1385.6 1381.9 20.5 0 3.7 16.8 111 06 17 010 17 3 1391.9 1408.7 1394.2 1392.1 16.8 0 2.1 14.5 101 04 20 010 17 3 1366.3 1385.1 1370.5 1366.4 18.8 0 4.1 14.6 131 11 24 010 17 3 1392.3 1414.2 1440 1396 1392.3 21.9 0 3.7 18.2 101 10 29 010 17 3 1356.2 1374.8 1359.8 1356.3 18.6 0 3.5 15 101 11 30 010 17 3 1358 1375 1361.7 1358 17 0 3.7 13.3 101 04 02 010 18 3 1382.7 1400.3 1385.7 1382.7 17.6 0 3 14.6 111 02 03 010 18 3 1388.1 1405.5 1392.7 1391.8 1388 17.4 3.8 0.9 12.8 111 02 04 010 18 3 1387.4 1407.9 1397.7 1387.4 20.5 10.3 0 10.2 101 05 04 010 18 3 1372.8 1390.5 1381.1 1372.8 17.7 8.3 0 9.4 111 07 04 010 18 3 1392.7 1411.3 1403 1392.7 18.6 10.3 0 8.3

186

U_Shaun L_Shaun U_Grav FA2 Iso_Shaun Iso_FA3 Iso_FA1 Lx LSD Sec Twp Rge M (m) (m) (m) FA1 (m) (m) FA3 (m) (m) (m) Iso_FA2 (m) (m) 101 13 04 010 18 3 1373 1390.5 1378 1373 17.5 0 5 12.5 111 07 05 010 18 3 1375.8 1391.7 1381.4 1375.8 15.9 5.6 0 10.3 131 13 05 010 18 3 1370.5 1389.3 1379.8 1370.4 18.8 9.4 0 9.5 141 14 06 010 18 3 1364.9 1382.2 1369.6 1364.8 17.3 0 4.8 12.6 141 02 07 010 18 3 1365.8 1384.2 1379.4 1366 18.4 13.4 0 4.8 101 14 07 010 18 3 1369.4 1388.6 1385.4 1369.5 19.2 15.9 0 3.2 101 05 08 010 18 3 1372.1 1389.7 1381.4 1372.1 17.6 9.3 0 8.3 131 12 08 010 18 3 1370.1 1388.2 1378.8 1370 18.1 8.8 0 9.4 121 04 10 010 18 3 1384.6 1401.8 1389 1384.6 17.2 0 4.4 12.8 101 11 11 010 18 3 1377.9 1394.4 1380.7 1378 16.5 0 2.7 13.7 141 03 13 010 18 3 1373 1387 1375.9 1373 14 0 2.9 11.1 101 11 13 010 18 3 1365.9 1382.9 1369.4 1365.9 17 0 3.5 13.5 131 07 14 010 18 3 1372.8 1390.7 1376.8 1372.9 17.9 0 3.9 13.9 111 05 15 010 18 3 1382.7 1399.5 1385.5 1382.7 16.8 0 2.8 14 101 05 18 010 18 3 1370.2 1387.8 1381.7 1370.3 17.6 11.4 0 6.1 121 06 18 010 18 3 1366.7 1385.2 1378.8 1366.7 18.5 12.1 0 6.4 101 15 18 010 18 3 1366.6 1385.1 1373.3 1366.8 18.5 0 0 11.8 141 05 19 010 18 3 1367 1384.6 1371 1369.8 1367 17.6 4 1.2 13.6 101 09 21 010 18 3 1368.5 1384.2 1414 1371.5 1368.6 15.7 0 2.9 12.7 101 11 24 010 18 3 1365.3 1383 1369.1 1365.3 17.7 0 3.8 13.9 101 03 25 010 18 3 1361.9 1377 1366 1361.9 15.1 0 4.1 11 111 03 29 010 18 3 1371.7 1388.5 1376.6 1371.8 16.8 0 4.8 11.9 141 15 33 010 18 3 1373.9 1389.5 1378.1 1373.9 15.6 0 4.2 11.4 131 03 35 010 18 3 1363 1379.5 1366.8 1362.9 16.5 0 3.9 12.7 101 09 35 010 18 3 1357.6 1373.1 1361.4 1357.6 15.5 0 3.8 11.7 101 03 36 010 18 3 1354.9 1370.4 1359.1 1354.9 15.5 0 4.2 11.3 101 09 11 010 19 3 1354.3 1372.1 1358.1 1354.4 17.8 0 3.7 14 131 06 13 010 19 3 1358.4 1377.1 1367.6 1358.2 18.7 9.4 0 9.5 131 12 13 010 19 3 1348.7 1366.3 1360 1348.6 17.6 11.4 0 6.3 101 08 14 010 19 3 1350.9 1367.8 1354.3 1351 16.9 0 3.3 13.5 121 16 14 010 19 3 1343.1 1359.2 1350.3 1343.2 16.1 7.1 0 8.9 111 13 18 010 19 3 1338.7 1357.1 1385.2 1340.9 1338.7 18.4 0 2.2 16.2 141 03 21 010 19 3 1350.7 1367.5 1353.7 1350.7 16.8 0 3 13.8 141 10 21 010 19 3 1347 1364.7 1351.7 1347.1 17.7 0 4.6 13 141 15 22 010 19 3 1333.4 1351.1 1338.6 1337.9 1333.4 17.7 4.5 0.7 12.5 150 02 23 010 19 3 1342.1 1360.7 1351 1342.2 18.6 8.8 0 9.7 191 05 23 010 19 3 1342 1358.2 1345.6 1344.8 1341.9 16.2 2.9 0.8 12.6 121 09 23 010 19 3 1350.8 1368.6 1356.2 1350.9 17.8 5.3 0 12.4 141 09 24 010 19 3 1362.5 1380.6 1367.1 1362.5 18.1 4.6 0 13.5 141 11 24 010 19 3 1351.5 1367.2 1355.7 1351.6 15.7 4.1 0 11.5 141 05 27 010 19 3 1342.4 1359.5 1347.8 1342.4 17.1 5.4 0 11.7 141 11 27 010 19 3 1335.9 1353.9 1346.7 1336.1 18 10.6 0 7.2 131 15 27 010 19 3 1340.7 1358.9 1350.1 1340.8 18.2 9.3 0 8.8 141 16 28 010 19 3 1347.1 1364.9 1353.5 1347.1 17.8 6.4 0 11.4 121 07 29 010 19 3 1345.5 1363.9 1393.3 1347.9 1345.4 18.4 0 2.5 16 101 10 32 010 19 3 1348.9 1368.9 1352.1 1348.9 20 0 3.2 16.8 111 07 33 010 19 3 1346.6 1365.1 1356.7 1346.6 18.5 10.1 0 8.4 141 11 33 010 19 3 1348.2 1368.9 1356.8 1348.2 20.7 8.6 0 12.1 141 13 33 010 19 3 1355.7 1375 1362.5 1355.7 19.3 6.8 0 12.5 111 15 36 010 19 3 1331 1347.5 1333.9 1331 16.5 0 2.9 13.6

187

U_Shaun L_Shaun U_Grav FA2 Iso_Shaun Iso_FA3 Iso_FA1 Lx LSD Sec Twp Rge M (m) (m) (m) FA1 (m) (m) FA3 (m) (m) (m) Iso_FA2 (m) (m) 131 13 09 010 20 3 1419 1440.3 1464.8 1426 1419 21.3 0 7 14.3 101 14 14 010 20 3 1366.1 1386.5 1371.9 1366 20.4 0 5.9 14.6 101 02 15 010 20 3 1381.1 1402 1386 1381.2 20.9 0 4.8 16 101 01 20 010 20 3 1400 1420.1 1404.5 1400 20.1 0 4.5 15.6 131 11 24 010 20 3 1336.2 1356.4 1340.1 1336.2 20.2 0 3.9 16.3 121 03 25 010 20 3 1327.4 1348.5 1332.9 1327.3 21.1 0 5.6 15.6 131 07 25 010 20 3 1331 1347.8 1336.7 1331 16.8 0 5.7 11.1 111 07 28 010 20 3 1408 1427.7 1412.8 1408 19.7 0 4.8 14.9 121 16 33 010 20 3 1391.1 1407.3 1397.1 1391 16.2 0 6.1 10.2 101 04 36 010 20 3 1299.2 1318.3 1345.3 1301.7 1299.2 19.1 0 2.5 16.6 121 01 06 011 17 3 1352.1 1367.8 1355.8 1352 15.7 0 3.8 12 121 03 06 011 17 3 1351.5 1368.7 1355.4 1351.5 17.2 0 3.9 13.3 111 11 06 011 17 3 1348 1364.8 1396.1 1351.9 1348 16.8 0 3.9 12.9 101 15 11 011 17 3 1338.9 1356.9 1342.7 1338.8 18 0 3.9 14.2 101 16 14 011 17 3 1345.1 1361.7 1349.7 1345.1 16.6 0 4.6 12 141 01 16 011 17 3 1328.3 1350 1332.2 1328.2 21.7 0 4 17.8 101 05 17 011 17 3 1334.5 1349.9 1339 1334.5 15.4 0 4.5 10.9 101 16 20 011 17 3 1319.1 1339.9 1363.5 1324 1319.1 20.8 0 4.9 15.9 101 07 22 011 17 3 1316.4 1332.2 1320.5 1316.5 15.8 0 4 11.7 101 12 25 011 17 3 1331.4 1347.3 1333.4 1331.4 15.9 0 2 13.9 131 05 26 011 17 3 1315.4 1333.5 1319.6 1315.3 18.1 4.3 0 13.9 111 14 32 011 17 3 1243 1261.1 1249.6 1242.9 18.1 6.7 0 11.5 101 09 33 011 17 3 1268 1285.9 1277 1268 17.9 9 0 8.9 101 03 34 011 17 3 1303.2 1321.3 1310.6 1303.1 18.1 7.5 0 10.7 141 01 01 011 18 3 1357.3 1373.3 1360.2 1357.2 16 0 3 13.1 101 13 01 011 18 3 1369.8 1387 1373.9 1369.9 17.2 0 4 13.1 101 02 02 011 18 3 1392.2 1407.4 1395.7 1392.2 15.2 0 3.5 11.7 141 12 02 011 18 3 1363 1378.1 1367.4 1363 15.1 0 4.4 10.7 141 11 03 011 18 3 1366.9 1382.7 1371.1 1367 15.8 0 4.1 11.6 101 15 03 011 18 3 1359.6 1375.9 1363.6 1359.5 16.3 0 4.1 12.3 101 01 04 011 18 3 1379.7 1396.1 1382.6 1379.7 16.4 0 2.9 13.5 101 03 05 011 18 3 1347.2 1365.8 1350.7 1347.3 18.6 0 3.4 15.1 111 05 07 011 18 3 1279.1 1296.1 1282.2 1279.2 17 0 3 13.9 101 06 08 011 18 3 1328.4 1347.7 1331.1 1328.4 19.3 0 2.7 16.6 141 11 08 011 18 3 1325.2 1344.4 1328.4 1325.2 19.2 0 3.2 16 111 14 08 011 18 3 1325.1 1343.3 1326.9 1325 18.2 0 1.9 16.4 131 07 09 011 18 3 1344.1 1360.8 1348 1344.1 16.7 0 3.9 12.8 131 10 09 011 18 3 1337.7 1355.2 1342.4 1337.7 17.5 0 4.7 12.8 121 16 09 011 18 3 1335.8 1352.9 1339 1335.8 17.1 0 3.2 13.9 131 07 10 011 18 3 1345.2 1363 1347.9 1345.1 17.8 0 2.8 15.1 111 15 10 011 18 3 1341.9 1360.2 1344.8 1341.9 18.3 0 2.9 15.4 101 03 11 011 18 3 1361 1379.4 1365.4 1361.2 18.4 0 4.2 14 101 12 14 011 18 3 1339.7 1356.4 1344.3 1339.7 16.7 0 4.6 12.1 111 02 15 011 18 3 1342.9 1360.4 1346.9 1343 17.5 0 3.9 13.5 141 04 15 011 18 3 1334.2 1350.5 1338.3 1334.2 16.3 0 4.1 12.2 121 01 16 011 18 3 1334.8 1351.1 1337.8 1334.8 16.3 0 3 13.3 141 06 16 011 18 3 1328.2 1343.6 1333.2 1328.2 15.4 0 5 10.4 111 15 16 011 18 3 1326.5 1342.9 1329.6 1326.5 16.4 0 3.1 13.3 101 02 17 011 18 3 1319.6 1337.6 1323.6 1319.6 18 0 4 14 101 08 17 011 18 3 1319.7 1337.3 1323.4 1319.7 17.6 0 3.7 13.9

188

U_Shaun L_Shaun U_Grav FA2 Iso_Shaun Iso_FA3 Iso_FA1 Lx LSD Sec Twp Rge M (m) (m) (m) FA1 (m) (m) FA3 (m) (m) (m) Iso_FA2 (m) (m) 131 13 09 010 20 3 1419 1440.3 1464.8 1426 1419 21.3 0 7 14.3 101 14 14 010 20 3 1366.1 1386.5 1371.9 1366 20.4 0 5.9 14.6 101 02 15 010 20 3 1381.1 1402 1386 1381.2 20.9 0 4.8 16 101 01 20 010 20 3 1400 1420.1 1404.5 1400 20.1 0 4.5 15.6 131 11 24 010 20 3 1336.2 1356.4 1340.1 1336.2 20.2 0 3.9 16.3 121 03 25 010 20 3 1327.4 1348.5 1332.9 1327.3 21.1 0 5.6 15.6 101 16 17 011 18 3 1318.7 1335.9 1322.7 1318.6 17.2 0 4.1 13.2 121 13 18 011 18 3 1320.3 1336.6 1324.7 1320.3 16.3 0 4.4 11.9 101 01 19 011 18 3 1272.4 1289.7 1275.9 1272.4 17.3 0 3.5 13.8 111 09 19 011 18 3 1324.3 1341.7 1328 1324.4 17.4 0 3.6 13.7 111 01 20 011 18 3 1317.5 1334.7 1321.5 1317.5 17.2 0 4 13.2 191 06 20 011 18 3 1313.8 1331 1317.7 1313.9 17.2 0 3.8 13.3 191 13 20 011 18 3 1307 1325.5 1310.4 1306.9 18.5 0 3.5 15.1 101 04 21 011 18 3 1316.9 1333.3 1322.2 1316.9 16.4 0 5.3 11.1 101 07 21 011 18 3 1316 1332.6 1319.7 1316 16.6 0 3.7 12.9 191 13 21 011 18 3 1300.2 1316.7 1303.8 1300.1 16.5 0 3.7 12.9 131 12 22 011 18 3 1314.1 1331.7 1362.1 1317.3 1314.1 17.6 0 3.2 14.4 121 04 27 011 18 3 1316 1332.1 1319.2 1315.9 16.1 0 3.3 12.9 191 04 28 011 18 3 1298.1 1313.9 1302.4 1298.1 15.8 0 4.3 11.5 131 16 28 011 18 3 1311.6 1328.9 1315.4 1311.6 17.3 0 3.8 13.5 191 02 29 011 18 3 1297.2 1317.1 1300.9 1297.2 19.9 0 3.7 16.2 191 06 29 011 18 3 1308.1 1326.1 1311.8 1308 18 0 3.8 14.3 191 09 29 011 18 3 1301.3 1320 1305.2 1301.4 18.7 0 3.8 14.8 141 01 30 011 18 3 1308.8 1326.6 1312.7 1308.9 17.8 0 3.8 13.9 141 03 30 011 18 3 1302.4 1320.2 1306.1 1302.3 17.8 0 3.8 14.1 121 15 30 011 18 3 1311.9 1330.1 1315.3 1311.9 18.2 0 3.4 14.8 101 07 31 011 18 3 1316.6 1332.9 1320.2 1316.7 16.3 0 3.5 12.7 191 10 31 011 18 3 1312.4 1330.9 1316 1312.4 18.5 0 3.6 14.9 191 16 32 011 18 3 1311 1327.3 1314.6 1310.9 16.3 0 3.7 12.7 131 07 34 011 18 3 1311 1329 1357.7 1313.9 1311 18 0 2.9 15.1 111 10 36 011 18 3 1315.3 1332.8 1319.2 1315.2 17.5 0 4 13.6 101 05 01 011 19 3 1351.3 1369.6 1353.9 1351.3 18.3 0 2.6 15.7 15A 04 03 011 19 3 1357.2 1376.5 1364.5 1357.2 19.3 7.3 0 12 101 09 04 011 19 3 1359.4 1378.3 1361.6 1359.5 18.9 0 2.1 16.7 101 10 05 011 19 3 1341.9 1361.9 1343.3 1342 20 0 1.3 18.6 141 16 06 011 19 3 1300.9 1319.2 1303.9 1301.1 18.3 0 2.8 15.3 131 10 07 011 19 3 1318.7 1339.6 1320.9 1318.7 20.9 0 2.2 18.7 101 04 09 011 19 3 1346.7 1368 1348.7 1346.8 21.3 0 1.9 19.3 121 12 09 011 19 3 1351.5 1370.3 1352.9 1351.4 18.8 0 1.5 17.4 101 10 10 011 19 3 1351 1370.1 1354 1351 19.1 0 3 16.1 101 05 11 011 19 3 1343.1 1362.9 1345.2 1343.1 19.8 0 2.1 17.7 101 11 11 011 19 3 1363.8 1383.5 1367.1 1363.8 19.7 0 3.3 16.4 101 13 11 011 19 3 1344.2 1364.7 1347.4 1344.2 20.5 0 3.2 17.3 101 15 11 011 19 3 1336.5 1354.6 1339 1336.5 18.1 0 2.5 15.6 141 07 12 011 19 3 1323.8 1340 1371.3 1326.8 1323.8 16.2 0 3 13.2 150 15 12 011 19 3 1316.2 1334.4 1319.2 1316.3 18.2 0 2.9 15.2 121 02 13 011 19 3 1314.3 1332.1 1361.7 1317 1314.3 17.8 0 2.7 15.1 101 05 15 011 19 3 1351.8 1374.3 1355.3 1351.7 22.5 0 3.6 19 101 03 16 011 19 3 1358 1376.7 1361.5 1358 18.7 0 3.5 15.2 121 01 18 011 19 3 1328.2 1345.3 1376 1331.3 1328.2 17.1 0 3.1 14 131 15 20 011 19 3 1342 1359 1388.7 1346.1 1341.9 17 0 4.2 12.9 101 07 21 011 19 3 1337.1 1354.5 1341.6 1337.1 17.4 0 4.5 12.9 101 15 21 011 19 3 1328.6 1344.9 1331.9 1328.6 16.3 0 3.3 13 111 11 22 011 19 3 1337.3 1354.8 1341 1337.3 17.5 0 3.7 13.8 101 15 22 011 19 3 1327.3 1345.2 1330.8 1327.3 17.9 0 3.5 14.4 141 05 23 011 19 3 1330 1346.2 1334 1330 16.2 0 4 12.2

189

U_Shaun L_Shaun U_Grav FA2 Iso_Shaun Iso_FA3 Iso_FA1 Lx LSD Sec Twp Rge M (m) (m) (m) FA1 (m) (m) FA3 (m) (m) (m) Iso_FA2 (m) (m) 131 13 09 010 20 3 1419 1440.3 1464.8 1426 1419 21.3 0 7 14.3 101 14 14 010 20 3 1366.1 1386.5 1371.9 1366 20.4 0 5.9 14.6 101 02 15 010 20 3 1381.1 1402 1386 1381.2 20.9 0 4.8 16 101 01 20 010 20 3 1400 1420.1 1404.5 1400 20.1 0 4.5 15.6 131 11 24 010 20 3 1336.2 1356.4 1340.1 1336.2 20.2 0 3.9 16.3 121 03 25 010 20 3 1327.4 1348.5 1332.9 1327.3 21.1 0 5.6 15.6 101 09 23 011 19 3 1321.3 1338.3 1325.7 1321.3 17 0 4.4 12.6 131 09 24 011 19 3 1310.5 1326.6 1315.2 1310.5 16.1 0 4.7 11.4 101 13 24 011 19 3 1315.8 1334.4 1320.9 1315.8 18.6 0 5.1 13.5 121 08 25 011 19 3 1309.5 1327.5 1313.6 1309.5 18 0 4.1 13.9 111 11 25 011 19 3 1319 1338.1 1323.6 1319 19.1 0 4.6 14.5 141 05 26 011 19 3 1327.5 1345.3 1331.5 1327.6 17.8 0 3.9 13.8 101 11 26 011 19 3 1321.3 1340.5 1325.4 1321.3 19.2 0 4.1 15.1 141 05 27 011 19 3 1334.3 1353 1377.3 1339.4 1334.2 18.7 0 5.2 13.6 141 10 27 011 19 3 1340.8 1357.4 1344.5 1340.9 16.6 0 3.6 12.9 101 05 28 011 19 3 1336.3 1354.9 1340.7 1336.3 18.6 0 4.4 14.2 131 16 28 011 19 3 1333.5 1351 1338.7 1333.4 17.5 0 5.3 12.3 131 11 30 011 19 3 1357.2 1373.2 1398.9 1361.1 1357.2 16 0 3.9 12.1 131 08 31 011 19 3 1347.8 1367.3 1352.1 1347.9 19.5 0 4.2 15.2 131 01 32 011 19 3 1328 1345.9 1332.6 1328 17.9 0 4.6 13.3 141 08 32 011 19 3 1322.2 1340.6 1326.9 1322.2 18.4 0 4.7 13.7 131 03 33 011 19 3 1315.7 1333.6 1320.5 1315.8 17.9 0 4.7 13.1 141 08 33 011 19 3 1323.5 1342.2 1328.8 1323.6 18.7 0 5.2 13.4 101 04 34 011 19 3 1335.3 1350.8 1340.2 1335.4 15.5 0 4.8 10.6 111 06 34 011 19 3 1340.5 1357.9 1345.5 1340.5 17.4 0 5 12.4 141 04 35 011 19 3 1331.5 1350.8 1336.9 1331.5 19.3 0 5.4 13.9 121 10 35 011 19 3 1328.7 1347.7 1333.1 1328.8 19 0 4.3 14.6 121 01 36 011 19 3 1324.6 1338.9 1328.4 1324.8 14.3 0 3.6 10.5 131 11 36 011 19 3 1326.9 1345.4 1332.4 1326.9 18.5 0 5.5 13 101 01 01 011 20 3 1317.1 1334.4 1362.6 1319.7 1317.2 17.3 0 2.5 14.7 121 02 02 011 20 3 1350.6 1369.7 1353.5 1350.7 19.1 0 2.8 16.2 101 09 03 011 20 3 1372.1 1394.8 1419.1 1376.5 1372.3 22.7 0 4.2 18.3 101 01 14 011 20 3 1301.4 1319.8 1344.2 1304.7 1301.6 18.4 0 3.1 15.1 131 13 14 011 20 3 1393.1 1410.7 1396.7 1393.1 17.6 0 3.6 14 111 15 14 011 20 3 1388.3 1406.4 1391.2 1388.4 18.1 0 2.8 15.2 111 09 15 011 20 3 1349.4 1368 1352.6 1349.4 18.6 0 3.2 15.4 191 13 17 011 20 3 1382.1 1400.1 1384.5 1382 18 0 2.5 15.6 101 11 22 011 20 3 1390.7 1407.4 1435.2 1393.5 1390.6 16.7 0 2.9 13.9 121 01 23 011 20 3 1382.8 1402.6 1426 1386.7 1382.7 19.8 0 4 15.9 101 09 23 011 20 3 1376 1394 1379 1376 18 0 3 15 131 04 24 011 20 3 1374.1 1392.9 1376.6 1374 18.8 0 2.6 16.3 111 12 24 011 20 3 1372.9 1391.3 1376.2 1373 18.4 0 3.2 15.1 101 01 26 011 20 3 1371.3 1386.9 1415 1375.2 1371.2 15.6 0 4 11.7 131 09 28 011 20 3 1342.7 1361.2 1389.9 1346 1342.6 18.5 0 3.4 15.2 101 09 34 011 20 3 1338.7 1357.2 1387.1 1342.1 1338.8 18.5 0 3.3 15.1 131 15 34 011 20 3 1330.3 1349 1334 1330.4 18.7 0 3.6 15 111 01 36 011 20 3 1379.2 1397.1 1382.2 1379.1 17.9 0 3.1 14.9 141 09 36 011 20 3 1353.9 1372.5 1357.7 1353.9 18.6 0 3.8 14.8 101 11 03 012 17 3 1288.1 1305.7 1291.3 1288.2 17.6 0 3.1 14.4 121 04 04 012 17 3 1289.7 1307.6 1298.6 1289.8 17.9 8.8 0 9 101 05 05 012 17 3 1287.3 1305.8 1294.2 1287.4 18.5 6.8 0 11.6 121 07 05 012 17 3 1234.5 1253.4 1243.6 1234.4 18.9 9.2 0 9.8 111 08 06 012 17 3 1301 1319.4 1308.5 1300.9 18.4 7.6 0 10.9 141 02 07 012 17 3 1313.1 1332.5 1322.5 1313.1 19.4 9.4 0 10 191 13 07 012 17 3 1246.1 1263.6 1254 1246.1 17.5 7.9 0 9.6 101 04 08 012 17 3 1305.2 1324.5 1313.5 1305.2 19.3 8.3 0 11

190

U_Shaun L_Shaun U_Grav FA2 Iso_Shaun Iso_FA3 Iso_FA1 Lx LSD Sec Twp Rge M (m) (m) (m) FA1 (m) (m) FA3 (m) (m) (m) Iso_FA2 (m) (m) 131 13 09 010 20 3 1419 1440.3 1464.8 1426 1419 21.3 0 7 14.3 101 14 14 010 20 3 1366.1 1386.5 1371.9 1366 20.4 0 5.9 14.6 101 02 15 010 20 3 1381.1 1402 1386 1381.2 20.9 0 4.8 16 101 01 20 010 20 3 1400 1420.1 1404.5 1400 20.1 0 4.5 15.6 131 11 24 010 20 3 1336.2 1356.4 1340.1 1336.2 20.2 0 3.9 16.3 121 03 25 010 20 3 1327.4 1348.5 1332.9 1327.3 21.1 0 5.6 15.6 131 13 11 012 17 3 1278.4 1295 1280.6 1278.4 16.6 0 2.2 14.4 101 07 13 012 17 3 1264.5 1280.1 1269.3 1264.6 15.6 0 4.7 10.8 121 02 14 012 17 3 1287.6 1305.8 1292.7 1287.6 18.2 0 5.1 13.1 111 03 18 012 17 3 1253.4 1271.4 1259 1253.4 18 5.6 0 12.4 141 12 20 012 17 3 1290.2 1306.8 1294.2 1290.1 16.6 0 4.1 12.6 101 10 22 012 17 3 1273.2 1289.1 1277.2 1273.2 15.9 0 4 11.9 121 01 30 012 17 3 1297.6 1314.3 1301.4 1297.8 16.7 0 3.6 12.9 121 12 32 012 17 3 1277.1 1293.2 1321.7 1280 1277.1 16.1 0 2.9 13.2 191 06 03 012 18 3 1285.2 1303.7 1290.1 1285.3 18.5 0 4.8 13.6 131 05 04 012 18 3 1312.5 1332.1 1358 1317 1312.6 19.6 0 4.4 15.1 101 08 04 012 18 3 1272.4 1289.7 1277 1272.4 17.3 0 4.6 12.7 131 11 04 012 18 3 1314.8 1332 1319.2 1314.8 17.2 0 4.4 12.8 131 12 04 012 18 3 1311.3 1330.6 1315.9 1311.3 19.3 0 4.6 14.7 131 14 04 012 18 3 1316 1335.1 1322.1 1316.1 19.1 0 6 13 141 03 05 012 18 3 1323.1 1340.5 1327.5 1323.1 17.4 0 4.4 13 141 04 05 012 18 3 1319 1335.1 1323.5 1319 16.1 0 4.5 11.6 141 05 05 012 18 3 1325.5 1343.8 1330.4 1325.6 18.3 0 4.8 13.4 131 06 05 012 18 3 1327 1343.7 1331.8 1327 16.7 0 4.8 11.9 131 11 05 012 18 3 1323.1 1340.9 1327.8 1323.1 17.8 0 4.7 13.1 101 01 06 012 18 3 1320.6 1337.8 1325.5 1320.6 17.2 0 4.9 12.3 111 06 06 012 18 3 1326.8 1344.3 1330.2 1326.7 17.5 0 3.5 14.1 121 07 06 012 18 3 1327 1343.5 1332 1327.1 16.5 0 4.9 11.5 141 03 07 012 18 3 1326.3 1342.6 1328.7 1326.3 16.3 0 2.4 13.9 191 09 07 012 18 3 1325.8 1344.7 1331.2 1325.9 18.9 0 5.3 13.5 131 11 07 012 18 3 1331.2 1350 1335 1331.1 18.8 0 3.9 15 131 02 08 012 18 3 1317.9 1338.1 1363 1323 1318 20.2 0 5 15.1 111 14 08 012 18 3 1318.4 1337.5 1322.9 1318.4 19.1 0 4.5 14.6 121 06 09 012 18 3 1317.3 1334.7 1355 1321.9 1317.3 17.4 0 4.6 12.8 121 15 09 012 18 3 1313 1330.2 1318.2 1313 17.2 0 5.2 12 101 04 10 012 18 3 1311.2 1329.4 1317.4 1311.4 18.2 0 6 12 101 16 10 012 18 3 1316.5 1334.8 1322.2 1316.4 18.3 0 5.8 12.6 101 09 12 012 18 3 1247.8 1265.6 1254.1 1247.7 17.8 6.4 0 11.5 101 10 13 012 18 3 1302.1 1319.7 1309.2 1302.1 17.6 7.1 0 10.5 101 09 14 012 18 3 1309.2 1326.5 1313.9 1309.1 17.3 4.8 0 12.6 101 02 16 012 18 3 1317.1 1335.2 1320.1 1317.1 18.1 0 3 15.1 111 03 16 012 18 3 1319 1336.2 1323.8 1319.1 17.2 0 4.7 12.4 121 03 17 012 18 3 1318.9 1338.5 1324.1 1318.9 19.6 0 5.2 14.4 141 12 18 012 18 3 1330.4 1350.5 1335.2 1330.5 20.1 0 4.7 15.3 121 02 19 012 18 3 1326.6 1345.9 1331.7 1326.6 19.3 0 5.1 14.2 111 04 19 012 18 3 1328.8 1346.3 1334.4 1328.8 17.5 0 5.6 11.9 101 11 21 012 18 3 1329.6 1346.8 1334.7 1329.7 17.2 0 5 12.1 101 02 22 012 18 3 1315 1333 1320 1315.1 18 0 4.9 13 111 12 23 012 18 3 1311 1326.6 1354.8 1315 1311.1 15.6 0 3.9 11.6 111 16 23 012 18 3 1311.6 1326.5 1317 1311.6 14.9 5.4 0 9.5 141 05 24 012 18 3 1297.3 1316.2 1304 1297.4 18.9 6.6 0 12.2 121 12 24 012 18 3 1297.8 1316.8 1305.4 1297.8 19 7.6 0 11.4 121 10 26 012 18 3 1318.1 1333.6 1321.7 1318.1 15.5 3.6 0 11.9 101 10 27 012 18 3 1330.2 1346.7 1334.5 1330.2 16.5 4.3 0 12.2 101 15 29 012 18 3 1321.6 1339.5 1327.6 1321.6 17.9 0 6 11.9 141 07 32 012 18 3 1315.6 1331.9 1319.8 1315.7 16.3 0 4.1 12.1

191

U_Shaun L_Shaun U_Grav FA2 Iso_Shaun Iso_FA3 Iso_FA1 Lx LSD Sec Twp Rge M (m) (m) (m) FA1 (m) (m) FA3 (m) (m) (m) Iso_FA2 (m) (m) 131 13 09 010 20 3 1419 1440.3 1464.8 1426 1419 21.3 0 7 14.3 101 14 14 010 20 3 1366.1 1386.5 1371.9 1366 20.4 0 5.9 14.6 101 02 15 010 20 3 1381.1 1402 1386 1381.2 20.9 0 4.8 16 101 01 20 010 20 3 1400 1420.1 1404.5 1400 20.1 0 4.5 15.6 131 11 24 010 20 3 1336.2 1356.4 1340.1 1336.2 20.2 0 3.9 16.3 121 03 25 010 20 3 1327.4 1348.5 1332.9 1327.3 21.1 0 5.6 15.6 141 10 33 012 18 3 1332.7 1348.3 1336.5 1332.9 15.6 3.6 0 11.8 131 04 34 012 18 3 1329.4 1346.3 1333.1 1329.4 16.9 3.7 0 13.2 121 12 34 012 18 3 1327.2 1343.3 1330.6 1327.1 16.1 3.5 0 12.7 111 01 01 012 19 3 1325.3 1343.8 1372.6 1330.1 1325.3 18.5 0 0 13.7 101 09 01 012 19 3 1328.5 1348.9 1374 1334 1328.6 20.4 0 5.4 14.9 121 14 01 012 19 3 1341.7 1361.6 1385 1347.1 1341.7 19.9 0 5.4 14.5 111 08 02 012 19 3 1325.7 1342.3 1329.9 1325.8 16.6 0 4.1 12.4 111 02 03 012 19 3 1339.7 1357.7 1343.8 1339.8 18 0 4 13.9 101 05 03 012 19 3 1314.9 1331.5 1318.1 1314.9 16.6 0 3.2 13.4 111 04 04 012 19 3 1308.2 1326.3 1312.5 1308.2 18.1 0 4.3 13.8 101 06 04 012 19 3 1307.9 1326.3 1312.9 1308 18.4 0 4.9 13.4 111 01 05 012 19 3 1321.4 1339.2 1325.8 1321.4 17.8 0 4.4 13.4 121 01 06 012 19 3 1348.3 1367.6 1352.1 1348.4 19.3 0 3.7 15.5 111 14 06 012 19 3 1346.9 1365.5 1351.1 1346.9 18.6 0 4.2 14.4 111 03 07 012 19 3 1333.1 1351.5 1337.1 1333 18.4 0 4.1 14.4 131 02 09 012 19 3 1333.1 1352.4 1336.9 1333.1 19.3 0 3.8 15.5 131 06 09 012 19 3 1318 1336.3 1323.1 1317.9 18.3 0 5.2 13.2 101 02 10 012 19 3 1337.5 1357.6 1341.7 1337.5 20.1 0 4.2 15.9 101 06 11 012 19 3 1333.9 1354.5 1339.1 1333.9 20.6 0 5.2 15.4 131 10 11 012 19 3 1341.2 1359.5 1345.2 1341.1 18.3 0 4.1 14.3 101 04 12 012 19 3 1345.3 1364.4 1350 1345.3 19.1 0 4.7 14.4 121 12 12 012 19 3 1343.2 1362.8 1347.6 1343.1 19.6 0 4.5 15.2 111 15 13 012 19 3 1340.9 1358.3 1345.9 1341 17.4 0 4.9 12.4 111 06 14 012 19 3 1335.6 1354.3 1339.8 1335.6 18.7 0 4.2 14.5 131 15 14 012 19 3 1339.7 1357.1 1344 1339.7 17.4 0 4.3 13.1 111 01 15 012 19 3 1335.7 1356.1 1341.4 1335.6 20.4 0 5.8 14.7 111 09 15 012 19 3 1332.2 1351.2 1335.3 1332.2 19 0 3.1 15.9 121 13 16 012 19 3 1320.6 1339.4 1325.6 1320.6 18.8 0 5 13.8 111 10 17 012 19 3 1299 1318 1347 1303.2 1299 19 0 4.2 14.8 121 15 17 012 19 3 1273.4 1292.4 1277.9 1273.4 19 0 4.5 14.5 121 07 18 012 19 3 1238.8 1258 1242.3 1238.8 19.2 0 3.5 15.7 121 15 18 012 19 3 1221.4 1240.3 1224.9 1221.4 18.9 0 3.5 15.4 141 03 20 012 19 3 1256.2 1274.6 1259.3 1256.2 18.4 0 3.1 15.3 111 09 20 012 19 3 1249.4 1267.9 1254 1249.4 18.5 0 4.6 13.9 131 11 21 012 19 3 1268.7 1287.6 1274.3 1268.7 18.9 0 5.6 13.3 101 14 23 012 19 3 1322.5 1340.9 1327.7 1322.5 18.4 0 5.2 13.2 141 04 24 012 19 3 1331.8 1351.3 1337.2 1331.9 19.5 0 5.3 14.1 131 12 24 012 19 3 1324.7 1345.3 1330.7 1324.7 20.6 0 6 14.6 111 10 26 012 19 3 1292.7 1311.2 1296 1292.6 18.5 0 3.4 15.2 101 14 27 012 19 3 1231.1 1247.7 1233.7 1231.1 16.6 0 2.6 14 141 10 28 012 19 3 1223.4 1243.6 1229.8 1223.3 20.2 0 6.5 13.8 101 09 30 012 19 3 1183.3 1203.4 1188.2 1183.2 20.1 0 5 15.2 111 01 31 012 19 3 1180.7 1198.7 1184.2 1180.7 18 0 3.5 14.5 121 08 32 012 19 3 1188.6 1207.5 1192.1 1188.6 18.9 0 3.5 15.4 131 05 33 012 19 3 1185.9 1205 1230.7 1188.9 1185.9 19.1 0 3 16.1 111 06 34 012 19 3 1210 1226.6 1212.9 1210.1 16.6 0 2.8 13.7 131 15 36 012 19 3 1229.9 1247.3 1234 1230 17.4 0 4 13.3 111 07 01 012 20 3 1357.1 1375.3 1361.3 1357 18.2 0 4.3 14 131 07 03 012 20 3 1268.8 1286.3 1274.4 1268.8 17.5 5.6 0 11.9 111 02 08 012 20 3 1177.4 1193.6 1181.1 1177.4 16.2 3.7 0 12.5

192

U_Shaun L_Shaun U_Grav FA2 Iso_Shaun Iso_FA3 Iso_FA1 Lx LSD Sec Twp Rge M (m) (m) (m) FA1 (m) (m) FA3 (m) (m) (m) Iso_FA2 (m) (m) 131 13 09 010 20 3 1419 1440.3 1464.8 1426 1419 21.3 0 7 14.3 101 14 14 010 20 3 1366.1 1386.5 1371.9 1366 20.4 0 5.9 14.6 101 02 15 010 20 3 1381.1 1402 1386 1381.2 20.9 0 4.8 16 101 01 20 010 20 3 1400 1420.1 1404.5 1400 20.1 0 4.5 15.6 131 11 24 010 20 3 1336.2 1356.4 1340.1 1336.2 20.2 0 3.9 16.3 121 03 25 010 20 3 1327.4 1348.5 1332.9 1327.3 21.1 0 5.6 15.6 141 03 11 012 20 3 1308.6 1328.2 1317.2 1308.8 19.6 8.4 0 11 141 11 12 012 20 3 1301.7 1321.1 1309.1 1301.6 19.4 7.5 0 12 121 15 13 012 20 3 1204 1222.7 1208.3 1204.1 18.7 0 4.2 14.4 101 06 22 012 20 3 1154.7 1172.2 1158.6 1154.8 17.5 0 3.8 13.6 111 06 36 012 20 3 1174 1189.8 1177.1 1174.1 15.8 0 3 12.7 131 04 01 013 17 3 1261.6 1277.3 1307.2 1265 1261.6 15.7 0 3.4 12.3 101 14 03 013 17 3 1271.2 1287.1 1274.8 1271.2 15.9 0 3.6 12.3 111 13 06 013 17 3 1291.1 1307.1 1294 1291.2 16 0 2.8 13.1 141 16 09 013 17 3 1273.6 1288.9 1319.1 1276.8 1273.7 15.3 0 3.1 12.1 141 02 13 013 17 3 1254 1270.5 1257.2 1254 16.5 0 3.2 13.3 101 14 16 013 17 3 1281.1 1297.6 1285.3 1281.1 16.5 0 4.2 12.3 131 13 25 013 17 3 1236.8 1253.5 1240.6 1236.8 16.7 0 3.8 12.9 111 13 26 013 17 3 1209.9 1224.2 1213 1209.9 14.3 0 3.1 11.2 140 10 28 013 17 3 1265.6 1283 1268.8 1265.6 17.4 0 3.2 14.2 141 01 35 013 17 3 1232.9 1249.9 1235.5 1233 17 0 2.5 14.4 141 12 03 013 18 3 1321.2 1336.5 1324.4 1321.3 15.3 0 3.1 12.1 121 05 04 013 18 3 1316.4 1333.8 1320.4 1316.4 17.4 0 4 13.4 141 12 04 013 18 3 1312 1329.3 1357.5 1315.6 1312.1 17.3 0 3.5 13.7 130 09 05 013 18 3 1301.1 1315.6 1305.5 1301.1 14.5 0 4.4 10.1 141 01 06 013 18 3 1268.6 1285 1314.3 1272.1 1268.6 16.4 0 3.5 12.9 121 16 07 013 18 3 1224.8 1237.5 1229.1 1224.8 12.7 0 0 8.4 101 01 08 013 18 3 1296.6 1312.3 1301.8 1296.7 15.7 0 5.1 10.5 141 13 10 013 18 3 1315.2 1330.8 1319.6 1315.2 15.6 0 4.4 11.2 121 09 12 013 18 3 1304.8 1320.3 1309.8 1304.7 15.5 0 5.1 10.5 131 08 16 013 18 3 1280 1294.7 1285.6 1280 14.7 0 5.6 9.1 141 04 17 013 18 3 1235 1249.6 1239.7 1235.1 14.6 0 4.6 9.9 111 07 17 013 18 3 1260.7 1277.4 1265.3 1260.7 16.7 0 4.6 12.1 111 11 19 013 18 3 1181.3 1196 1186.9 1181.3 14.7 5.6 0 9.1 101 13 20 013 18 3 1184.5 1197.9 1189.1 1184.5 13.4 4.6 0 8.8 121 16 21 013 18 3 1220.5 1236 1226 1220.4 15.5 0 0 10 111 13 22 013 18 3 1229.8 1245.7 1275 1231 1229.7 15.9 0 1.3 14.7 131 09 25 013 18 3 1229 1243.5 1230.3 1229.1 14.5 0 1.2 13.2 101 10 27 013 18 3 1200.3 1216 1201.8 1200.3 15.7 0 1.5 14.2 101 09 29 013 18 3 1172.6 1188.9 1177.5 1172.7 16.3 0 4.8 11.4 102 09 29 013 18 3 1171.8 1187.6 1177 1171.7 15.8 5.3 0 10.6 121 12 30 013 18 3 1145 1161.1 1150.2 1145 16.1 5.2 0 10.9 131 05 31 013 18 3 1181.7 1196.5 1184 1181.7 14.8 0 2.3 12.5 121 11 32 013 18 3 1145 1159.2 1150.3 1145 14.2 5.3 0 8.9 101 10 34 013 18 3 1158.3 1172.9 1163.7 1158.3 14.6 0 5.4 9.2 111 12 02 013 19 3 1187.7 1200.3 1190.9 1187.7 12.6 0 3.2 9.4 131 13 03 013 19 3 1194.5 1209.2 1199.4 1194.5 14.7 0 4.9 9.8 111 16 03 013 19 3 1207.7 1223.7 1211.1 1207.7 16 0 3.4 12.6 121 05 04 013 19 3 1177.2 1194.9 1215 1180.3 1177.2 17.7 0 3.1 14.6 111 15 05 013 19 3 1183 1195.2 1217.8 1185.2 1182.9 12.2 0 2.3 10 131 05 09 013 19 3 1166 1178.6 1170.4 1166.2 12.6 0 4.2 8.2 111 14 09 013 19 3 1158.1 1175.5 1166.5 1162.2 17.4 0 4.3 9 141 05 10 013 19 3 1174.1 1189.1 1179.1 1174.1 15 0 5 10 101 11 10 013 19 3 1169 1184.2 1173.8 1169 15.2 0 4.8 10.4 111 04 11 013 19 3 1205.7 1222.3 1210.3 1205.7 16.6 0 4.6 12 111 12 12 013 19 3 1203.8 1220 1208.6 1203.8 16.2 0 4.8 11.4

193

U_Shaun L_Shaun U_Grav FA2 Iso_Shaun Iso_FA3 Iso_FA1 Lx LSD Sec Twp Rge M (m) (m) (m) FA1 (m) (m) FA3 (m) (m) (m) Iso_FA2 (m) (m) 131 13 09 010 20 3 1419 1440.3 1464.8 1426 1419 21.3 0 7 14.3 101 14 14 010 20 3 1366.1 1386.5 1371.9 1366 20.4 0 5.9 14.6 101 02 15 010 20 3 1381.1 1402 1386 1381.2 20.9 0 4.8 16 101 01 20 010 20 3 1400 1420.1 1404.5 1400 20.1 0 4.5 15.6 131 11 24 010 20 3 1336.2 1356.4 1340.1 1336.2 20.2 0 3.9 16.3 121 03 25 010 20 3 1327.4 1348.5 1332.9 1327.3 21.1 0 5.6 15.6 111 16 14 013 19 3 1173.8 1189.1 1177.8 1173.8 15.3 0 4 11.3 111 01 15 013 19 3 1182.5 1197 1186.7 1182.5 14.5 0 4.2 10.3 111 04 15 013 19 3 1173 1187.9 1177.1 1173.1 14.9 0 4 10.8 111 11 15 013 19 3 1162.4 1177.9 1166.9 1162.4 15.5 0 4.5 11 111 14 16 013 19 3 1161.3 1176 1165.1 1161.3 14.7 0 3.8 10.9 111 10 17 013 19 3 1146.2 1161.2 1148.8 1146.1 15 0 2.7 12.4 111 02 18 013 19 3 1151.7 1167.5 1155.8 1151.7 15.8 0 4.1 11.7 101 02 19 013 19 3 1149.4 1165.6 1151.1 1149.3 16.2 0 1.8 14.5 111 04 20 013 19 3 1147.3 1164 1152.6 1147.4 16.7 0 5.2 11.4 111 16 20 013 19 3 1138.6 1155.9 1141.2 1138.5 17.3 0 2.7 14.7 111 06 21 013 19 3 1138.7 1153.7 1140 1138.7 15 0 1.3 13.7 111 14 21 013 19 3 1135.4 1150 1138.6 1135.5 14.6 0 3.1 11.4 111 03 22 013 19 3 1160 1175.8 1162 1160 15.8 0 2 13.8 101 13 22 013 19 3 1143.9 1158.5 1148.1 1143.9 14.6 0 4.2 10.4 101 13 23 013 19 3 1136.4 1150.4 1139.2 1136.4 14 0 2.8 11.2 141 02 24 013 19 3 1177.1 1193.6 1181.2 1177.1 16.5 0 4.1 12.4 111 15 24 013 19 3 1149.7 1167.6 1153.7 1149.8 17.9 0 3.9 13.9 111 04 25 013 19 3 1140.4 1156.8 1144.1 1140.4 16.4 0 3.7 12.7 131 11 25 013 19 3 1142.7 1158.8 1146.1 1142.7 16.1 0 3.4 12.7 101 02 27 013 19 3 1148.6 1162.3 1193 1150.9 1148.7 13.7 0 2.2 11.4 111 09 27 013 19 3 1152.9 1168.3 1156.7 1152.8 15.4 0 3.9 11.6 101 06 30 013 19 3 1121.7 1134.5 1126 1121.7 12.8 0 4.3 8.5 131 08 31 013 19 3 1118.8 1134.8 1121.5 1118.8 16 0 2.7 13.3 111 12 31 013 19 3 1117.8 1135.2 1160 1122.2 1117.9 17.4 0 4.3 13 141 14 32 013 19 3 1118.4 1132.9 1125.5 1118.4 14.5 7.1 0 7.4 141 10 33 013 19 3 1124.7 1140.3 1133.1 1124.9 15.6 8.2 0 7.2 121 13 34 013 19 3 1137.7 1152.5 1141 1137.7 14.8 0 3.3 11.5 141 04 35 013 19 3 1154 1171.6 1157.3 1154 17.6 0 3.3 14.3 111 08 35 013 19 3 1152.4 1168.6 1155 1152.5 16.2 0 2.5 13.6 121 12 35 013 19 3 1139.1 1156.6 1143.6 1139.1 17.5 0 4.5 13 121 12 36 013 19 3 1150 1165.8 1193.6 1152.7 1150 15.8 0 2.7 13.1 141 16 02 013 20 3 1160.3 1173.1 1166.1 1160.2 12.8 5.9 0 7 141 16 03 013 20 3 1150.1 1165.1 1154.9 1150.1 15 4.8 0 10.2 141 10 14 013 20 3 1130.5 1146.1 1142.5 1130.4 15.6 12.1 0 3.6 101 02 19 013 20 3 1124.8 1140 1132.9 1124.8 15.2 8.1 0 7.1 101 09 19 013 20 3 1118.2 1131.4 1125.6 1118.2 13.2 7.4 0 5.8 150 15 20 013 20 3 1135.3 1149.4 1142.9 1135.3 14.1 7.6 0 6.5 101 10 24 013 20 3 1121.1 1136.3 1123.5 1121.1 15.2 0 2.4 12.8 141 06 25 013 20 3 1110.9 1127.1 1154 1114.1 1110.9 16.2 0 3.2 13 101 16 27 013 20 3 1115 1131.2 1119.1 1115 16.2 4.1 0 12.1 101 09 28 013 20 3 1110.9 1125.3 1122.1 1110.8 14.4 11.3 0 3.2 121 07 29 013 20 3 1135.8 1147.1 1142.2 1135.8 11.3 6.4 0 4.9 121 06 30 013 20 3 1122.8 1138.7 1162 1132.6 1122.8 15.9 9.8 0 6.1 101 01 32 013 20 3 1126.9 1141.3 1134.6 1126.9 14.4 7.7 0 6.7 101 06 34 013 20 3 1104.9 1121.4 1116.1 1105 16.5 11.1 0 5.3

194

APPENDIX II

OIL-CUT CALCULATIONS

195

Covington and Instow Oil-cut Calculations

CPA Pretty Well ID First 3 mo. Total OIL (m3) First 3 mo. Total WTR (m3) Oil/Oil+water CPA Pretty Well ID First 12 mo. Total OIL (m3) First 12 mo. Total WTR (m3) Oil/Oil+Water 101/13‐18‐009‐17W3/00 278 5 0.982332155 101/13‐18‐009‐17W3/00 1820 28 0.984848485 131/04‐19‐009‐17W3/00 84 4 0.954545455 131/04‐19‐009‐17W3/00 284 12 0.959459459 131/05‐19‐009‐17W3/00 69 6 0.92 131/05‐19‐009‐17W3/00 248 17 0.935849057 101/11‐13‐009‐18W3/00 121 1 0.991803279 101/11‐13‐009‐18W3/00 424 4 0.990654206 131/14‐13‐009‐18W3/00 654 209 0.757821553 131/14‐13‐009‐18W3/00 2960 1626 0.645442652 101/15‐13‐009‐18W3/00 236 1123 0.173657101 101/15‐13‐009‐18W3/00 1067 8501 0.111517559 101/16‐13‐009‐18W3/00 1175 17 0.985738255 101/16‐13‐009‐18W3/00 4090 23 0.994407975 131/01‐23‐009‐18W3/00 561 134 0.807194245 131/01‐23‐009‐18W3/00 1465 742 0.66379701 141/02‐23‐009‐18W3/00 101 109 0.480952381 141/02‐23‐009‐18W3/00 443 407 0.521176471 101/07‐23‐009‐18W3/00 527 1 0.998106061 101/07‐23‐009‐18W3/00 1930 24 0.987717503 191/08‐23‐009‐18W3/00 973 24 0.975927783 191/08‐23‐009‐18W3/00 1856 373 0.832660386 101/09‐23‐009‐18W3/00 2920 0 1 101/09‐23‐009‐18W3/00 9642 3 0.999688958 121/10‐23‐009‐18W3/00 396 23 0.945107399 121/10‐23‐009‐18W3/00 939 2045 0.314678284 141/11‐23‐009‐18W3/00 0 861 0 141/11‐23‐009‐18W3/00 225 2565 0.080645161 131/14‐23‐009‐18W3/00 27 3510 0.007633588 131/14‐23‐009‐18W3/00 564 20784 0.026419337 141/15‐23‐009‐18W3/00 2235 4335 0.340182648 141/15‐23‐009‐18W3/00 5726 22580 0.202289267 101/01‐24‐009‐18W3/00 1760 2 0.998864926 101/01‐24‐009‐18W3/00 7842 24 0.996948894 121/02‐24‐009‐18W3/00 1338 819 0.620305981 121/02‐24‐009‐18W3/00 7168 7214 0.498400779 132/02‐24‐009‐18W3/00 146 2698 0.051336146 132/02‐24‐009‐18W3/00 1246 17869 0.06518441 101/03‐24‐009‐18W3/00 3508 0 1 101/03‐24‐009‐18W3/00 11608 0 1 131/03‐24‐009‐18W3/00 279 1067 0.207280832 131/03‐24‐009‐18W3/00 883 6332 0.122383922 101/04‐24‐009‐18W3/00 342 282 0.548076923 101/04‐24‐009‐18W3/00 478 331 0.590852905 141/05‐24‐009‐18W3/00 463 11 0.976793249 141/05‐24‐009‐18W3/00 4021 65 0.984092022 101/06‐24‐009‐18W3/00 230 91 0.716510903 101/06‐24‐009‐18W3/00 832 496 0.626506024 101/07‐24‐009‐18W3/00 1153 3 0.997404844 101/07‐24‐009‐18W3/00 3777 42 0.989002357 121/08‐24‐009‐18W3/02 1540 1917 0.445472953 121/08‐24‐009‐18W3/02 6634 23345 0.221288235 121/08‐24‐009‐18W3/00 21 180 0.104477612 121/08‐24‐009‐18W3/00 21 180 0.104477612 101/10‐24‐009‐18W3/00 335 4 0.98820059 101/10‐24‐009‐18W3/00 985 13 0.986973948 101/11‐24‐009‐18W3/00 2345 0 1 101/11‐24‐009‐18W3/00 9188 84 0.990940466 102/11‐24‐009‐18W3/00 0 13108 0 102/11‐24‐009‐18W3/00 0 39298 0 101/12‐24‐009‐18W3/00 180 72 0.714285714 101/12‐24‐009‐18W3/00 496 217 0.695652174 111/13‐24‐009‐18W3/00 237 2 0.991631799 111/13‐24‐009‐18W3/00 2596 42 0.984078848 121/05‐25‐009‐18W3/00 1639 7473 0.179872695 121/05‐25‐009‐18W3/00 6317 41285 0.132704508 131/06‐25‐009‐18W3/00 410 86 0.826612903 131/06‐25‐009‐18W3/00 937 1332 0.41295725 111/08‐25‐009‐18W3/00 21 125 0.143835616 111/08‐25‐009‐18W3/00 21 125 0.143835616 121/12‐25‐009‐18W3/00 785 5290 0.129218107 121/12‐25‐009‐18W3/00 4089 35080 0.104393781 111/13‐25‐009‐18W3/00 1458 3 0.997946612 111/13‐25‐009‐18W3/00 13873 716 0.950921927 101/01‐26‐009‐18W3/00 0 13217 0 101/01‐26‐009‐18W3/00 0 40275 0 101/01‐26‐009‐18W3/02 318 17 0.949253731 101/01‐26‐009‐18W3/02 1348 19 0.986100951 102/01‐26‐009‐18W3/00 0 23628 0 102/01‐26‐009‐18W3/00 0 175625 0 141/02‐26‐009‐18W3/00 6 1442 0.004143646 141/02‐26‐009‐18W3/00 43 8335 0.00513249 101/03‐26‐009‐18W3/00 2299 11 0.995238095 101/03‐26‐009‐18W3/00 10681 20 0.998131016 131/04‐26‐009‐18W3/00 2 667 0.002989537 131/04‐26‐009‐18W3/00 7 3395 0.002057613 121/05‐26‐009‐18W3/00 1 2210 0.000452284 121/05‐26‐009‐18W3/00 7 8603 0.000813008 121/06‐26‐009‐18W3/00 1 1264 0.000790514 121/06‐26‐009‐18W3/00 6 5509 0.001087942 141/07‐26‐009‐18W3/00 5 6520 0.000766284 141/07‐26‐009‐18W3/00 24 23595 0.001016131 121/08‐26‐009‐18W3/00 6 9657 0.000620925 121/08‐26‐009‐18W3/00 12 22408 0.000535236 101/09‐26‐009‐18W3/00 2447 2 0.99918334 101/09‐26‐009‐18W3/00 8794 8 0.999091116 101/10‐26‐009‐18W3/00 11 2799 0.003914591 101/10‐26‐009‐18W3/00 239 18472 0.012773235 101/11‐26‐009‐18W3/00 2186 2 0.999085923 101/11‐26‐009‐18W3/00 10928 11 0.998994424 101/12‐26‐009‐18W3/00 379 7635 0.047292239 101/12‐26‐009‐18W3/00 1808 50090 0.034837566 131/12‐26‐009‐18W3/00 0 4095 0 131/12‐26‐009‐18W3/00 0 44380 0 101/13‐26‐009‐18W3/00 1921 2439 0.44059633 101/13‐26‐009‐18W3/00 11618 22555 0.339976004 121/14‐26‐009‐18W3/00 40 9315 0.004275788 121/14‐26‐009‐18W3/00 201 28565 0.006987416 121/01‐27‐009‐18W3/00 0 6334 0 121/01‐27‐009‐18W3/00 0 54004 0 141/03‐27‐009‐18W3/00 1069 303 0.779154519 141/03‐27‐009‐18W3/00 5131 1664 0.755114054 101/05‐27‐009‐18W3/00 187 175 0.516574586 101/05‐27‐009‐18W3/00 1057 932 0.531422826 101/06‐27‐009‐18W3/00 176 3124 0.053333333 101/06‐27‐009‐18W3/00 2051 34685 0.055830793 141/08‐27‐009‐18W3/00 36 5076 0.007042254 141/08‐27‐009‐18W3/00 386 30170 0.012632544 101/09‐27‐009‐18W3/00 2241 2 0.999108337 101/09‐27‐009‐18W3/00 9382 10 0.998935264 101/10‐27‐009‐18W3/00 0 110 0 101/10‐27‐009‐18W3/00 5 5305 0.00094162 101/11‐27‐009‐18W3/00 1635 523 0.757645968 101/11‐27‐009‐18W3/00 1936 723 0.728093268 131/12‐27‐009‐18W3/00 18 2780 0.006433167 131/12‐27‐009‐18W3/00 227 16578 0.013507885 141/13‐27‐009‐18W3/00 754 9273 0.075196968 141/13‐27‐009‐18W3/00 2513 44546 0.05340105 101/15‐27‐009‐18W3/00 191 6165 0.030050346 101/15‐27‐009‐18W3/00 1881 26269 0.066820604 101/09‐28‐009‐18W3/00 624 902 0.408912189 101/09‐28‐009‐18W3/00 3699 5728 0.392383579 101/01‐32‐009‐18W3/00 20 5 0.8 101/16‐31‐009‐18W3/00 320 565 0.361581921 131/06‐32‐009‐18W3/00 523 41 0.927304965 101/01‐32‐009‐18W3/00 96 7 0.932038835 101/09‐32‐009‐18W3/00 591 1 0.998310811 131/06‐32‐009‐18W3/00 1802 130 0.932712215 101/01‐33‐009‐18W3/00 1275 1 0.999216301 101/09‐32‐009‐18W3/00 2773 3 0.998919308 101/03‐33‐009‐18W3/00 480 1 0.997920998 101/01‐33‐009‐18W3/00 8946 9 0.998994975 101/05‐33‐009‐18W3/00 374 281 0.570992366 101/03‐33‐009‐18W3/00 6105 6 0.999018164 141/07‐33‐009‐18W3/00 198 12392 0.015726767 101/05‐33‐009‐18W3/00 948 1937 0.328596187 101/09‐33‐009‐18W3/00 519 1 0.998076923 141/07‐33‐009‐18W3/00 582 35672 0.016053401 141/10‐33‐009‐18W3/00 511 4830 0.095674967 101/09‐33‐009‐18W3/00 2878 3 0.998958695 101/11‐33‐009‐18W3/00 743 1 0.998655914 141/10‐33‐009‐18W3/00 2371 31981 0.069020727 101/13‐33‐009‐18W3/00 522 4982 0.094840116 101/11‐33‐009‐18W3/00 5764 6 0.998960139 101/14‐33‐009‐18W3/00 726 7273 0.090761345 101/13‐33‐009‐18W3/00 1505 22209 0.06346462

196

CPA Pretty Well ID First 3 mo. Total OIL (m3) First 3 mo. Total WTR (m3) Oil/Oil+water CPA Pretty Well ID First 12 mo. Total OIL (m3) First 12 mo. Total WTR (m3) Oil/Oil+Water 141/15‐33‐009‐18W3/00 0 14550 0 101/14‐33‐009‐18W3/00 3022 30753 0.089474463 142/15‐33‐009‐18W3/00 3377 0 1 141/15‐33‐009‐18W3/00 0 69556 0 101/16‐33‐009‐18W3/00 1123 3400 0.248286535 142/15‐33‐009‐18W3/00 22069 0 1 141/16‐33‐009‐18W3/00 0 14802 0 101/16‐33‐009‐18W3/00 5173 16399 0.239801595 101/01‐34‐009‐18W3/00 807 1 0.998762376 141/16‐33‐009‐18W3/00 0 76525 0 101/03‐34‐009‐18W3/00 1686 2 0.998815166 101/01‐34‐009‐18W3/00 2416 2 0.99917287 121/05‐34‐009‐18W3/00 80 8158 0.009711095 101/03‐34‐009‐18W3/00 6526 7 0.998928517 101/06‐34‐009‐18W3/00 263 6956 0.036431639 121/05‐34‐009‐18W3/00 352 36041 0.00967219 101/07‐34‐009‐18W3/00 1141 6721 0.145128466 101/06‐34‐009‐18W3/00 877 30312 0.028118888 101/08‐34‐009‐18W3/00 1136 10145 0.100700293 101/07‐34‐009‐18W3/00 5660 26741 0.174685966 101/09‐34‐009‐18W3/00 1117 1 0.999105546 101/08‐34‐009‐18W3/00 3012 42339 0.066415294 141/10‐34‐009‐18W3/00 226 6811 0.032115959 101/09‐34‐009‐18W3/00 3661 4 0.998908595 101/11‐34‐009‐18W3/00 1540 2 0.998702983 141/10‐34‐009‐18W3/00 1358 28963 0.044787441 121/12‐34‐009‐18W3/00 329 1485 0.181367144 101/11‐34‐009‐18W3/00 10262 10 0.99902648 101/13‐34‐009‐18W3/00 170 402 0.297202797 121/12‐34‐009‐18W3/00 1530 10320 0.129113924 101/14‐34‐009‐18W3/00 757 4664 0.139642132 101/13‐34‐009‐18W3/00 2683 8683 0.236054901 121/15‐34‐009‐18W3/00 110 3731 0.028638375 101/14‐34‐009‐18W3/00 3691 28719 0.113884604 101/01‐35‐009‐18W3/00 329 0 1 121/15‐34‐009‐18W3/00 756 15438 0.046683957 131/02‐35‐009‐18W3/00 13 7805 0.001662829 101/01‐35‐009‐18W3/00 329 0 1 101/03‐35‐009‐18W3/00 721 1 0.998614958 131/02‐35‐009‐18W3/00 26 14360 0.001807313 101/04‐35‐009‐18W3/00 498 4581 0.098050797 101/03‐35‐009‐18W3/00 721 1 0.998614958 101/11‐35‐009‐18W3/00 331 1 0.996987952 101/04‐35‐009‐18W3/00 2817 35973 0.07262181 141/04‐36‐009‐18W3/00 573 2 0.996521739 101/11‐35‐009‐18W3/00 331 1 0.996987952 101/04‐02‐010‐18W3/00 89 1 0.988888889 141/04‐36‐009‐18W3/00 2270 6 0.997363796 121/01‐03‐010‐18W3/00 562 1 0.998223801 101/04‐02‐010‐18W3/00 192 1 0.994818653 111/02‐03‐010‐18W3/00 615 4498 0.120281635 121/01‐03‐010‐18W3/00 4362 5 0.998855049 101/03‐03‐010‐18W3/00 1052 0 1 111/02‐03‐010‐18W3/00 2854 26082 0.098631463 101/11‐03‐010‐18W3/00 876 1 0.998859749 101/03‐03‐010‐18W3/00 5418 3 0.999446597 191/13‐03‐010‐18W3/00 1 398 0.002506266 101/11‐03‐010‐18W3/00 5740 5 0.999129678 101/01‐04‐010‐18W3/00 988 0 1 191/13‐03‐010‐18W3/00 4 2402 0.00166251 111/02‐04‐010‐18W3/00 562 3403 0.141740227 101/01‐04‐010‐18W3/00 3540 18 0.994940978 101/03‐04‐010‐18W3/00 1349 1 0.999259259 111/02‐04‐010‐18W3/00 2558 12336 0.171747012 111/07‐04‐010‐18W3/00 258 146 0.638613861 101/03‐04‐010‐18W3/00 5504 5 0.999092394 131/09‐04‐010‐18W3/00 5603 670 0.89319305 111/07‐04‐010‐18W3/00 258 146 0.638613861 101/11‐04‐010‐18W3/00 1038 1 0.999037536 131/09‐04‐010‐18W3/00 35208 11792 0.749106383 101/13‐04‐010‐18W3/00 48 3945 0.012021037 101/11‐04‐010‐18W3/00 5380 6 0.998886001 101/01‐05‐010‐18W3/00 1388 2 0.998561151 101/13‐04‐010‐18W3/00 232 18750 0.012222105 141/03‐05‐010‐18W3/00 73 0 1 101/01‐05‐010‐18W3/00 3500 4 0.998858447 111/07‐05‐010‐18W3/00 24 7688 0.003112033 141/03‐05‐010‐18W3/00 73 0 1 101/09‐05‐010‐18W3/00 1101 4 0.99638009 111/07‐05‐010‐18W3/00 77 23972 0.003201796 102/09‐05‐010‐18W3/00 0 36486 0 101/09‐05‐010‐18W3/00 7101 22 0.996911414 103/09‐05‐010‐18W3/00 0 11497 0 102/09‐05‐010‐18W3/00 0 204893 0 101/11‐05‐010‐18W3/00 1041 1 0.999040307 103/09‐05‐010‐18W3/00 0 146352 0 131/13‐05‐010‐18W3/00 499 8330 0.056518292 101/11‐05‐010‐18W3/00 3696 3 0.99918897 141/15‐05‐010‐18W3/00 184 266 0.408888889 131/13‐05‐010‐18W3/00 2524 40495 0.05867175 101/09‐06‐010‐18W3/00 288 10 0.966442953 141/15‐05‐010‐18W3/00 2576 6153 0.29510826 141/14‐06‐010‐18W3/00 158 255 0.382566586 101/09‐06‐010‐18W3/00 1552 38 0.976100629 101/01‐07‐010‐18W3/00 977 1 0.998977505 141/14‐06‐010‐18W3/00 586 1779 0.247780127 141/02‐07‐010‐18W3/00 1408 5569 0.201805934 101/01‐07‐010‐18W3/00 5405 10 0.998153278 101/03‐07‐010‐18W3/00 107 0 1 141/02‐07‐010‐18W3/00 5274 28392 0.156656567 141/07‐07‐010‐18W3/00 173 0 1 101/03‐07‐010‐18W3/00 1822 8 0.995628415 141/08‐07‐010‐18W3/00 0 11848 0 141/07‐07‐010‐18W3/00 1842 0 1 142/08‐07‐010‐18W3/00 0 11848 0 141/08‐07‐010‐18W3/00 0 53696 0 101/09‐07‐010‐18W3/00 1302 2 0.998466258 142/08‐07‐010‐18W3/00 0 53695 0 141/10‐07‐010‐18W3/00 178 8426 0.020688052 101/09‐07‐010‐18W3/00 4273 3 0.99929841 101/11‐07‐010‐18W3/00 856 2 0.997668998 141/10‐07‐010‐18W3/00 830 39160 0.020755189 101/14‐07‐010‐18W3/00 60 7218 0.008244023 101/11‐07‐010‐18W3/00 7482 16 0.997866098 101/01‐08‐010‐18W3/00 341 0 1 101/14‐07‐010‐18W3/00 415 43348 0.009482897 101/03‐08‐010‐18W3/00 1254 0 1 101/01‐08‐010‐18W3/00 1923 0 1 131/08‐08‐010‐18W3/00 563 2 0.996460177 101/03‐08‐010‐18W3/00 4343 0 1 121/11‐08‐010‐18W3/00 1229 0 1 131/08‐08‐010‐18W3/00 563 2 0.996460177 131/12‐08‐010‐18W3/00 689 8364 0.076107368 121/11‐08‐010‐18W3/00 5556 0 1 131/15‐08‐010‐18W3/00 89 706 0.111949686 131/12‐08‐010‐18W3/00 2678 37895 0.066004486 101/16‐08‐010‐18W3/00 451 1 0.997787611 131/15‐08‐010‐18W3/00 1691 12527 0.118933746 121/01‐09‐010‐18W3/00 311 2000 0.134573778 101/16‐08‐010‐18W3/00 5084 6 0.998821218 101/03‐09‐010‐18W3/00 824 1 0.998787879 121/01‐09‐010‐18W3/00 971 7080 0.120606136 121/04‐10‐010‐18W3/00 1801 2 0.998890738 101/03‐09‐010‐18W3/00 2715 3 0.998896247 121/01‐17‐010‐18W3/00 316 23 0.932153392 121/04‐10‐010‐18W3/00 9030 9 0.999004315 101/03‐17‐010‐18W3/00 827 1 0.998792271 121/01‐17‐010‐18W3/00 787 48 0.94251497 121/13‐17‐010‐18W3/00 16 36 0.307692308 101/03‐17‐010‐18W3/00 2036 2 0.999018646 101/01‐18‐010‐18W3/00 250 0 1 121/13‐17‐010‐18W3/00 33 44 0.428571429 101/03‐18‐010‐18W3/00 1269 8 0.993735317 101/01‐18‐010‐18W3/00 1328 6 0.995502249 101/05‐18‐010‐18W3/00 1904 0 1 101/03‐18‐010‐18W3/00 6362 14 0.997804266 121/06‐18‐010‐18W3/00 339 4972 0.063829787 101/05‐18‐010‐18W3/00 11252 0 1 101/09‐18‐010‐18W3/00 909 2 0.99780461 121/06‐18‐010‐18W3/00 1595 26606 0.056558278 101/11‐18‐010‐18W3/00 1961 12 0.993917892 101/09‐18‐010‐18W3/00 4621 4 0.999135135 101/15‐18‐010‐18W3/00 162 5182 0.030314371 101/11‐18‐010‐18W3/00 10800 28 0.997414112 121/01‐19‐010‐18W3/00 82 1 0.987951807 101/15‐18‐010‐18W3/00 994 30337 0.031725767 101/03‐19‐010‐18W3/00 828 0 1 121/01‐19‐010‐18W3/00 245 10 0.960784314

197

CPA Pretty Well ID First 3 mo. Total OIL (m3) First 3 mo. Total WTR (m3) Oil/Oil+water CPA Pretty Well ID First 12 mo. Total OIL (m3) First 12 mo. Total WTR (m3) Oil/Oil+Water 191/04‐11‐010‐19W3/00 702 2727 0.204724409 141/05‐19‐010‐18W3/00 8234 3122 0.725079253 101/09‐12‐010‐19W3/00 433 1 0.997695853 101/09‐12‐010‐19W3/00 2691 2 0.999257334 101/01‐13‐010‐19W3/00 1342 1 0.999255398 101/01‐13‐010‐19W3/00 6237 7 0.998878924 101/03‐13‐010‐19W3/00 1566 2 0.99872449 101/03‐13‐010‐19W3/00 7754 8 0.998969338 101/05‐13‐010‐19W3/00 754 1 0.998675497 101/05‐13‐010‐19W3/00 4103 41 0.990106178 131/06‐13‐010‐19W3/00 416 2123 0.163844033 131/06‐13‐010‐19W3/00 2968 17463 0.145269443 101/07‐13‐010‐19W3/00 1359 6 0.995604396 101/07‐13‐010‐19W3/00 4701 434 0.915481986 101/09‐13‐010‐19W3/00 1560 1 0.999359385 101/09‐13‐010‐19W3/00 6951 6 0.999137559 131/12‐13‐010‐19W3/00 73 1673 0.041809851 131/12‐13‐010‐19W3/00 568 15133 0.03617604 101/14‐13‐010‐19W3/00 1628 2 0.998773006 101/14‐13‐010‐19W3/00 6117 6 0.999020088 121/16‐14‐010‐19W3/00 112 0 1 121/16‐14‐010‐19W3/00 3116 7 0.997758565 141/09‐22‐010‐19W3/00 54 5113 0.010450939 141/09‐22‐010‐19W3/00 86 8331 0.010217417 141/15‐22‐010‐19W3/00 198 1646 0.107375271 141/15‐22‐010‐19W3/00 738 7437 0.090275229 101/16‐22‐010‐19W3/00 687 1 0.998546512 101/16‐22‐010‐19W3/00 3381 3 0.999113475 150/02‐23‐010‐19W3/00 1242 8 0.9936 150/02‐23‐010‐19W3/00 6213 50 0.992016605 191/05‐23‐010‐19W3/00 38 54 0.413043478 191/05‐23‐010‐19W3/00 122 216 0.360946746 101/06‐23‐010‐19W3/00 1252 1 0.999201915 101/06‐23‐010‐19W3/00 2898 5 0.998277644 101/07‐23‐010‐19W3/00 768 89 0.896149358 101/07‐23‐010‐19W3/00 3193 6181 0.340623 101/08‐23‐010‐19W3/00 1029 1 0.999029126 101/08‐23‐010‐19W3/00 3394 4 0.998822837 121/09‐23‐010‐19W3/00 434 1862 0.18902439 121/09‐23‐010‐19W3/00 2733 22259 0.109354994 121/10‐23‐010‐19W3/00 602 1 0.998341625 121/10‐23‐010‐19W3/00 2490 4 0.998396151 101/12‐23‐010‐19W3/00 886 1 0.998872604 101/12‐23‐010‐19W3/00 2331 4 0.998286938 101/14‐23‐010‐19W3/00 229 0 1 101/14‐23‐010‐19W3/00 2647 4 0.998491135 191/14‐23‐010‐19W3/00 39 8903 0.00436144 191/14‐23‐010‐19W3/00 726 45627 0.015662417 101/16‐23‐010‐19W3/00 774 2 0.99742268 101/16‐23‐010‐19W3/00 2970 4 0.99865501 101/16‐23‐010‐19W3/02 396 6458 0.057776481 101/16‐23‐010‐19W3/02 2420 35639 0.063585486 101/02‐24‐010‐19W3/00 1920 1 0.999479438 101/02‐24‐010‐19W3/00 7320 6 0.999180999 101/04‐24‐010‐19W3/00 765 1 0.998694517 101/04‐24‐010‐19W3/00 3116 5 0.998397949 101/06‐24‐010‐19W3/00 877 1 0.998861048 101/06‐24‐010‐19W3/00 5199 6 0.998847262 101/08‐24‐010‐19W3/00 926 1 0.998921251 101/08‐24‐010‐19W3/00 3902 5 0.998720246 141/09‐24‐010‐19W3/00 318 3759 0.077998528 141/09‐24‐010‐19W3/00 864 14134 0.057607681 101/10‐24‐010‐19W3/00 1668 3 0.998204668 101/10‐24‐010‐19W3/00 6294 8 0.998730562 101/12‐24‐010‐19W3/00 960 1 0.998959417 101/12‐24‐010‐19W3/00 5091 17 0.996671887 101/14‐24‐010‐19W3/00 346 8 0.97740113 101/14‐24‐010‐19W3/00 1916 175 0.916307987 101/04‐25‐010‐19W3/00 714 1 0.998601399 101/04‐25‐010‐19W3/00 2549 3 0.998824451 131/05‐25‐010‐19W3/00 479 987 0.326739427 131/05‐25‐010‐19W3/00 1467 5837 0.20084885 101/02‐26‐010‐19W3/00 18 0 1 101/02‐26‐010‐19W3/00 762 3 0.996078431 101/04‐26‐010‐19W3/00 20 0 1 101/04‐26‐010‐19W3/00 1510 1 0.999338187 140/05‐26‐010‐19W3/00 1601 23 0.985837438 140/05‐26‐010‐19W3/00 5651 97 0.983124565 101/06‐26‐010‐19W3/00 23 0 1 101/06‐26‐010‐19W3/00 2103 1 0.999524715 101/08‐26‐010‐19W3/00 238 0 1 101/08‐26‐010‐19W3/00 1161 26 0.97809604 121/10‐26‐010‐19W3/00 73 2507 0.028294574 121/10‐26‐010‐19W3/00 92 3610 0.024851432 101/12‐26‐010‐19W3/00 107 1 0.990740741 101/12‐26‐010‐19W3/00 981 67 0.936068702 101/14‐26‐010‐19W3/00 111 1 0.991071429 101/14‐26‐010‐19W3/00 1491 5 0.996657754 101/02‐27‐010‐19W3/00 1010 1 0.99901088 101/02‐27‐010‐19W3/00 3721 4 0.998926174 102/02‐27‐010‐19W3/00 0 10851 0 102/02‐27‐010‐19W3/00 0 91979 0 191/03‐27‐010‐19W3/00 2 4433 0.000450958 191/03‐27‐010‐19W3/00 13 17945 0.000723911 141/05‐27‐010‐19W3/00 364 2342 0.134515891 141/05‐27‐010‐19W3/00 1848 8001 0.187633262 101/06‐27‐010‐19W3/00 35 0 1 101/06‐27‐010‐19W3/00 1189 1 0.999159664 101/08‐27‐010‐19W3/00 858 1 0.998835856 101/08‐27‐010‐19W3/00 5046 5 0.999010097 101/10‐27‐010‐19W3/00 693 1 0.998559078 101/10‐27‐010‐19W3/00 3392 4 0.998822144 102/10‐27‐010‐19W3/00 0 1467 0 102/10‐27‐010‐19W3/00 0 2815 0 141/10‐27‐010‐19W3/00 0 11249 0 141/10‐27‐010‐19W3/00 0 32036 0 191/10‐27‐010‐19W3/00 180 3166 0.053795577 191/10‐27‐010‐19W3/00 1082 16182 0.062673772 141/11‐27‐010‐19W3/00 213 5023 0.040679908 141/11‐27‐010‐19W3/00 1014 17473 0.054849354 191/11‐27‐010‐19W3/00 15 265 0.053571429 191/11‐27‐010‐19W3/00 188 1728 0.098121086 101/12‐27‐010‐19W3/00 657 1 0.998480243 101/12‐27‐010‐19W3/00 1900 3 0.998423542 102/12‐27‐010‐19W3/00 0 3491 0 102/12‐27‐010‐19W3/00 0 4245 0 121/14‐27‐010‐19W3/00 106 0 1 121/14‐27‐010‐19W3/00 959 9 0.990702479 131/15‐27‐010‐19W3/00 70 2513 0.027100271 131/15‐27‐010‐19W3/00 319 9056 0.034026667 101/16‐27‐010‐19W3/00 1088 1 0.999081726 101/16‐27‐010‐19W3/00 4195 4 0.999047392 141/16‐28‐010‐19W3/00 224 92 0.708860759 141/16‐28‐010‐19W3/00 579 223 0.721945137 121/01‐33‐010‐19W3/00 355 79 0.81797235 121/01‐33‐010‐19W3/00 1191 277 0.811307902 111/07‐33‐010‐19W3/00 587 2194 0.211075153 111/07‐33‐010‐19W3/00 2067 7067 0.226297351 101/08‐33‐010‐19W3/00 156 1 0.993630573 101/08‐33‐010‐19W3/00 2399 3 0.998751041 101/10‐33‐010‐19W3/00 883 1 0.998868778 101/10‐33‐010‐19W3/00 2731 3 0.998902707 141/11‐33‐010‐19W3/00 202 725 0.217907228 141/11‐33‐010‐19W3/00 1007 2729 0.269539615 141/13‐33‐010‐19W3/00 168 70 0.705882353 141/13‐33‐010‐19W3/00 458 330 0.581218274 101/14‐33‐010‐19W3/00 796 1 0.998745295 101/14‐33‐010‐19W3/00 2417 3 0.998760331 101/16‐33‐010‐19W3/00 773 1 0.99870801 101/16‐33‐010‐19W3/00 2627 4 0.998479666 101/02‐34‐010‐19W3/00 21 0 1 101/02‐34‐010‐19W3/00 2173 1 0.999540018 101/04‐34‐010‐19W3/00 455 1 0.997807018 101/04‐34‐010‐19W3/00 1484 2 0.998654105 101/06‐34‐010‐19W3/00 714 0 1 101/06‐34‐010‐19W3/00 3392 6 0.998234255 111/08‐34‐010‐19W3/00 494 288 0.631713555 111/08‐34‐010‐19W3/00 1866 1146 0.619521912 101/10‐34‐010‐19W3/00 776 2 0.997429306 101/10‐34‐010‐19W3/00 2925 35 0.988175676 101/12‐34‐010‐19W3/00 576 1 0.998266898 101/12‐34‐010‐19W3/00 2198 3 0.998636983 141/04‐35‐010‐19W3/00 27 238 0.101886792 141/04‐35‐010‐19W3/00 119 675 0.149874055 141/04‐35‐010‐19W3/02 55 4 0.93220339 141/04‐35‐010‐19W3/02 99 6 0.942857143 101/09‐32‐011‐17W3/00 354 476 0.426506024 101/09‐32‐011‐17W3/00 2364 4454 0.346729246 101/09‐33‐011‐17W3/00 769 283 0.730988593 101/09‐33‐011‐17W3/00 2231 2586 0.463151339

198

CPA Pretty Well ID First 3 mo. Total OIL (m3) First 3 mo. Total WTR (m3) Oil/Oil+water CPA Pretty Well ID First 12 mo. Total OIL (m3) First 12 mo. Total WTR (m3) Oil/Oil+Water 191/13‐02‐011‐19W3/00 804 3022 0.21014114 101/01‐03‐011‐19W3/00 4819 18 0.996278685 101/01‐03‐011‐19W3/00 1200 0 1 101/03‐03‐011‐19W3/00 2336 18 0.992353441 101/03‐03‐011‐19W3/00 635 8 0.98755832 15A/04‐03‐011‐19W3/00 3295 1473 0.691065436 15A/04‐03‐011‐19W3/00 1045 19 0.982142857 121/06‐03‐011‐19W3/00 1557 810 0.657794677 121/06‐03‐011‐19W3/00 443 216 0.672230653 101/07‐03‐011‐19W3/00 1166 0 1 101/07‐03‐011‐19W3/00 337 0 1 131/08‐03‐011‐19W3/00 703 2070 0.253516048 131/08‐03‐011‐19W3/00 232 555 0.294790343 111/05‐04‐012‐17W3/00 119 1628 0.068116772 111/05‐04‐012‐17W3/00 88 780 0.101382488 101/01‐05‐012‐17W3/00 16686 3616 0.821889469 101/01‐05‐012‐17W3/00 3432 453 0.883397683 101/03‐05‐012‐17W3/00 9531 12 0.998742534 101/03‐05‐012‐17W3/00 1327 4 0.996994741 120/03‐05‐012‐17W3/00 0 63433 0 120/03‐05‐012‐17W3/00 0 3300 0 101/05‐05‐012‐17W3/00 28539 150 0.994771515 101/05‐05‐012‐17W3/00 4094 16 0.996107056 121/07‐05‐012‐17W3/00 13732 23244 0.371376028 121/07‐05‐012‐17W3/00 1705 4576 0.27145359 101/11‐05‐012‐17W3/00 7788 1771 0.814729574 101/11‐05‐012‐17W3/00 1373 51 0.964185393 111/08‐06‐012‐17W3/00 933 6173 0.131297495 111/08‐06‐012‐17W3/00 290 1110 0.207142857 101/09‐06‐012‐17W3/00 12670 72 0.994349396 101/09‐06‐012‐17W3/00 1906 11 0.994261868 141/02‐07‐012‐17W3/00 166 5423 0.029701199 141/02‐07‐012‐17W3/00 166 5423 0.029701199 101/10‐07‐012‐17W3/00 3591 2995 0.545247495 101/10‐07‐012‐17W3/00 410 215 0.656 121/11‐07‐012‐17W3/00 2761 17552 0.135922808 121/11‐07‐012‐17W3/00 723 3738 0.162071284 141/10‐23‐012‐18W3/00 2481 3270 0.431403234 141/10‐23‐012‐18W3/00 745 858 0.464753587 111/16‐23‐012‐18W3/00 872 587 0.597669637 111/16‐23‐012‐18W3/00 73 175 0.294354839 131/06‐24‐012‐18W3/00 4091 675 0.8583718 131/06‐24‐012‐18W3/00 1260 44 0.966257669 121/12‐24‐012‐18W3/00 5316 317 0.943724481 121/12‐24‐012‐18W3/00 1516 36 0.976804124 101/06‐26‐012‐18W3/00 1644 227 0.878674506 101/06‐26‐012‐18W3/00 440 67 0.867850099 101/12‐26‐012‐18W3/00 5330 45 0.991627907 101/12‐26‐012‐18W3/00 1858 0 1 101/08‐27‐012‐18W3/00 27 389 0.064903846 101/08‐27‐012‐18W3/00 27 389 0.064903846 101/10‐27‐012‐18W3/02 0 18606 0 101/10‐27‐012‐18W3/02 0 4026 0 101/10‐27‐012‐18W3/00 3004 8532 0.260402219 101/10‐27‐012‐18W3/00 1592 3005 0.346312813 101/16‐27‐012‐18W3/00 6892 22 0.99681805 101/16‐27‐012‐18W3/00 4631 22 0.995271868 141/08‐33‐012‐18W3/00 4024 0 1 141/08‐33‐012‐18W3/00 1229 0 1 101/10‐33‐012‐18W3/00 345 2462 0.122907018 101/10‐33‐012‐18W3/00 345 2462 0.122907018 141/10‐33‐012‐18W3/00 344 119 0.742980562 141/10‐33‐012‐18W3/00 168 24 0.875 131/16‐33‐012‐18W3/02 0 285 0 131/16‐33‐012‐18W3/02 0 231 0 131/16‐33‐012‐18W3/00 651 27 0.960176991 131/16‐33‐012‐18W3/00 149 4 0.973856209 101/02‐34‐012‐18W3/00 6694 3 0.999552038 101/02‐34‐012‐18W3/00 4425 3 0.999322493 101/06‐34‐012‐18W3/00 1133 0 1 101/06‐34‐012‐18W3/00 426 0 1 101/08‐34‐012‐18W3/00 0 51608 0 101/08‐34‐012‐18W3/00 0 12559 0 121/12‐34‐012‐18W3/00 650 134 0.829081633 121/12‐34‐012‐18W3/00 189 43 0.814655172 0

199

CPA Pretty Well ID First 120 mo. Total OIL (m3) First 120 mo. Total WTR (m3) Oil/Oil+water CPA Pretty Well ID First 120 mo. Total OIL (m3) First 120 mo. Total WTR (m3) Oil/Oil+water 101/13‐18‐009‐17W3/00 13718 1565 0.897598639 101/16‐33‐009‐18W3/00 29671 264665 0.100806561 131/04‐19‐009‐17W3/00 2250 203 0.917244191 141/16‐33‐009‐18W3/00 0 268430 0 131/05‐19‐009‐17W3/00 1082 105 0.911541702 101/01‐34‐009‐18W3/00 117786 14845 0.888072924 101/11‐13‐009‐18W3/00 2499 484 0.837747234 101/03‐34‐009‐18W3/00 173756 19341 0.899837905 131/14‐13‐009‐18W3/00 18154 4651 0.796053497 121/05‐34‐009‐18W3/00 6439 221533 0.028244697 101/15‐13‐009‐18W3/00 7289 96594 0.070165475 101/06‐34‐009‐18W3/00 12134 328322 0.035640435 101/16‐13‐009‐18W3/00 12115 109 0.991083115 101/07‐34‐009‐18W3/00 28857 382694 0.070117677 131/01‐23‐009‐18W3/00 1806 1209 0.599004975 101/08‐34‐009‐18W3/00 14890 399292 0.035950379 141/02‐23‐009‐18W3/00 1014 1020 0.498525074 101/09‐34‐009‐18W3/00 33261 15231 0.685906954 101/07‐23‐009‐18W3/00 19160 2146 0.899277199 141/10‐34‐009‐18W3/00 15415 238950 0.060601891 191/08‐23‐009‐18W3/00 10182 1473 0.873616474 101/11‐34‐009‐18W3/00 153534 10017 0.93875305 101/09‐23‐009‐18W3/00 75611 71736 0.513149233 121/12‐34‐009‐18W3/00 10341 119485 0.079652766 121/10‐23‐009‐18W3/00 3554 5396 0.397094972 101/13‐34‐009‐18W3/00 41523 61677 0.402354651 141/11‐23‐009‐18W3/00 1857 7438 0.199784831 101/14‐34‐009‐18W3/00 19480 303596 0.06029541 131/14‐23‐009‐18W3/00 10335 99725 0.093903325 121/15‐34‐009‐18W3/00 20357 164394 0.110186142 141/15‐23‐009‐18W3/00 24630 263769 0.085402515 101/01‐35‐009‐18W3/00 98747 16507 0.856777205 101/01‐24‐009‐18W3/00 25721 16451 0.609907047 131/02‐35‐009‐18W3/00 3538 76093 0.044429933 121/02‐24‐009‐18W3/00 18701 62675 0.229809772 101/03‐35‐009‐18W3/00 66675 35798 0.650659198 132/02‐24‐009‐18W3/00 8461 179162 0.045095751 101/04‐35‐009‐18W3/00 24894 663646 0.036154762 101/03‐24‐009‐18W3/00 87460 4063 0.955606787 101/11‐35‐009‐18W3/00 8771 9 0.998974943 131/03‐24‐009‐18W3/00 5414 113883 0.045382533 141/04‐36‐009‐18W3/00 22132 8523 0.721970315 101/04‐24‐009‐18W3/00 478 331 0.590852905 101/04‐02‐010‐18W3/00 1740 3 0.99827883 141/05‐24‐009‐18W3/00 18576 13975 0.570673712 121/01‐03‐010‐18W3/00 29302 46189 0.38815223 101/06‐24‐009‐18W3/00 3651 1848 0.663938898 111/02‐03‐010‐18W3/00 11790 316415 0.03592267 101/07‐24‐009‐18W3/00 34187 8464 0.801552132 101/03‐03‐010‐18W3/00 59669 81762 0.421894776 121/08‐24‐009‐18W3/02 39012 441803 0.081137236 101/11‐03‐010‐18W3/00 9968 9 0.999097925 121/08‐24‐009‐18W3/00 21 180 0.104477612 191/13‐03‐010‐18W3/00 4 2402 0.00166251 101/10‐24‐009‐18W3/00 3446 1074 0.762389381 101/01‐04‐010‐18W3/00 51774 47028 0.524017732 101/11‐24‐009‐18W3/00 13862 197 0.985987624 111/02‐04‐010‐18W3/00 19500 161749 0.1075868 102/11‐24‐009‐18W3/00 0 330607 0 101/03‐04‐010‐18W3/00 128169 259 0.997983306 101/12‐24‐009‐18W3/00 599 826 0.420350877 111/07‐04‐010‐18W3/00 258 146 0.638613861 111/13‐24‐009‐18W3/00 15281 22282 0.406809893 131/09‐04‐010‐18W3/00 157997 412931 0.276737172 121/05‐25‐009‐18W3/00 45739 1012797 0.043209678 101/11‐04‐010‐18W3/00 138717 16861 0.891623494 131/06‐25‐009‐18W3/00 5098 24958 0.169616715 101/13‐04‐010‐18W3/00 5661 143418 0.037973155 111/08‐25‐009‐18W3/00 21 125 0.143835616 101/01‐05‐010‐18W3/00 116977 79429 0.595587711 121/12‐25‐009‐18W3/00 21821 584189 0.036007657 141/03‐05‐010‐18W3/00 73 0 1 111/13‐25‐009‐18W3/00 147511 152552 0.491600097 111/07‐05‐010‐18W3/00 4308 184013 0.022875834 101/01‐26‐009‐18W3/00 0 329912 0 101/09‐05‐010‐18W3/00 120045 30453 0.797651796 101/01‐26‐009‐18W3/02 6588 1951 0.771518913 103/09‐05‐010‐18W3/00 0 978189 0 102/01‐26‐009‐18W3/00 0 1493744 0 101/11‐05‐010‐18W3/00 65862 53354 0.552459401 141/02‐26‐009‐18W3/00 335 33180 0.009995524 131/13‐05‐010‐18W3/00 27795 556938 0.047534516 101/03‐26‐009‐18W3/00 55536 111674 0.332133246 141/15‐05‐010‐18W3/00 13953 163463 0.078645669 131/04‐26‐009‐18W3/00 366 20147 0.017842344 101/09‐06‐010‐18W3/00 1552 38 0.976100629 121/05‐26‐009‐18W3/00 149 55062 0.002698738 141/14‐06‐010‐18W3/00 1031 3657 0.219923208 121/06‐26‐009‐18W3/00 37 23246 0.001589142 101/01‐07‐010‐18W3/00 138658 7198 0.950649956 141/07‐26‐009‐18W3/00 6543 106322 0.057971913 141/02‐07‐010‐18W3/00 38729 454995 0.078442612 121/08‐26‐009‐18W3/00 1121 102466 0.010821821 101/03‐07‐010‐18W3/00 41120 13410 0.754080323 101/09‐26‐009‐18W3/00 237416 112511 0.678472939 141/07‐07‐010‐18W3/00 20835 12854 0.618451126 101/10‐26‐009‐18W3/00 7231 98876 0.06814819 141/08‐07‐010‐18W3/00 0 214211 0 101/11‐26‐009‐18W3/00 142425 43203 0.767260327 142/08‐07‐010‐18W3/00 0 121622 0 101/12‐26‐009‐18W3/00 15195 687609 0.021620537 101/09‐07‐010‐18W3/00 98228 94 0.999043958 131/12‐26‐009‐18W3/00 0 255265 0 141/10‐07‐010‐18W3/00 22097 339968 0.061030478 101/13‐26‐009‐18W3/00 47212 280718 0.14396975 101/11‐07‐010‐18W3/00 104963 25725 0.803157138 121/14‐26‐009‐18W3/00 14231 142331 0.090896897 101/14‐07‐010‐18W3/00 415 43348 0.009482897 121/01‐27‐009‐18W3/00 0 649509 0 101/01‐08‐010‐18W3/00 14876 35407 0.295845514 141/03‐27‐009‐18W3/00 35684 123035 0.224825005 101/03‐08‐010‐18W3/00 90159 147514 0.379340522 101/05‐27‐009‐18W3/00 6498 12800 0.336718831 131/08‐08‐010‐18W3/00 563 2 0.996460177 101/06‐27‐009‐18W3/00 23745 150477 0.136291628 121/11‐08‐010‐18W3/00 73721 87807 0.456397652 141/08‐27‐009‐18W3/00 11911 116752 0.092575177 131/12‐08‐010‐18W3/00 11943 356503 0.032414519 101/09‐27‐009‐18W3/00 83118 85616 0.492597817 131/15‐08‐010‐18W3/00 8482 176629 0.045821156 101/10‐27‐009‐18W3/00 340 61523 0.005496015 101/16‐08‐010‐18W3/00 21407 33849 0.387414941 101/11‐27‐009‐18W3/00 1936 723 0.728093268 121/01‐09‐010‐18W3/00 5619 73419 0.071092386 131/12‐27‐009‐18W3/00 2518 91503 0.026781251 101/03‐09‐010‐18W3/00 3602 5 0.998613806 141/13‐27‐009‐18W3/00 48548 364137 0.117639362 121/04‐10‐010‐18W3/00 42139 85773 0.329437426 101/15‐27‐009‐18W3/00 27773 301441 0.08436154 121/01‐17‐010‐18W3/00 3009 388 0.885781572 101/09‐28‐009‐18W3/00 44032 272945 0.138912287 101/03‐17‐010‐18W3/00 2036 2 0.999018646 101/01‐32‐009‐18W3/00 2974 614 0.828874025 121/13‐17‐010‐18W3/00 33 44 0.428571429 131/06‐32‐009‐18W3/00 9640 1111 0.896660776 101/01‐18‐010‐18W3/00 24473 2290 0.914434107 101/09‐32‐009‐18W3/00 25426 4331 0.854454414 101/03‐18‐010‐18W3/00 89774 3965 0.957701704 101/01‐33‐009‐18W3/00 225588 30315 0.881537145 101/05‐18‐010‐18W3/00 120849 71425 0.628524918 101/03‐33‐009‐18W3/00 13364 13 0.999028183 121/06‐18‐010‐18W3/00 21985 612495 0.034650422 101/05‐33‐009‐18W3/00 3163 14176 0.182421132 101/09‐18‐010‐18W3/00 71554 495 0.993129676 141/07‐33‐009‐18W3/00 15809 399551 0.038060959 101/11‐18‐010‐18W3/00 124906 62512 0.666456797 101/09‐33‐009‐18W3/00 45602 241 0.994742927 101/15‐18‐010‐18W3/00 8574 336219 0.024867094 141/10‐33‐009‐18W3/00 12421 381138 0.031560706 121/01‐19‐010‐18W3/00 1026 42 0.960674157 101/11‐33‐009‐18W3/00 50577 15530 0.765077828 101/03‐19‐010‐18W3/00 63206 73039 0.463914272 101/13‐33‐009‐18W3/00 19956 151123 0.116647864 141/05‐19‐010‐18W3/00 27236 169677 0.13831489 101/14‐33‐009‐18W3/00 34464 623133 0.052408998 191/04‐11‐010‐19W3/00 4363 22672 0.161383392 141/15‐33‐009‐18W3/00 0 519996 0 101/09‐12‐010‐19W3/00 4310 4 0.999072786 142/15‐33‐009‐18W3/00 93139 107576 0.464036071 101/01‐13‐010‐19W3/00 124535 13564 0.901780607

200

CPA Pretty Well ID First 120 mo. Total OIL (m3) First 120 mo. Total WTR (m3) Oil/Oil+water CPA Pretty Well ID First 120 mo. Total OIL (m3) First 120 mo. Total WTR (m3) Oil/Oil+water 101/03‐13‐010‐19W3/00 126478 62902 0.667852994 141/16‐28‐010‐19W3/00 2513 1236 0.670312083 101/05‐13‐010‐19W3/00 54260 7099 0.884303851 121/01‐33‐010‐19W3/00 6955 2175 0.76177437 131/06‐13‐010‐19W3/00 18080 186421 0.088410326 111/07‐33‐010‐19W3/00 15578 39010 0.285374075 101/07‐13‐010‐19W3/00 37759 301062 0.111442325 101/08‐33‐010‐19W3/00 27316 7154 0.792457209 101/09‐13‐010‐19W3/00 113744 146529 0.437018054 101/10‐33‐010‐19W3/00 13325 17 0.998725828 131/12‐13‐010‐19W3/00 5068 130815 0.037296792 141/11‐33‐010‐19W3/00 4269 10911 0.281225296 101/14‐13‐010‐19W3/00 7290 7 0.999040702 141/13‐33‐010‐19W3/00 1010 1644 0.380557649 121/16‐14‐010‐19W3/00 17910 3747 0.826984347 101/14‐33‐010‐19W3/00 18979 11568 0.621304874 141/09‐22‐010‐19W3/00 749 74132 0.010002537 101/16‐33‐010‐19W3/00 22397 17084 0.56728553 141/15‐22‐010‐19W3/00 4331 64309 0.063097319 101/02‐34‐010‐19W3/00 31771 4094 0.885849714 101/16‐22‐010‐19W3/00 21203 19764 0.517562916 101/04‐34‐010‐19W3/00 19791 13 0.999343567 150/02‐23‐010‐19W3/00 39293 27311 0.589949553 101/06‐34‐010‐19W3/00 36088 436 0.988062644 191/05‐23‐010‐19W3/00 3111 11272 0.216297017 111/08‐34‐010‐19W3/00 7604 8225 0.480384105 101/06‐23‐010‐19W3/00 19141 620 0.96862507 101/10‐34‐010‐19W3/00 13971 977 0.934640086 101/07‐23‐010‐19W3/00 15646 301479 0.049337012 101/12‐34‐010‐19W3/00 23107 92 0.996034312 101/08‐23‐010‐19W3/00 43569 2963 0.93632339 141/04‐35‐010‐19W3/00 119 675 0.149874055 121/09‐23‐010‐19W3/00 11763 223868 0.049921275 141/04‐35‐010‐19W3/02 366 39 0.903703704 121/10‐23‐010‐19W3/00 34373 543 0.98444839 101/09‐32‐011‐17W3/00 13825 71555 0.161923167 101/12‐23‐010‐19W3/00 5434 10 0.998163115 101/09‐33‐011‐17W3/00 5619 26231 0.176420722 101/14‐23‐010‐19W3/00 16416 26 0.998418684 191/13‐02‐011‐19W3/00 1826 8475 0.177264343 191/14‐23‐010‐19W3/00 3223 170275 0.018576583 101/01‐03‐011‐19W3/00 9505 26 0.99727206 101/16‐23‐010‐19W3/00 39587 13263 0.749044465 101/03‐03‐011‐19W3/00 22937 20583 0.527045037 101/16‐23‐010‐19W3/02 21630 445854 0.046268963 15A/04‐03‐011‐19W3/00 14559 50308 0.224443862 101/02‐24‐010‐19W3/00 102044 65855 0.607770148 121/06‐03‐011‐19W3/00 7955 19256 0.292345008 101/04‐24‐010‐19W3/00 34314 28377 0.547351294 101/07‐03‐011‐19W3/00 13994 2377 0.854804227 101/06‐24‐010‐19W3/00 36582 25573 0.588560856 131/08‐03‐011‐19W3/00 5191 30439 0.145691833 101/08‐24‐010‐19W3/00 73954 31471 0.701484468 111/05‐04‐012‐17W3/00 119 1628 0.068116772 141/09‐24‐010‐19W3/00 15787 377959 0.040094376 101/01‐05‐012‐17W3/00 139799 221350 0.387095077 101/10‐24‐010‐19W3/00 18517 20 0.998921077 101/03‐05‐012‐17W3/00 197284 36518 0.843808008 101/12‐24‐010‐19W3/00 40275 24124 0.62539791 120/03‐05‐012‐17W3/00 0 987284 0 101/14‐24‐010‐19W3/00 8732 10602 0.451639599 101/05‐05‐012‐17W3/00 81836 272645 0.230861457 101/04‐25‐010‐19W3/00 30591 16695 0.646935668 121/07‐05‐012‐17W3/00 90691 358966 0.201689288 131/05‐25‐010‐19W3/00 7088 67004 0.095664849 101/11‐05‐012‐17W3/00 15175 25017 0.377562699 101/02‐26‐010‐19W3/00 6649 883 0.882766861 111/08‐06‐012‐17W3/00 4247 111815 0.036592511 101/04‐26‐010‐19W3/00 45467 59 0.998704037 101/09‐06‐012‐17W3/00 155045 191208 0.447779514 140/05‐26‐010‐19W3/00 40626 32452 0.555926544 141/02‐07‐012‐17W3/00 2564 99483 0.025125677 101/06‐26‐010‐19W3/00 19178 9 0.999530932 101/10‐07‐012‐17W3/00 53631 140943 0.275632921 101/08‐26‐010‐19W3/00 2305 109 0.954846727 121/11‐07‐012‐17W3/00 29300 378501 0.071848769 121/10‐26‐010‐19W3/00 2704 35694 0.070420334 141/10‐23‐012‐18W3/00 10720 26868 0.285197403 101/12‐26‐010‐19W3/00 17497 14975 0.538833457 111/16‐23‐012‐18W3/00 3535 5027 0.412870825 101/14‐26‐010‐19W3/00 6245 53 0.99158463 131/06‐24‐012‐18W3/00 23974 45032 0.347419065 101/02‐27‐010‐19W3/00 9881 11 0.99888799 121/12‐24‐012‐18W3/00 27163 73112 0.270885066 102/02‐27‐010‐19W3/00 0 433207 0 101/06‐26‐012‐18W3/00 18150 22190 0.449925632 191/03‐27‐010‐19W3/00 14 18613 0.000751597 101/12‐26‐012‐18W3/00 38318 65252 0.369972 141/05‐27‐010‐19W3/00 6043 117269 0.049005774 101/08‐27‐012‐18W3/00 27 389 0.064903846 101/06‐27‐010‐19W3/00 21894 18806 0.537936118 101/10‐27‐012‐18W3/02 0 23974 0 101/08‐27‐010‐19W3/00 48741 259 0.994714286 101/10‐27‐012‐18W3/00 3067 9554 0.243007686 101/10‐27‐010‐19W3/00 37153 1918 0.950909882 101/16‐27‐012‐18W3/00 61802 174503 0.261534881 102/10‐27‐010‐19W3/00 0 34349 0 141/08‐33‐012‐18W3/00 18456 2 0.999891646 141/10‐27‐010‐19W3/00 0 391310 0 101/10‐33‐012‐18W3/00 495 6253 0.073355068 191/10‐27‐010‐19W3/00 2884 50811 0.053710774 141/10‐33‐012‐18W3/00 1626 638 0.71819788 141/11‐27‐010‐19W3/00 6649 116621 0.053938509 131/16‐33‐012‐18W3/02 73 7292 0.009911745 191/11‐27‐010‐19W3/00 527 9219 0.054073466 131/16‐33‐012‐18W3/00 1933 79 0.960735586 101/12‐27‐010‐19W3/00 10278 12 0.998833819 101/02‐34‐012‐18W3/00 42486 5416 0.886935827 102/12‐27‐010‐19W3/00 0 32258 0 101/06‐34‐012‐18W3/00 13622 17 0.998753574 121/14‐27‐010‐19W3/00 22393 200 0.991147701 101/08‐34‐012‐18W3/00 0 191628 0 131/15‐27‐010‐19W3/00 6108 156153 0.037643057 121/12‐34‐012‐18W3/00 1644 652 0.716027875 101/16‐27‐010‐19W3/00 17543 16140 0.52082653

201

Leitchville Oil-cut Calculations

CPA Pretty Well ID First 3 mo. Total OIL (m3) First 3 mo. Total WTR (m3) Oil/Oil+water CPA Pretty Well ID First 120 mo. Total OIL (m3) First 120 mo. Total WTR (m3) Oil/Oil+Water 101/14‐04‐009‐18W3/00 120 251 0.323450135 101/14‐04‐009‐18W3/00 340 801 0.297984224 131/08‐05‐009‐18W3/00 112 0 1 131/08‐05‐009‐18W3/00 1812 15 0.991789819 131/10‐05‐009‐18W3/00 25 41 0.378787879 131/10‐05‐009‐18W3/00 30 41 0.422535211 101/12‐05‐009‐18W3/00 288 212 0.576 101/12‐05‐009‐18W3/00 5269 7344 0.417743598 141/14‐05‐009‐18W3/00 287 3 0.989655172 141/14‐05‐009‐18W3/00 11710 834 0.933514031 101/04‐06‐009‐18W3/00 24 287 0.077170418 101/04‐06‐009‐18W3/00 1613 6258 0.204929488 120/06‐06‐009‐18W3/00 653 16 0.976083707 120/06‐06‐009‐18W3/00 12662 398 0.969525268 121/08‐06‐009‐18W3/00 293 1 0.996598639 121/08‐06‐009‐18W3/00 5498 100 0.982136477 120/11‐06‐009‐18W3/00 32 189 0.14479638 120/11‐06‐009‐18W3/00 2071 4215 0.329462297 141/16‐06‐009‐18W3/00 106 95 0.527363184 141/16‐06‐009‐18W3/00 5640 1273 0.815854188 101/16‐07‐009‐18W3/00 143 13 0.916666667 101/16‐07‐009‐18W3/00 4577 102 0.97820047 111/04‐08‐009‐18W3/00 214 447 0.323751891 111/04‐08‐009‐18W3/00 5940 5237 0.53144851 101/06‐08‐009‐18W3/00 90 0 1 101/06‐08‐009‐18W3/00 12271 3781 0.764453028 101/08‐08‐009‐18W3/00 88 2 0.977777778 101/08‐08‐009‐18W3/00 4593 1171 0.796842471 101/14‐08‐009‐18W3/00 230 7 0.970464135 101/14‐08‐009‐18W3/00 11948 1939 0.860373011 101/16‐08‐009‐18W3/00 47 0 1 101/16‐08‐009‐18W3/00 551 259 0.680246914 101/06‐09‐009‐18W3/00 277 0 1 101/06‐09‐009‐18W3/00 6683 1 0.999850389 101/08‐09‐009‐18W3/00 0 0 #DIV/0! 101/08‐09‐009‐18W3/00 1374 7 0.994931209 131/12‐09‐009‐18W3/00 143 37 0.794444444 131/12‐09‐009‐18W3/00 1226 221 0.847270214 101/14‐09‐009‐18W3/00 124 2 0.984126984 101/14‐09‐009‐18W3/00 2237 56 0.975577846 101/14‐10‐009‐18W3/00 103 4 0.962616822 101/14‐10‐009‐18W3/00 1310 31 0.976882923 121/02‐17‐009‐18W3/00 66 151 0.304147465 121/02‐17‐009‐18W3/00 509 678 0.428812131 101/06‐17‐009‐18W3/00 246 0 1 101/06‐17‐009‐18W3/00 17199 3717 0.822289157 101/10‐17‐009‐18W3/00 394 88 0.817427386 101/10‐17‐009‐18W3/00 5988 2937 0.67092437 111/12‐17‐009‐18W3/00 191 1 0.994791667 111/12‐17‐009‐18W3/00 4723 130 0.973212446 111/14‐17‐009‐18W3/00 128 32 0.8 111/14‐17‐009‐18W3/00 777 505 0.606084243 101/06‐18‐009‐18W3/00 238 1 0.9958159 101/06‐18‐009‐18W3/00 4246 4 0.999058824 101/06‐18‐009‐18W3/02 330 123 0.728476821 101/06‐18‐009‐18W3/02 5172 1279 0.801736165 150/08‐18‐009‐18W3/00 547 4 0.992740472 150/08‐18‐009‐18W3/00 6580 46 0.993057652 111/09‐18‐009‐18W3/00 140 0 1 111/09‐18‐009‐18W3/00 2297 42 0.982043608 101/14‐18‐009‐18W3/00 213 67 0.760714286 101/14‐18‐009‐18W3/00 4339 458 0.904523661 131/08‐19‐009‐18W3/00 77 26 0.747572816 131/08‐19‐009‐18W3/00 1082 536 0.668726823 111/02‐20‐009‐18W3/00 3 3 0.5 111/02‐20‐009‐18W3/00 31 10 0.756097561 111/15‐30‐009‐18W3/00 174 1 0.994285714 111/15‐30‐009‐18W3/00 5469 17 0.996901203 101/16‐31‐009‐18W3/00 92 181 0.336996337 101/16‐31‐009‐18W3/00 1825 3355 0.352316602 131/02‐01‐009‐19W3/00 308 0 1 131/02‐01‐009‐19W3/00 9992 0 1 121/04‐01‐009‐19W3/00 320 2 0.99378882 121/04‐01‐009‐19W3/00 6703 143 0.97911189 101/08‐01‐009‐19W3/00 297 85 0.777486911 101/08‐01‐009‐19W3/00 10203 1272 0.889150327 101/10‐01‐009‐19W3/00 18 20 0.473684211 101/10‐01‐009‐19W3/00 10667 3918 0.731367844 101/12‐01‐009‐19W3/00 229 99 0.698170732 101/12‐01‐009‐19W3/00 5748 3962 0.591967044 101/14‐01‐009‐19W3/00 228 25 0.901185771 101/14‐01‐009‐19W3/00 3402 778 0.813875598 141/02‐02‐009‐19W3/00 50 32 0.609756098 141/02‐02‐009‐19W3/00 1103 513 0.682549505 101/04‐02‐009‐19W3/00 594 113 0.840169731 101/04‐02‐009‐19W3/00 6000 1642 0.785134781 101/10‐02‐009‐19W3/00 703 122 0.852121212 101/10‐02‐009‐19W3/00 11389 2561 0.816415771 101/12‐02‐009‐19W3/00 464 189 0.710566616 101/12‐02‐009‐19W3/00 4762 1547 0.754794738 101/14‐02‐009‐19W3/00 249 86 0.743283582 101/14‐02‐009‐19W3/00 4756 4223 0.529680365 101/10‐03‐009‐19W3/00 191 89 0.682142857 101/10‐03‐009‐19W3/00 3000 995 0.750938673 111/03‐04‐009‐19W3/00 109 79 0.579787234 111/03‐04‐009‐19W3/00 2335 771 0.751770766 111/03‐05‐009‐19W3/00 362 619 0.369011213 111/03‐05‐009‐19W3/00 3236 7553 0.299935119 101/15‐06‐009‐19W3/00 159 255 0.384057971 101/15‐06‐009‐19W3/00 911 2110 0.301555776 101/02‐10‐009‐19W3/00 271 58 0.823708207 101/02‐10‐009‐19W3/00 5007 1587 0.759326661 101/02‐11‐009‐19W3/00 192 172 0.527472527 101/02‐11‐009‐19W3/00 18045 6501 0.73515033 101/04‐11‐009‐19W3/00 851 152 0.848454636 101/04‐11‐009‐19W3/00 21701 3348 0.86634197 101/06‐11‐009‐19W3/00 260 156 0.625 101/06‐11‐009‐19W3/00 3070 2751 0.52740079 101/08‐11‐009‐19W3/00 130 34 0.792682927 101/08‐11‐009‐19W3/00 4511 7241 0.383849558 101/10‐11‐009‐19W3/00 276 43 0.865203762 101/10‐11‐009‐19W3/00 4329 1313 0.767281106 101/12‐11‐009‐19W3/00 444 106 0.807272727 101/12‐11‐009‐19W3/00 5991 1664 0.782625735 101/04‐12‐009‐19W3/00 201 95 0.679054054 101/04‐12‐009‐19W3/00 9958 3895 0.718833466 101/04‐12‐009‐19W3/02 34 6 0.85 101/04‐12‐009‐19W3/02 206 1391 0.12899186 121/12‐12‐009‐19W3/00 335 2 0.994065282 121/12‐12‐009‐19W3/00 3947 55 0.986256872 101/02‐14‐009‐19W3/00 618 62 0.908823529 101/02‐14‐009‐19W3/00 9405 1853 0.835405934 101/04‐14‐009‐19W3/00 302 35 0.896142433 101/04‐14‐009‐19W3/00 3537 645 0.845767575 101/12‐14‐009‐19W3/00 97 5 0.950980392 101/12‐14‐009‐19W3/00 2280 6 0.997375328 101/07‐15‐009‐19W3/00 110 114 0.491071429 101/07‐15‐009‐19W3/00 625 1064 0.370041445 121/09‐16‐009‐19W3/00 200 78 0.71942446 121/09‐16‐009‐19W3/00 1385 622 0.690084704 121/15‐16‐009‐19W3/00 65 204 0.241635688 121/15‐16‐009‐19W3/00 339 1038 0.246187364 101/11‐24‐009‐19W3/00 15 111 0.119047619 101/11‐24‐009‐19W3/00 273 993 0.21563981 131/03‐25‐009‐19W3/00 0 147 0 131/03‐25‐009‐19W3/00 24 363 0.062015504 121/07‐33‐009‐19W3/00 43 124 0.25748503 121/07‐33‐009‐19W3/00 54 201 0.211764706 101/01‐36‐009‐19W3/00 39 1 0.975 101/01‐36‐009‐19W3/00 3947 10 0.997472833 101/09‐36‐009‐19W3/00 101 98 0.507537688 101/09‐36‐009‐19W3/00 316 98 0.763285024 111/13‐18‐010‐19W3/02 29 37 0.439393939 111/13‐18‐010‐19W3/02 31 99 0.238461538 141/03‐21‐010‐19W3/00 103 448 0.186932849 141/03‐21‐010‐19W3/00 629 2802 0.183328476 101/04‐25‐010‐20W3/00 128 0 1 101/04‐25‐010‐20W3/00 308 1 0.996763754 131/07‐25‐010‐20W3/03 87 260 0.250720461 131/07‐25‐010‐20W3/03 187 564 0.249001332 131/07‐25‐010‐20W3/00 135 102 0.569620253 131/07‐25‐010‐20W3/00 734 850 0.463383838

202

Township 11 to 12 and Ranges 18 to 20W3

CPA Pretty Well ID First 3 mo. Total OIL (m3) First 3 mo. Total WTR (m3) Oil/Oil+Water CPA Pretty Well ID First 120 mo. Total OIL (m3) First 120 mo. Total WTR (m3) Oil/Oil+Water 191/01‐19‐011‐18W3/00 36 6 0.855072464 191/01‐19‐011‐18W3/00 59 10 0.855072464 131/06‐19‐011‐18W3/00 243 0 0.953709199 131/06‐19‐011‐18W3/00 1166 1 0.999143102 111/09‐19‐011‐18W3/00 307 239 0.844043321 111/09‐19‐011‐18W3/00 2338 432 0.844043321 191/16‐19‐011‐18W3/00 500 121 0.582740022 191/16‐19‐011‐18W3/00 2878 2054 0.583536091 101/03‐20‐011‐18W3/00 52 37 0.924148607 101/03‐20‐011‐18W3/00 370 49 0.883054893 191/06‐20‐011‐18W3/00 20 65 0.514340344 191/06‐20‐011‐18W3/00 269 254 0.514340344 191/09‐20‐011‐18W3/02 174 79 0.715625 191/09‐20‐011‐18W3/02 2519 1001 0.715625 191/10‐20‐011‐18W3/00 463 110 0.938631554 191/10‐20‐011‐18W3/00 3992 261 0.938631554 191/13‐20‐011‐18W3/00 1244 208 0.737806147 191/13‐20‐011‐18W3/00 8500 1898 0.817464897 101/14‐20‐011‐18W3/00 669 177 0.879125988 101/14‐20‐011‐18W3/00 1891 260 0.879125988 191/16‐20‐011‐18W3/00 2478 190 0.042585929 191/16‐20‐011‐18W3/00 28264 370630 0.070855917 191/11‐21‐011‐18W3/00 56 703 0.138538788 191/11‐21‐011‐18W3/00 4566 27668 0.141651672 192/11‐21‐011‐18W3/00 495 3543 0.13422945 191/13‐21‐011‐18W3/00 107 318 0.251764706 191/13‐21‐011‐18W3/00 105 314 0.251764706 191/01‐22‐011‐18W3/00 6772 19666 0.256146456 131/03‐28‐011‐18W3/00 2450 212 0.206680385 131/03‐28‐011‐18W3/00 19485 74791 0.206680385 191/04‐28‐011‐18W3/00 412 81 0.583600982 191/04‐28‐011‐18W3/00 6977 1947 0.781824294 131/05‐28‐011‐18W3/00 2286 311 0.920160101 131/05‐28‐011‐18W3/00 4368 379 0.920160101 141/06‐28‐011‐18W3/00 1337 2229 0.05238038 141/06‐28‐011‐18W3/00 12624 118645 0.096168936 101/10‐28‐011‐18W3/00 391 871 0.130269876 101/10‐28‐011‐18W3/00 2285 14355 0.137319712 101/11‐28‐011‐18W3/00 23 1928 0.011788826 101/11‐28‐011‐18W3/00 23 1928 0.011788826 191/12‐28‐011‐18W3/02 841 1499 0.030439389 191/12‐28‐011‐18W3/02 17033 344698 0.047087477 191/13‐28‐011‐18W3/02 24 594 0.015430267 191/13‐28‐011‐18W3/02 52 3318 0.015430267 191/14‐28‐011‐18W3/00 80 663 0.087553648 191/14‐28‐011‐18W3/00 102 1063 0.087553648 101/15‐28‐011‐18W3/02 24 393 0.05345502 101/15‐28‐011‐18W3/02 41 726 0.05345502 131/16‐28‐011‐18W3/00 60 146 0.18343949 131/16‐28‐011‐18W3/00 144 641 0.18343949 191/01‐29‐011‐18W3/00 1654 142 0.245200798 191/01‐29‐011‐18W3/00 22236 49504 0.309952607 111/03‐29‐011‐18W3/00 1182 181 0.15562287 111/03‐29‐011‐18W3/00 9042 49060 0.15562287 191/04‐29‐011‐18W3/00 35 143 0.524002705 191/04‐29‐011‐18W3/00 775 704 0.524002705 101/05‐29‐011‐18W3/00 178 19 0.833959797 101/05‐29‐011‐18W3/00 1950 141 0.932568149 191/06‐29‐011‐18W3/00 98 156 0.286528926 191/06‐29‐011‐18W3/00 3742 9421 0.284281699 101/07‐29‐011‐18W3/00 1857 141 0.236041424 101/07‐29‐011‐18W3/00 20375 38036 0.348821284 191/08‐29‐011‐18W3/00 467 202 0.855026148 191/08‐29‐011‐18W3/00 2943 499 0.855026148 191/09‐29‐011‐18W3/02 2290 229 0.103735942 191/09‐29‐011‐18W3/02 9556 50907 0.15804707 111/10‐29‐011‐18W3/02 1274 114 0.210085858 111/10‐29‐011‐18W3/02 16077 34630 0.317056817 141/01‐30‐011‐18W3/02 13 131 0.090277778 141/01‐30‐011‐18W3/02 13 131 0.090277778 101/02‐30‐011‐18W3/00 73 27 0.461599158 101/02‐30‐011‐18W3/00 1822 2095 0.465151902 141/03‐30‐011‐18W3/00 110 121 0.492993631 141/03‐30‐011‐18W3/00 387 398 0.492993631 191/03‐30‐011‐18W3/00 522 1646 0.188885444 191/03‐30‐011‐18W3/00 5084 21876 0.188575668 101/04‐30‐011‐18W3/00 560 118 0.113410021 101/04‐30‐011‐18W3/00 11801 93098 0.112498689 101/05‐30‐011‐18W3/00 263 32 0.912790698 101/05‐30‐011‐18W3/00 3079 287 0.914735591 121/06‐30‐011‐18W3/00 175 49 0.641839763 121/06‐30‐011‐18W3/00 2242 1294 0.634049774 101/07‐30‐011‐18W3/00 409 108 0.393123688 101/07‐30‐011‐18W3/00 4943 614 0.889508728 191/08‐30‐011‐18W3/00 202 213 0.10686216 191/08‐30‐011‐18W3/00 6419 54502 0.105365966 192/08‐30‐011‐18W3/00 354 2052 0.167379056 192/08‐30‐011‐18W3/00 1723 8571 0.167379056 191/09‐30‐011‐18W3/00 1424 2131 0.222668941 191/09‐30‐011‐18W3/00 6089 24417 0.199600079 141/10‐30‐011‐18W3/00 270 131 0.371163723 141/10‐30‐011‐18W3/00 5041 5075 0.498319494 131/11‐30‐011‐18W3/00 523 179 0.54114502 131/11‐30‐011‐18W3/00 14295 5518 0.721495987 131/12‐30‐011‐18W3/00 1292 1031 0.06567322 131/12‐30‐011‐18W3/00 23264 232208 0.091062817 121/13‐30‐011‐18W3/00 744 199 0.817044356 121/13‐30‐011‐18W3/00 15215 3407 0.817044356 131/14‐30‐011‐18W3/00 601 421 0.090710865 131/14‐30‐011‐18W3/00 10328 75258 0.120673942 121/15‐30‐011‐18W3/00 668 113 0.860035736 121/15‐30‐011‐18W3/00 1444 235 0.860035736 131/16‐30‐011‐18W3/00 565 230 0.706434155 131/16‐30‐011‐18W3/00 5874 2441 0.706434155 191/16‐30‐011‐18W3/00 430 3184 0.082600055 191/16‐30‐011‐18W3/00 12384 142534 0.079939065 141/01‐31‐011‐18W3/00 2069 136 0.119307867 141/01‐31‐011‐18W3/00 29633 133290 0.181883466 111/02‐31‐011‐18W3/00 460 105 0.278099352 111/02‐31‐011‐18W3/00 16640 17924 0.481425761 101/03‐31‐011‐18W3/00 185 108 0.336166831 101/03‐31‐011‐18W3/00 7874 6762 0.537988521 101/04‐31‐011‐18W3/00 111 283 0.445281018 101/04‐31‐011‐18W3/00 4198 5227 0.445411141 102/05‐31‐011‐18W3/00 334 170 0.342873176 102/05‐31‐011‐18W3/00 6219 4993 0.554673564 141/06‐31‐011‐18W3/00 1210 1518 0.109805809 141/06‐31‐011‐18W3/00 3879 31447 0.109805809 101/07‐31‐011‐18W3/00 2770 31 0.979678239 101/07‐31‐011‐18W3/00 10413 216 0.979678239 111/08‐31‐011‐18W3/00 708 39 0.139046125 111/08‐31‐011‐18W3/00 23207 62730 0.270046662 191/09‐31‐011‐18W3/00 845 133 0.860824992 191/09‐31‐011‐18W3/00 17158 2426 0.876123366 191/10‐31‐011‐18W3/00 1555 80 0.20548788 191/10‐31‐011‐18W3/00 3340 12914 0.20548788 111/11‐31‐011‐18W3/00 587 85 0.14142149 111/11‐31‐011‐18W3/00 11469 69629 0.14142149 121/15‐31‐011‐18W3/00 366 19 0.336976321 121/15‐31‐011‐18W3/00 4995 9828 0.336976321 191/16‐31‐011‐18W3/00 601 111 0.522001872 191/16‐31‐011‐18W3/00 8521 5971 0.587979575 191/04‐32‐011‐18W3/00 360 1301 0.109106347 191/04‐32‐011‐18W3/00 514 4197 0.109106347 191/04‐32‐011‐18W3/02 359 1292 0.202205229 191/04‐32‐011‐18W3/02 1137 4486 0.202205229 101/05‐32‐011‐18W3/00 788 494 0.6045251 101/05‐32‐011‐18W3/00 2565 1678 0.6045251 192/06‐32‐011‐18W3/00 549 2253 0.166071429 192/06‐32‐011‐18W3/00 558 2802 0.166071429 191/07‐32‐011‐18W3/00 369 91 0.333558559 191/07‐32‐011‐18W3/00 4443 8877 0.333558559 191/09‐32‐011‐18W3/00 492 147 0.803212851 191/09‐32‐011‐18W3/00 600 147 0.803212851 101/10‐32‐011‐18W3/02 3 152 0.05002661 101/10‐32‐011‐18W3/02 94 1785 0.05002661 121/11‐32‐011‐18W3/00 483 27 0.237051952 121/11‐32‐011‐18W3/00 10371 14986 0.408999487 191/12‐32‐011‐18W3/00 665 37 0.201595669 191/12‐32‐011‐18W3/00 7075 28020 0.201595669 191/13‐32‐011‐18W3/02 291 1648 0.127711412 191/13‐32‐011‐18W3/02 8388 60074 0.122520522 111/14‐32‐011‐18W3/00 382 431 0.065590936 111/14‐32‐011‐18W3/00 2443 34803 0.065590936 191/15‐32‐011‐18W3/00 14 129 0.03104068 191/15‐32‐011‐18W3/00 190 251 0.430839002 191/16‐32‐011‐18W3/00 770 484 0.196126275 191/16‐32‐011‐18W3/00 16799 68855 0.196126275

203

CPA Pretty Well ID First 3 mo. Total OIL (m3) First 3 mo. Total WTR (m3) Oil/Oil+Water CPA Pretty Well ID First 120 mo. Total OIL (m3) First 120 mo. Total WTR (m3) Oil/Oil+Water 191/04‐33‐011‐18W3/00 16 1930 0.008221994 191/04‐33‐011‐18W3/00 16 1930 0.008221994 111/01‐21‐011‐19W3/00 37 67 0.572769953 111/01‐21‐011‐19W3/00 244 182 0.572769953 191/04‐21‐011‐19W3/00 729 1861 0.259593223 191/04‐21‐011‐19W3/00 6589 18846 0.259052487 111/11‐22‐011‐19W3/00 314 137 0.82078121 111/11‐22‐011‐19W3/00 4947 1208 0.803736799 101/15‐22‐011‐19W3/00 529 327 0.827607857 101/15‐22‐011‐19W3/00 6426 1602 0.80044843 131/03‐23‐011‐19W3/00 793 20 0.381486245 131/03‐23‐011‐19W3/00 13322 20421 0.394807812 141/04‐23‐011‐19W3/00 525 62 0.222152019 141/04‐23‐011‐19W3/00 7032 24622 0.222152019 141/05‐23‐011‐19W3/00 721 60 0.743377755 141/05‐23‐011‐19W3/00 22272 4151 0.842902017 141/07‐23‐011‐19W3/00 203 7 0.947011707 141/07‐23‐011‐19W3/00 6207 187 0.970753832 101/09‐23‐011‐19W3/00 874 11 0.782077004 101/09‐23‐011‐19W3/00 20107 3378 0.856163509 111/10‐23‐011‐19W3/00 743 251 0.31691677 111/10‐23‐011‐19W3/00 15966 29598 0.350408217 111/11‐23‐011‐19W3/00 495 101 0.336557689 111/11‐23‐011‐19W3/00 17544 17278 0.503819425 101/15‐23‐011‐19W3/00 809 10 0.945978091 101/15‐23‐011‐19W3/00 9860 406 0.960451977 141/16‐23‐011‐19W3/00 169 767 0.108557883 141/16‐23‐011‐19W3/00 2168 17750 0.10884627 131/11‐24‐011‐19W3/00 125 29 0.834839514 131/11‐24‐011‐19W3/00 2679 530 0.834839514 131/12‐24‐011‐19W3/00 90 30 0.777604977 131/12‐24‐011‐19W3/00 500 143 0.777604977 101/13‐24‐011‐19W3/00 494 0 0.515055486 101/13‐24‐011‐19W3/00 32086 4551 0.875781314 131/15‐24‐011‐19W3/00 595 4 0.957342226 131/15‐24‐011‐19W3/00 22768 998 0.958007237 121/01‐25‐011‐19W3/00 1660 17 0.135706635 121/01‐25‐011‐19W3/00 17820 33900 0.344547564 101/03‐25‐011‐19W3/00 158 263 0.142537092 101/03‐25‐011‐19W3/00 15712 43182 0.266784392 101/05‐25‐011‐19W3/00 875 0 0.990363036 101/05‐25‐011‐19W3/00 7502 73 0.990363036 121/07‐25‐011‐19W3/00 1124 0 0.783163139 121/07‐25‐011‐19W3/00 36965 1655 0.957146556 121/08‐25‐011‐19W3/02 1253 798 0.290717166 121/08‐25‐011‐19W3/02 22597 52749 0.29990975 121/09‐25‐011‐19W3/02 294 15 0.162174185 121/09‐25‐011‐19W3/02 8263 438 0.949660959 121/09‐25‐011‐19W3/00 209 1256 0.142662116 121/09‐25‐011‐19W3/00 209 1256 0.142662116 111/11‐25‐011‐19W3/00 67 15 0.822164948 111/11‐25‐011‐19W3/00 1595 345 0.822164948 130/13‐25‐011‐19W3/00 278 0 0.78524717 130/13‐25‐011‐19W3/00 3824 259 0.93656625 101/01‐26‐011‐19W3/00 833 97 0.081267895 101/01‐26‐011‐19W3/00 12367 109852 0.101187213 141/05‐26‐011‐19W3/00 53 6 0.741939986 141/05‐26‐011‐19W3/00 3603 442 0.890729295 101/07‐26‐011‐19W3/00 215 113 0.741984617 101/07‐26‐011‐19W3/00 6816 2139 0.761139028 121/08‐26‐011‐19W3/02 192 205 0.351997095 121/08‐26‐011‐19W3/02 4847 8923 0.351997095 111/09‐26‐011‐19W3/00 233 18 0.635431501 111/09‐26‐011‐19W3/00 2231 1280 0.635431501 101/11‐26‐011‐19W3/00 1897 36 0.397907486 101/11‐26‐011‐19W3/00 30566 13224 0.698013245 101/13‐26‐011‐19W3/00 704 0 1 101/13‐26‐011‐19W3/00 5310 0 1 101/15‐26‐011‐19W3/00 781 0 0.882461778 101/15‐26‐011‐19W3/00 17667 886 0.95224492 101/03‐27‐011‐19W3/00 459 505 0.700962861 101/03‐27‐011‐19W3/00 4759 1836 0.721607278 141/05‐27‐011‐19W3/00 427 456 0.60071337 141/05‐27‐011‐19W3/00 10759 7662 0.584061669 101/06‐27‐011‐19W3/00 150 34 0.841161401 101/06‐27‐011‐19W3/00 1918 317 0.858165548 121/13‐27‐011‐19W3/00 71 128 0.743864346 121/13‐27‐011‐19W3/00 1667 574 0.743864346 101/15‐27‐011‐19W3/00 274 0 0.585407672 101/15‐27‐011‐19W3/00 7633 540 0.93392879 101/05‐28‐011‐19W3/00 322 228 0.697321985 101/05‐28‐011‐19W3/00 2486 1216 0.671528903 101/15‐28‐011‐19W3/00 75 0 0.744909945 101/15‐28‐011‐19W3/00 1893 80 0.95945261 131/16‐28‐011‐19W3/00 247 30 0.644801428 131/16‐28‐011‐19W3/00 3259 339 0.905780989 191/02‐29‐011‐19W3/00 243 613 0.155979203 191/02‐29‐011‐19W3/00 3653 19307 0.159102787 191/07‐30‐011‐19W3/00 0 1656 0 191/07‐30‐011‐19W3/00 0 3451 0 131/11‐30‐011‐19W3/02 0 3540 0 131/11‐30‐011‐19W3/02 0 61894 0 131/13‐30‐011‐19W3/00 295 11 0.234612574 131/13‐30‐011‐19W3/00 6447 14837 0.30290359 111/02‐31‐011‐19W3/00 283 112 0.656732892 111/02‐31‐011‐19W3/00 3016 1610 0.651967142 191/02‐31‐011‐19W3/00 349 0 0.9634479 191/02‐31‐011‐19W3/00 1766 67 0.9634479 121/03‐31‐011‐19W3/00 1429 2 0.252205701 121/03‐31‐011‐19W3/00 21496 63099 0.254104853 111/05‐31‐011‐19W3/00 916 1 0.078105977 111/05‐31‐011‐19W3/00 17223 64417 0.210962763 121/06‐31‐011‐19W3/00 804 28 0.142762273 121/06‐31‐011‐19W3/00 21998 89338 0.197582094 131/07‐31‐011‐19W3/00 412 100 0.622457282 131/07‐31‐011‐19W3/00 765 464 0.622457282 131/08‐31‐011‐19W3/00 731 2184 0.22044763 131/08‐31‐011‐19W3/00 10332 34396 0.230996244 131/09‐31‐011‐19W3/00 776 69 0.177036857 131/09‐31‐011‐19W3/00 17810 48938 0.266824474 121/10‐31‐011‐19W3/00 155 113 0.287909713 121/10‐31‐011‐19W3/00 2003 4146 0.325744023 121/11‐31‐011‐19W3/00 1614 1 0.082769052 121/11‐31‐011‐19W3/00 58011 244164 0.191978158 111/13‐31‐011‐19W3/00 267 359 0.084417672 111/13‐31‐011‐19W3/00 11807 33683 0.25955155 131/13‐31‐011‐19W3/02 0 3261 1.53796E‐05 131/13‐31‐011‐19W3/02 2 130040 1.53796E‐05 131/13‐31‐011‐19W3/00 0 840 0 131/13‐31‐011‐19W3/00 0 840 0 131/13‐31‐011‐19W3/03 0 25990 0 131/13‐31‐011‐19W3/03 0 1401798 0 121/15‐31‐011‐19W3/00 1760 4 0.073304804 121/15‐31‐011‐19W3/00 47569 208538 0.185738773 101/02‐32‐011‐19W3/00 648 267 0.58758324 101/02‐32‐011‐19W3/00 9589 4069 0.702079367 111/03‐32‐011‐19W3/00 205 402 0.189577039 111/03‐32‐011‐19W3/00 502 2146 0.189577039 141/07‐32‐011‐19W3/00 882 227 0.449331914 141/07‐32‐011‐19W3/00 7903 2873 0.733389013 101/09‐32‐011‐19W3/00 59 343 0.248989899 101/09‐32‐011‐19W3/00 425 1108 0.277234181 111/16‐32‐011‐19W3/00 307 823 0.369306931 111/16‐32‐011‐19W3/00 1119 1911 0.369306931 131/01‐33‐011‐19W3/00 947 5 0.334958644 131/01‐33‐011‐19W3/00 32067 11565 0.734942244 191/04‐33‐011‐19W3/00 170 363 0.323568702 191/04‐33‐011‐19W3/00 3525 7435 0.321624088 102/05‐33‐011‐19W3/00 58 111 0.159599851 102/05‐33‐011‐19W3/00 11440 65018 0.149624631 101/07‐33‐011‐19W3/02 0 7782 0 101/07‐33‐011‐19W3/02 0 89940 0 101/07‐33‐011‐19W3/00 54 56 0.529433962 101/07‐33‐011‐19W3/00 1400 1243 0.529701097 141/08‐33‐011‐19W3/00 303 236 0.202742256 141/08‐33‐011‐19W3/00 7928 32758 0.194858182 131/11‐33‐011‐19W3/00 615 317 0.826202734 131/11‐33‐011‐19W3/00 4654 979 0.826202734 131/12‐33‐011‐19W3/00 145 1052 0.367149094 131/12‐33‐011‐19W3/00 12566 16473 0.4327284 141/13‐33‐011‐19W3/00 468 31 0.171416021 141/13‐33‐011‐19W3/00 30191 120324 0.200584659 101/14‐33‐011‐19W3/00 533 17 0.127822237 101/14‐33‐011‐19W3/00 13132 45250 0.224932342 101/15‐33‐011‐19W3/00 171 6 0.27922055 101/15‐33‐011‐19W3/00 10550 623 0.94424058 131/16‐33‐011‐19W3/00 124 308 0.299318737 131/16‐33‐011‐19W3/00 8533 19971 0.299361493

204

CPA Pretty Well ID First 3 mo. Total OIL (m3) First 3 mo. Total WTR (m3) Oil/Oil+Water CPA Pretty Well ID First 120 mo. Total OIL (m3) First 120 mo. Total WTR (m3) Oil/Oil+Water 150/01‐34‐011‐19W3/00 342 94 0.21762691 150/01‐34‐011‐19W3/00 7867 22998 0.254884173 141/03‐34‐011‐19W3/02 0 12019 0 141/03‐34‐011‐19W3/02 0 811656 0 141/03‐34‐011‐19W3/00 37 2 0.656073309 141/03‐34‐011‐19W3/00 3103 1610 0.658391683 101/04‐34‐011‐19W3/00 842 44 0.790196843 101/04‐34‐011‐19W3/00 7634 1713 0.816732641 101/05‐34‐011‐19W3/00 1060 19 0.626039834 101/05‐34‐011‐19W3/00 40315 908 0.977973461 102/05‐34‐011‐19W3/00 0 4931 0 102/05‐34‐011‐19W3/00 0 277912 0 103/05‐34‐011‐19W3/00 0 1532 0 103/05‐34‐011‐19W3/00 0 149591 0 111/05‐34‐011‐19W3/00 0 7041 0 111/05‐34‐011‐19W3/00 0 560754 0 140/07‐34‐011‐19W3/00 1748 0 0.892435216 140/07‐34‐011‐19W3/00 39383 630 0.984255117 101/09‐34‐011‐19W3/00 280 214 0.222710828 101/09‐34‐011‐19W3/00 14176 6646 0.680818365 111/11‐34‐011‐19W3/00 151 0 0.207055587 111/11‐34‐011‐19W3/00 9716 4948 0.662575014 150/13‐34‐011‐19W3/00 602 0 0.98359841 150/13‐34‐011‐19W3/00 1979 33 0.98359841 101/14‐34‐011‐19W3/00 678 189 0.303375743 101/14‐34‐011‐19W3/00 9144 19670 0.317345735 101/15‐34‐011‐19W3/00 733 0 0.64897011 101/15‐34‐011‐19W3/00 14537 2604 0.848083542 101/01‐35‐011‐19W3/00 739 0 0.731916827 101/01‐35‐011‐19W3/00 17490 2630 0.869284294 131/02‐35‐011‐19W3/00 472 144 0.154613296 131/02‐35‐011‐19W3/00 8615 10277 0.456013127 101/03‐35‐011‐19W3/00 438 438 0.222173392 101/03‐35‐011‐19W3/00 29207 16606 0.637526466 141/04‐35‐011‐19W3/00 170 784 0.188409119 141/04‐35‐011‐19W3/00 7929 33509 0.191346107 101/05‐35‐011‐19W3/00 312 0 0.465397124 101/05‐35‐011‐19W3/00 26474 619 0.97715277 101/06‐35‐011‐19W3/00 556 207 0.184189132 101/06‐35‐011‐19W3/00 34047 45306 0.429057503 101/07‐35‐011‐19W3/00 1404 2 0.667741431 101/07‐35‐011‐19W3/00 28232 3809 0.881121064 131/08‐35‐011‐19W3/00 62 144 0.145085027 131/08‐35‐011‐19W3/00 5599 33664 0.14260245 121/09‐35‐011‐19W3/00 388 822 0.096704469 121/09‐35‐011‐19W3/00 33926 147587 0.186906723 121/10‐35‐011‐19W3/00 320 240 0.049714315 121/10‐35‐011‐19W3/00 1949 37255 0.049714315 121/11‐35‐011‐19W3/00 728 89 0.400136404 121/11‐35‐011‐19W3/00 23343 8672 0.729126972 101/13‐35‐011‐19W3/00 1202 0 0.995759948 101/13‐35‐011‐19W3/00 6106 26 0.995759948 101/15‐35‐011‐19W3/00 130 0 0.280267293 101/15‐35‐011‐19W3/00 24368 8805 0.734573298 121/01‐36‐011‐19W3/00 541 537 0.442041105 121/01‐36‐011‐19W3/00 6735 7141 0.485370424 131/05‐36‐011‐19W3/00 660 47 0.791049367 131/05‐36‐011‐19W3/00 10497 2087 0.834154482 101/13‐36‐011‐19W3/00 327 12 0.963963964 101/13‐36‐011‐19W3/00 1177 44 0.963963964 191/08‐23‐011‐20W3/00 0 3329 0 191/08‐23‐011‐20W3/00 0 3331 0 101/09‐23‐011‐20W3/00 2 0 1 101/09‐23‐011‐20W3/00 2 0 1 191/02‐24‐011‐20W3/00 1573 671 0.723701493 191/02‐24‐011‐20W3/00 6445 2512 0.719548956 141/05‐24‐011‐20W3/00 158 4 0.846048424 141/05‐24‐011‐20W3/00 3536 431 0.891353668 131/06‐24‐011‐20W3/00 930 163 0.177007781 131/06‐24‐011‐20W3/00 21783 49540 0.305413401 131/11‐24‐011‐20W3/00 1100 0 0.534228818 131/11‐24‐011‐20W3/00 18765 10 0.999467377 111/13‐24‐011‐20W3/00 31 20 0.634955752 111/13‐24‐011‐20W3/00 287 165 0.634955752 191/13‐24‐011‐20W3/00 649 267 0.659326832 191/13‐24‐011‐20W3/00 2262 1194 0.654513889 131/02‐25‐011‐20W3/00 488 1393 0.05115058 131/02‐25‐011‐20W3/00 3590 54767 0.061517898 101/03‐25‐011‐20W3/00 225 22 0.99458119 101/03‐25‐011‐20W3/00 9627 44 0.995450315 141/06‐25‐011‐20W3/00 713 576 0.132645672 141/06‐25‐011‐20W3/00 6568 14702 0.308791725 131/07‐25‐011‐20W3/00 60 2 0.971846847 131/07‐25‐011‐20W3/00 863 25 0.971846847 101/09‐25‐011‐20W3/00 272 0 0.706574974 101/09‐25‐011‐20W3/00 7983 23 0.997127155 191/10‐25‐011‐20W3/00 186 60 0.508029197 191/10‐25‐011‐20W3/00 696 674 0.508029197 111/15‐25‐011‐20W3/00 85 4 0.509261675 111/15‐25‐011‐20W3/00 5004 2827 0.638998851 111/01‐36‐011‐20W3/00 54 5 0.891271057 111/01‐36‐011‐20W3/00 582 71 0.891271057 111/08‐36‐011‐20W3/00 312 590 0.297356523 111/08‐36‐011‐20W3/00 10089 19132 0.345265391 141/09‐36‐011‐20W3/02 0 10036 0 141/09‐36‐011‐20W3/02 0 215141 0 141/09‐36‐011‐20W3/00 66 158 0.138662316 141/09‐36‐011‐20W3/00 170 1056 0.138662316 191/04‐04‐012‐18W3/00 422 7306 0.04010501 191/04‐04‐012‐18W3/00 9068 220792 0.0394501 131/05‐04‐012‐18W3/00 1201 141 0.402899967 131/05‐04‐012‐18W3/00 14838 21990 0.402899967 131/12‐04‐012‐18W3/00 1428 88 0.261048838 131/12‐04‐012‐18W3/00 12390 28189 0.305330343 131/14‐04‐012‐18W3/00 1011 127 0.436920567 131/14‐04‐012‐18W3/00 11700 14955 0.438942037 141/01‐05‐012‐18W3/00 903 62 0.143610237 141/01‐05‐012‐18W3/00 14238 54671 0.206620325 191/02‐05‐012‐18W3/00 475 140 0.196301327 191/02‐05‐012‐18W3/00 11000 47705 0.187377566 141/03‐05‐012‐18W3/02 896 305 0.560619568 141/03‐05‐012‐18W3/02 10700 9171 0.538473152 141/03‐05‐012‐18W3/00 68 3175 0.024691358 141/03‐05‐012‐18W3/00 90 3555 0.024691358 141/04‐05‐012‐18W3/00 902 362 0.575800156 141/04‐05‐012‐18W3/00 7376 5434 0.575800156 141/05‐05‐012‐18W3/00 409 83 0.83836941 141/05‐05‐012‐18W3/00 5015 411 0.924253594 131/07‐05‐012‐18W3/00 1522 228 0.150629389 131/07‐05‐012‐18W3/00 19541 110188 0.150629389 101/08‐05‐012‐18W3/03 1417 307 0.513705151 101/08‐05‐012‐18W3/03 15649 14814 0.513705151 101/08‐05‐012‐18W3/02 0 41739 0 101/08‐05‐012‐18W3/02 0 375449 0 131/09‐05‐012‐18W3/00 1056 131 0.1675429 131/09‐05‐012‐18W3/00 11989 45597 0.208192964 131/11‐05‐012‐18W3/00 2820 242 0.081380915 131/11‐05‐012‐18W3/00 29787 173643 0.146423831 111/12‐05‐012‐18W3/00 157 39 0.942277691 111/12‐05‐012‐18W3/00 1208 74 0.942277691 111/14‐05‐012‐18W3/00 2805 175 0.061738655 111/14‐05‐012‐18W3/00 41320 381969 0.097616522 131/15‐05‐012‐18W3/00 2081 313 0.059859589 131/15‐05‐012‐18W3/00 36040 325615 0.099652984 131/16‐05‐012‐18W3/00 771 222 0.216529377 131/16‐05‐012‐18W3/00 13220 27370 0.325695984 101/01‐06‐012‐18W3/00 325 153 0.237463819 101/01‐06‐012‐18W3/00 12730 41923 0.232924085 101/02‐06‐012‐18W3/00 603 46 0.901346306 101/02‐06‐012‐18W3/00 7967 872 0.901346306 141/03‐06‐012‐18W3/00 47 41 0.700521739 141/03‐06‐012‐18W3/00 2014 861 0.700521739 191/04‐06‐012‐18W3/00 88 30 0.768873403 191/04‐06‐012‐18W3/00 2123 639 0.768645909 131/05‐06‐012‐18W3/00 866 418 0.689388477 131/05‐06‐012‐18W3/00 9637 3984 0.707510462 111/06‐06‐012‐18W3/00 265 48 0.689601046 111/06‐06‐012‐18W3/00 4137 1131 0.785307517 121/07‐06‐012‐18W3/00 2 78 0.60901591 121/07‐06‐012‐18W3/00 2067 1327 0.60901591 121/08‐06‐012‐18W3/00 397 114 0.665112972 121/08‐06‐012‐18W3/00 7003 2477 0.73871308 141/09‐06‐012‐18W3/00 207 117 0.485573329 141/09‐06‐012‐18W3/00 2534 578 0.814267352 101/10‐06‐012‐18W3/00 112 87 0.79222973 101/10‐06‐012‐18W3/00 469 123 0.79222973 141/11‐06‐012‐18W3/00 870 531 0.338977915 141/11‐06‐012‐18W3/00 14215 29218 0.327285704 141/12‐06‐012‐18W3/00 2050 299 0.086221432 141/12‐06‐012‐18W3/00 19472 171784 0.101811185

205

CPA Pretty Well ID First 3 mo. Total OIL (m3) First 3 mo. Total WTR (m3) Oil/Oil+Water CPA Pretty Well ID First 120 mo. Total OIL (m3) First 120 mo. Total WTR (m3) Oil/Oil+Water 101/13‐06‐012‐18W3/00 2492 129 0.179556764 101/13‐06‐012‐18W3/00 32684 121454 0.212043753 141/14‐06‐012‐18W3/02 562 1073 0.488710852 141/14‐06‐012‐18W3/02 1342 1404 0.488710852 101/02‐07‐012‐18W3/00 267 280 0.11098081 101/02‐07‐012‐18W3/00 980 2987 0.247038064 141/03‐07‐012‐18W3/00 392 494 0.207839901 141/03‐07‐012‐18W3/00 3550 12957 0.215060277 101/04‐07‐012‐18W3/00 2133 775 0.093323767 101/04‐07‐012‐18W3/00 18219 139857 0.115254688 111/05‐07‐012‐18W3/00 557 2229 0.077926606 111/05‐07‐012‐18W3/00 8494 100506 0.077926606 141/06‐07‐012‐18W3/00 261 538 0.542849834 141/06‐07‐012‐18W3/00 2122 1787 0.542849834 101/07‐07‐012‐18W3/00 555 177 0.790234588 101/07‐07‐012‐18W3/00 5794 1538 0.790234588 121/08‐07‐012‐18W3/00 704 212 0.072486925 121/08‐07‐012‐18W3/00 6619 87990 0.069961632 191/09‐07‐012‐18W3/00 220 43 0.512404926 191/09‐07‐012‐18W3/00 5767 5494 0.512121481 121/10‐07‐012‐18W3/00 1219 47 0.123618362 121/10‐07‐012‐18W3/00 12848 31118 0.292225811 131/11‐07‐012‐18W3/00 683 511 0.078518712 131/11‐07‐012‐18W3/00 17111 146614 0.104510612 191/15‐07‐012‐18W3/00 459 51 0.175244144 191/15‐07‐012‐18W3/00 14341 69701 0.17064087 101/16‐07‐012‐18W3/00 102 0 0.533947066 101/16‐07‐012‐18W3/00 380 0 1 121/01‐08‐012‐18W3/00 2042 382 0.066452542 121/01‐08‐012‐18W3/00 32338 454295 0.066452542 101/02‐08‐012‐18W3/00 3848 181 0.960282258 101/02‐08‐012‐18W3/00 4763 197 0.960282258 131/02‐08‐012‐18W3/00 0 798 0 131/02‐08‐012‐18W3/00 0 606064 0 131/03‐08‐012‐18W3/00 976 311 0.101016395 131/03‐08‐012‐18W3/00 24006 151861 0.136500879 101/06‐08‐012‐18W3/00 124 300 0.29245283 101/06‐08‐012‐18W3/00 124 300 0.29245283 111/06‐08‐012‐18W3/00 118 2321 0.230485397 111/06‐08‐012‐18W3/00 10297 28860 0.26296703 131/07‐08‐012‐18W3/00 2244 325 0.129362235 131/07‐08‐012‐18W3/00 28736 167174 0.146679598 131/11‐08‐012‐18W3/00 488 15 0.92967725 131/11‐08‐012‐18W3/00 3543 268 0.92967725 111/14‐08‐012‐18W3/00 276 1242 0.044634725 111/14‐08‐012‐18W3/00 12092 202194 0.056429258 121/03‐09‐012‐18W3/00 1357 18 0.198124646 121/03‐09‐012‐18W3/00 7353 29760 0.198124646 121/04‐09‐012‐18W3/00 1544 68 0.196410867 121/04‐09‐012‐18W3/00 23151 42551 0.352363703 121/05‐09‐012‐18W3/00 1379 47 0.259439241 121/05‐09‐012‐18W3/00 20407 36254 0.360159545 121/06‐09‐012‐18W3/00 191 148 0.563421829 121/06‐09‐012‐18W3/00 191 148 0.563421829 101/11‐09‐012‐18W3/00 1576 77 0.163723579 101/11‐09‐012‐18W3/00 10323 39546 0.207002346 101/12‐09‐012‐18W3/00 174 125 0.839450172 101/12‐09‐012‐18W3/00 4073 897 0.819517103 111/14‐09‐012‐18W3/00 624 411 0.687054632 111/14‐09‐012‐18W3/00 2314 1054 0.687054632 121/15‐09‐012‐18W3/00 1541 330 0.163100998 121/15‐09‐012‐18W3/00 4315 22141 0.163100998 101/02‐16‐012‐18W3/00 115 115 0.542979943 101/02‐16‐012‐18W3/00 379 319 0.542979943 111/03‐16‐012‐18W3/00 57 761 0.091876209 111/03‐16‐012‐18W3/00 190 1878 0.091876209 111/02‐17‐012‐18W3/00 132 1387 0.059623149 111/02‐17‐012‐18W3/00 443 6987 0.059623149 141/05‐18‐012‐18W3/00 286 86 0.636643357 141/05‐18‐012‐18W3/00 2276 1299 0.636643357 101/06‐18‐012‐18W3/00 1029 0 0.138585596 101/06‐18‐012‐18W3/00 20126 148 0.99270001 101/07‐18‐012‐18W3/00 231 211 0.724821674 101/07‐18‐012‐18W3/00 6664 2398 0.735378504 101/10‐18‐012‐18W3/00 577 852 0.155493373 101/10‐18‐012‐18W3/00 5271 28261 0.157193129 141/12‐18‐012‐18W3/00 467 830 0.071546657 141/12‐18‐012‐18W3/00 9500 87064 0.098380349 121/13‐18‐012‐18W3/00 726 296 0.271496718 121/13‐18‐012‐18W3/00 12536 17784 0.413456464 101/14‐18‐012‐18W3/00 588 0 0.245013962 101/14‐18‐012‐18W3/00 20900 476 0.977732036 131/14‐18‐012‐18W3/00 362 326 0.31299288 131/14‐18‐012‐18W3/00 4088 8973 0.31299288 111/01‐01‐012‐19W3/00 328 9 0.870265152 111/01‐01‐012‐19W3/00 2642 141 0.94933525 101/07‐01‐012‐19W3/00 170 6 0.637948043 101/07‐01‐012‐19W3/00 1670 826 0.669070513 111/08‐01‐012‐19W3/00 39 2 0.770073603 111/08‐01‐012‐19W3/00 13843 1973 0.875252908 101/09‐01‐012‐19W3/00 467 27 0.719511002 101/09‐01‐012‐19W3/00 6726 1134 0.855725191 101/10‐01‐012‐19W3/00 360 117 0.788461538 101/10‐01‐012‐19W3/00 1394 374 0.788461538 101/11‐01‐012‐19W3/00 363 661 0.33813792 101/11‐01‐012‐19W3/00 5539 9032 0.380138632 101/13‐01‐012‐19W3/00 42 294 0.20157577 101/13‐01‐012‐19W3/00 1700 8956 0.159534535 191/13‐01‐012‐19W3/00 821 1549 0.294171313 191/13‐01‐012‐19W3/00 3246 7962 0.289614561 121/14‐01‐012‐19W3/00 589 175 0.100116556 121/14‐01‐012‐19W3/00 29646 179668 0.1416341 141/15‐01‐012‐19W3/00 468 22 0.637577795 141/15‐01‐012‐19W3/00 7366 149 0.980172987 191/15‐01‐012‐19W3/00 372 2512 0.186971988 191/15‐01‐012‐19W3/00 5524 26059 0.174904221 121/16‐01‐012‐19W3/00 195 382 0.284142761 121/16‐01‐012‐19W3/00 7096 16301 0.303286746 111/01‐02‐012‐19W3/00 533 301 0.667543695 111/01‐02‐012‐19W3/00 12838 4028 0.761176331 191/02‐02‐012‐19W3/00 297 133 0.340380212 191/02‐02‐012‐19W3/00 6702 13599 0.330131521 101/03‐02‐012‐19W3/00 2240 5 0.136769777 101/03‐02‐012‐19W3/00 53690 81792 0.396288806 101/05‐02‐012‐19W3/00 1028 0 0.499646053 101/05‐02‐012‐19W3/00 18970 667 0.966033508 121/07‐02‐012‐19W3/00 247 78 0.951418091 121/07‐02‐012‐19W3/00 12264 661 0.948858801 111/08‐02‐012‐19W3/00 1156 207 0.156659084 111/08‐02‐012‐19W3/00 5509 29048 0.159417774 191/09‐02‐012‐19W3/00 1 128 0.05112755 191/09‐02‐012‐19W3/00 3428 63620 0.05112755 101/11‐02‐012‐19W3/00 568 41 0.565067153 101/11‐02‐012‐19W3/00 12309 5578 0.688153408 111/12‐02‐012‐19W3/00 434 457 0.240907645 111/12‐02‐012‐19W3/00 4868 16469 0.228148287 111/13‐02‐012‐19W3/00 811 45 0.292983213 111/13‐02‐012‐19W3/00 32071 6131 0.83951102 101/01‐03‐012‐19W3/00 572 92 0.602489423 101/01‐03‐012‐19W3/00 11592 3801 0.753069577 111/02‐03‐012‐19W3/00 428 1541 0.106260687 111/02‐03‐012‐19W3/00 13901 117224 0.106013346 101/03‐03‐012‐19W3/00 289 193 0.398328546 101/03‐03‐012‐19W3/00 11697 5252 0.690129211 191/04‐03‐012‐19W3/00 176 376 0.214090423 191/04‐03‐012‐19W3/00 7331 25001 0.226741309 101/05‐03‐012‐19W3/00 992 7 0.816966177 101/05‐03‐012‐19W3/00 26394 297 0.988872654 131/06‐03‐012‐19W3/02 145 389 0.177329652 131/06‐03‐012‐19W3/02 4711 21447 0.180097867 131/06‐03‐012‐19W3/00 78 58 0.589341693 131/06‐03‐012‐19W3/00 188 131 0.589341693 101/07‐03‐012‐19W3/00 876 5 0.924141705 101/07‐03‐012‐19W3/00 35052 564 0.98416442 101/09‐03‐012‐19W3/00 48 5 0.22334907 101/09‐03‐012‐19W3/00 11421 12391 0.479632118 101/11‐03‐012‐19W3/00 255 107 0.434922616 101/11‐03‐012‐19W3/00 18995 3895 0.829838357 111/13‐03‐012‐19W3/00 224 35 0.835725678 111/13‐03‐012‐19W3/00 524 103 0.835725678 101/15‐03‐012‐19W3/00 177 0 0.666003541 101/15‐03‐012‐19W3/00 23462 559 0.976728696 141/16‐03‐012‐19W3/00 63 79 0.608414239 141/16‐03‐012‐19W3/00 564 363 0.608414239 121/01‐04‐012‐19W3/00 1044 120 0.627156097 121/01‐04‐012‐19W3/00 24957 8004 0.757167562 101/02‐04‐012‐19W3/00 898 6 0.188981032 101/02‐04‐012‐19W3/00 26986 57385 0.319849237 111/03‐04‐012‐19W3/00 299 217 0.593055209 111/03‐04‐012‐19W3/00 4748 3258 0.593055209

206

CPA Pretty Well ID First 3 mo. Total OIL (m3) First 3 mo. Total WTR (m3) Oil/Oil+Water CPA Pretty Well ID First 120 mo. Total OIL (m3) First 120 mo. Total WTR (m3) Oil/Oil+Water 111/04‐04‐012‐19W3/00 88 288 0.549472759 111/04‐04‐012‐19W3/00 3242 2259 0.589347391 111/05‐04‐012‐19W3/00 214 16 0.628072253 111/05‐04‐012‐19W3/00 2999 1200 0.714217671 101/06‐04‐012‐19W3/00 283 388 0.528026126 101/06‐04‐012‐19W3/00 6735 5485 0.551145663 121/07‐04‐012‐19W3/00 579 1 0.781641168 121/07‐04‐012‐19W3/00 11803 3041 0.795136082 101/08‐04‐012‐19W3/00 530 81 0.418995531 101/08‐04‐012‐19W3/00 5091 5592 0.47655153 101/09‐04‐012‐19W3/00 24 359 0.546577991 101/09‐04‐012‐19W3/00 10213 5133 0.665515444 111/11‐04‐012‐19W3/00 143 15 0.733600401 111/11‐04‐012‐19W3/00 1465 532 0.733600401 141/13‐04‐012‐19W3/00 188 886 0.210042735 141/13‐04‐012‐19W3/00 1966 7394 0.210042735 101/15‐04‐012‐19W3/00 8 0 0.891304348 101/15‐04‐012‐19W3/00 8 0 1 111/01‐05‐012‐19W3/00 120 28 0.675411523 111/01‐05‐012‐19W3/00 1305 595 0.686842105 131/05‐05‐012‐19W3/00 63 23 0.683168317 131/05‐05‐012‐19W3/00 138 64 0.683168317 141/09‐05‐012‐19W3/00 278 103 0.663964216 141/09‐05‐012‐19W3/00 2234 717 0.757031515 121/13‐05‐012‐19W3/00 299 137 0.151932644 121/13‐05‐012‐19W3/00 794 4432 0.151932644 131/02‐06‐012‐19W3/00 424 10 0.199975432 131/02‐06‐012‐19W3/00 28359 47032 0.376158958 121/03‐06‐012‐19W3/00 627 1 0.085484034 121/03‐06‐012‐19W3/00 25432 100206 0.202422834 111/04‐06‐012‐19W3/00 0 0 0.549382716 111/04‐06‐012‐19W3/00 356 292 0.549382716 141/05‐06‐012‐19W3/00 0 12500 0 141/05‐06‐012‐19W3/00 0 59692 0 141/05‐06‐012‐19W3/03 123 1589 0.247093587 141/05‐06‐012‐19W3/03 2966 9854 0.231357254 101/06‐06‐012‐19W3/00 155 4 0.989361702 101/06‐06‐012‐19W3/00 465 5 0.989361702 121/07‐06‐012‐19W3/00 2345 4 0.160358777 121/07‐06‐012‐19W3/00 39078 50494 0.436274729 131/08‐06‐012‐19W3/00 170 24 0.844226044 131/08‐06‐012‐19W3/00 1718 317 0.844226044 131/09‐06‐012‐19W3/00 375 14 0.471166201 131/09‐06‐012‐19W3/00 8205 6100 0.573575673 111/11‐06‐012‐19W3/00 1039 2 0.090361893 111/11‐06‐012‐19W3/00 15694 37262 0.296359242 111/14‐06‐012‐19W3/00 588 37 0.385858794 111/14‐06‐012‐19W3/00 10695 9556 0.528122068 111/15‐06‐012‐19W3/00 1571 6 0.287599877 111/15‐06‐012‐19W3/00 30071 19583 0.605610827 111/01‐07‐012‐19W3/00 1264 2 0.379807507 111/01‐07‐012‐19W3/00 26204 4248 0.860501773 111/02‐07‐012‐19W3/00 606 9 0.156108374 111/02‐07‐012‐19W3/00 39087 28207 0.580839302 111/03‐07‐012‐19W3/02 273 77 0.537065938 111/03‐07‐012‐19W3/02 7026 3544 0.664711447 141/07‐07‐012‐19W3/00 297 9 0.963935083 141/07‐07‐012‐19W3/00 4811 180 0.963935083 131/08‐07‐012‐19W3/00 2056 21 0.147418456 131/08‐07‐012‐19W3/00 48103 220025 0.179403121 111/09‐07‐012‐19W3/00 542 11 0.045483061 111/09‐07‐012‐19W3/00 34494 212245 0.139799545 141/15‐07‐012‐19W3/00 122 525 0.228065242 141/15‐07‐012‐19W3/00 1622 5490 0.228065242 111/16‐07‐012‐19W3/00 101 61 0.159245085 111/16‐07‐012‐19W3/00 26588 129755 0.170061979 121/01‐08‐012‐19W3/00 258 30 0.971499219 121/01‐08‐012‐19W3/00 5269 155 0.971423304 141/04‐08‐012‐19W3/00 309 925 0.225955204 141/04‐08‐012‐19W3/00 1372 4700 0.225955204 131/05‐08‐012‐19W3/00 341 140 0.306680881 131/05‐08‐012‐19W3/00 863 1951 0.306680881 121/08‐08‐012‐19W3/00 87 270 0.423177272 121/08‐08‐012‐19W3/00 3601 5014 0.417991875 131/12‐08‐012‐19W3/00 198 1303 0.197848862 131/12‐08‐012‐19W3/00 6383 25879 0.197848862 141/13‐08‐012‐19W3/00 307 4 0.26789072 141/13‐08‐012‐19W3/00 2422 6619 0.26789072 141/14‐08‐012‐19W3/00 6 142 0.255258062 141/14‐08‐012‐19W3/00 3907 11811 0.24856852 121/15‐08‐012‐19W3/00 11 344 0.038991729 121/15‐08‐012‐19W3/00 99 2440 0.038991729 131/01‐09‐012‐19W3/00 219 270 0.484842743 131/01‐09‐012‐19W3/00 6253 4201 0.598144251 131/02‐09‐012‐19W3/00 132 581 0.129572793 131/02‐09‐012‐19W3/00 10239 48753 0.173565907 121/03‐09‐012‐19W3/00 719 403 0.160606246 121/03‐09‐012‐19W3/00 14840 34811 0.298886226 121/04‐09‐012‐19W3/00 23 62 0.937909428 121/04‐09‐012‐19W3/00 1830 116 0.940390545 111/05‐09‐012‐19W3/00 349 17 0.393429136 111/05‐09‐012‐19W3/00 6796 8598 0.441470703 131/06‐09‐012‐19W3/02 124 624 0.234943786 131/06‐09‐012‐19W3/02 3579 4498 0.443110066 101/07‐09‐012‐19W3/00 411 22 0.639487095 101/07‐09‐012‐19W3/00 5721 2547 0.691944848 131/07‐09‐012‐19W3/00 0 5343 0 131/07‐09‐012‐19W3/00 0 236628 0 131/08‐09‐012‐19W3/00 344 106 0.730751167 131/08‐09‐012‐19W3/00 19514 4656 0.807364501 111/09‐09‐012‐19W3/00 359 566 0.197617379 111/09‐09‐012‐19W3/00 6606 19192 0.256066362 121/10‐09‐012‐19W3/00 323 120 0.333812997 121/10‐09‐012‐19W3/00 8405 11413 0.424109395 111/12‐09‐012‐19W3/00 191 57 0.961711712 111/12‐09‐012‐19W3/00 4363 168 0.962922092 111/13‐09‐012‐19W3/00 80 100 0.504076739 111/13‐09‐012‐19W3/00 5898 5116 0.535500272 111/15‐09‐012‐19W3/02 235 243 0.410991571 111/15‐09‐012‐19W3/02 7195 9790 0.423609067 141/16‐09‐012‐19W3/00 356 245 0.896049896 141/16‐09‐012‐19W3/00 11056 1563 0.876139155 121/01‐10‐012‐19W3/00 129 164 0.454450884 121/01‐10‐012‐19W3/00 520 1103 0.320394331 101/02‐10‐012‐19W3/00 78 255 0.152242695 101/02‐10‐012‐19W3/00 2454 13665 0.152242695 111/03‐10‐012‐19W3/00 203 23 0.721886617 111/03‐10‐012‐19W3/00 2772 450 0.860335196 101/05‐10‐012‐19W3/00 960 5 0.934682861 101/05‐10‐012‐19W3/00 3171 171 0.948833034 131/13‐10‐012‐19W3/00 211 102 0.740723121 131/13‐10‐012‐19W3/00 7669 2630 0.744635401 141/01‐11‐012‐19W3/00 0 87 0.068075117 141/01‐11‐012‐19W3/00 58 794 0.068075117 121/05‐11‐012‐19W3/00 967 5 0.998883201 121/05‐11‐012‐19W3/00 8520 6 0.99929627 101/06‐11‐012‐19W3/00 637 3 0.15424643 101/06‐11‐012‐19W3/00 25013 75121 0.249795274 101/07‐11‐012‐19W3/00 167 126 0.445913137 101/07‐11‐012‐19W3/00 4408 3862 0.533010883 121/08‐11‐012‐19W3/00 244 552 0.1913182 121/08‐11‐012‐19W3/00 2402 10153 0.1913182 101/09‐11‐012‐19W3/00 563 15 0.86578604 101/09‐11‐012‐19W3/00 5278 778 0.871532365 131/10‐11‐012‐19W3/00 173 41 0.229703904 131/10‐11‐012‐19W3/00 8392 15599 0.349797841 131/11‐11‐012‐19W3/00 538 27 0.965593785 131/11‐11‐012‐19W3/00 2610 93 0.965593785 101/12‐11‐012‐19W3/00 0 5 0.080599376 101/12‐11‐012‐19W3/00 1186 5707 0.17205861 131/13‐11‐012‐19W3/00 849 2 0.562552538 131/13‐11‐012‐19W3/00 15976 4 0.999749687 101/14‐11‐012‐19W3/00 27 33 0.109406789 101/14‐11‐012‐19W3/00 4105 24223 0.14490963 101/02‐12‐012‐19W3/00 220 27 0.448363301 101/02‐12‐012‐19W3/00 1945 2393 0.448363301 141/03‐12‐012‐19W3/00 227 0 1 141/03‐12‐012‐19W3/00 1141 0 1 101/04‐12‐012‐19W3/00 783 1 0.597635769 101/04‐12‐012‐19W3/00 12470 2256 0.846801575 121/05‐12‐012‐19W3/00 449 1 0.724681562 121/05‐12‐012‐19W3/00 8117 742 0.916243368 101/06‐12‐012‐19W3/00 1 82 0.48712845 101/06‐12‐012‐19W3/00 2458 2762 0.470881226 102/06‐12‐012‐19W3/00 0 3628 0 102/06‐12‐012‐19W3/00 0 274628 0 111/07‐12‐012‐19W3/00 181 1 0.862974009 111/07‐12‐012‐19W3/00 5342 9 0.998318071 101/11‐12‐012‐19W3/00 444 4 0.995464853 101/11‐12‐012‐19W3/00 878 4 0.995464853

207

CPA Pretty Well ID First 3 mo. Total OIL (m3) First 3 mo. Total WTR (m3) Oil/Oil+Water CPA Pretty Well ID First 120 mo. Total OIL (m3) First 120 mo. Total WTR (m3) Oil/Oil+Water 121/12‐12‐012‐19W3/00 871 25 0.638471052 121/12‐12‐012‐19W3/00 13848 3063 0.818875288 121/13‐12‐012‐19W3/00 405 133 0.693211263 121/13‐12‐012‐19W3/00 5468 2148 0.717962185 101/14‐12‐012‐19W3/00 674 6 0.402722581 101/14‐12‐012‐19W3/00 16158 5675 0.740072368 191/16‐12‐012‐19W3/00 1903 867 0.77282707 191/16‐12‐012‐19W3/00 6503 1932 0.770954357 111/03‐13‐012‐19W3/00 671 105 0.730151161 111/03‐13‐012‐19W3/00 8812 1199 0.880231745 101/16‐13‐012‐19W3/00 117 445 0.560800452 101/16‐13‐012‐19W3/00 13275 11572 0.534269731 111/06‐14‐012‐19W3/00 17 91 0.628027682 111/06‐14‐012‐19W3/00 363 215 0.628027682 101/11‐14‐012‐19W3/00 1223 43 0.82602625 101/11‐14‐012‐19W3/00 5291 914 0.852699436 101/11‐14‐012‐19W3/02 9 174 0.073654391 101/11‐14‐012‐19W3/02 26 327 0.073654391 131/15‐14‐012‐19W3/00 55 73 0.4296875 131/15‐14‐012‐19W3/00 55 73 0.4296875 111/01‐15‐012‐19W3/00 9 14 0.391304348 111/01‐15‐012‐19W3/00 9 14 0.391304348 101/09‐15‐012‐19W3/00 32 46 0.41025641 101/09‐15‐012‐19W3/00 32 46 0.41025641 111/09‐15‐012‐19W3/00 140 0 0.945396457 111/09‐15‐012‐19W3/00 2370 106 0.957189015 191/13‐15‐012‐19W3/00 574 5120 0.088288986 191/13‐15‐012‐19W3/00 3329 34930 0.087012206 121/09‐16‐012‐19W3/02 209 420 0.444870158 121/13‐16‐012‐19W3/00 2638 607 0.812942989 121/13‐16‐012‐19W3/00 149 20 0.812942989 141/03‐17‐012‐19W3/00 6589 10605 0.383215075 141/03‐17‐012‐19W3/00 272 625 0.2931374 131/04‐17‐012‐19W3/00 7496 25844 0.224835033 131/04‐17‐012‐19W3/00 1164 199 0.097248926 121/05‐17‐012‐19W3/00 16269 5969 0.731585574 121/05‐17‐012‐19W3/00 1199 19 0.731585574 121/06‐17‐012‐19W3/00 2090 10762 0.162620604 121/06‐17‐012‐19W3/00 96 132 0.162620604 121/07‐17‐012‐19W3/00 1902 2282 0.45458891 121/07‐17‐012‐19W3/00 80 357 0.45458891 111/09‐17‐012‐19W3/00 3278 3688 0.470571347 111/09‐17‐012‐19W3/00 0 16 0.426814268 111/10‐17‐012‐19W3/00 6532 5508 0.542524917 111/10‐17‐012‐19W3/00 94 343 0.551851526 121/11‐17‐012‐19W3/00 6713 152 0.977858704 121/11‐17‐012‐19W3/00 563 24 0.977858704 131/12‐17‐012‐19W3/00 778 927 0.456304985 131/12‐17‐012‐19W3/00 78 101 0.465873513 121/13‐17‐012‐19W3/00 2072 616 0.770833333 121/13‐17‐012‐19W3/00 205 115 0.770833333 111/14‐17‐012‐19W3/00 8879 57169 0.134432534 111/14‐17‐012‐19W3/00 166 515 0.138208799 121/15‐17‐012‐19W3/00 5981 8432 0.414972594 121/15‐17‐012‐19W3/00 292 510 0.274347457 121/16‐17‐012‐19W3/00 5155 1834 0.737587638 121/16‐17‐012‐19W3/00 0 6 0.739271494 101/01‐18‐012‐19W3/00 14479 1912 0.883350619 101/01‐18‐012‐19W3/00 881 25 0.5509555 121/05‐18‐012‐19W3/00 225 12 0.949367089 121/05‐18‐012‐19W3/00 47 3 0.949367089 121/07‐18‐012‐19W3/00 551 96 0.851622875 121/07‐18‐012‐19W3/00 112 13 0.859959211 111/09‐18‐012‐19W3/00 4685 3110 0.601026299 111/09‐18‐012‐19W3/00 358 62 0.563860216 191/10‐18‐012‐19W3/00 4677 885 0.840884574 191/10‐18‐012‐19W3/00 1466 0 0.844888806 141/11‐18‐012‐19W3/00 1153 265 0.813117066 141/11‐18‐012‐19W3/00 93 71 0.813986014 191/16‐19‐012‐19W3/00 6232 5728 0.521070234 191/16‐19‐012‐19W3/00 1533 1396 0.534104255 101/01‐20‐012‐19W3/00 4690 73 0.984673525 101/01‐20‐012‐19W3/00 344 5 0.908322825 131/07‐20‐012‐19W3/00 14770 1143 0.928171935 131/07‐20‐012‐19W3/00 1174 0 0.904881802 111/09‐20‐012‐19W3/00 8967 563 0.9409234 111/09‐20‐012‐19W3/00 802 40 0.868740642 101/11‐20‐012‐19W3/00 8552 704 0.923941227 101/11‐20‐012‐19W3/00 482 9 0.882027838 111/13‐20‐012‐19W3/00 9848 1099 0.899607198 111/13‐20‐012‐19W3/00 631 20 0.892848589 141/15‐20‐012‐19W3/00 3509 1016 0.775469613 141/15‐20‐012‐19W3/00 393 8 0.715381589 131/11‐21‐012‐19W3/00 2438 31 0.987444309 131/11‐21‐012‐19W3/00 215 3 0.948192121 111/02‐22‐012‐19W3/00 3337 196 0.944523068 111/02‐22‐012‐19W3/00 337 20 0.956581532 101/08‐22‐012‐19W3/00 3369 378 0.899119295 101/08‐22‐012‐19W3/00 172 55 0.929579413 101/16‐22‐012‐19W3/00 15410 1 0.999935111 101/16‐22‐012‐19W3/00 1338 0 0.869760985 101/14‐23‐012‐19W3/00 1340 2 0.998509687 101/14‐23‐012‐19W3/00 323 2 0.99526565 101/16‐23‐012‐19W3/00 2148 23 0.989405804 101/16‐23‐012‐19W3/00 131 3 0.614447827 111/02‐24‐012‐19W3/00 7667 220 0.972105997 111/02‐24‐012‐19W3/00 474 9 0.708009978 141/04‐24‐012‐19W3/00 1427 56 0.962238705 141/04‐24‐012‐19W3/00 201 7 0.962238705 101/06‐24‐012‐19W3/00 2545 171 0.937039764 101/06‐24‐012‐19W3/00 185 19 0.763266998 131/12‐24‐012‐19W3/00 5941 365 0.942118617 131/12‐24‐012‐19W3/00 352 21 0.724770642 101/04‐25‐012‐19W3/00 8693 1473 0.855105253 101/04‐25‐012‐19W3/00 927 27 0.812292217 101/12‐25‐012‐19W3/00 17996 415 0.977459128 101/12‐25‐012‐19W3/00 916 0 0.734493296 101/02‐26‐012‐19W3/00 6997 28 0.996014235 101/02‐26‐012‐19W3/00 707 22 0.961398241 101/04‐26‐012‐19W3/00 904 1261 0.417551963 101/04‐26‐012‐19W3/00 28 55 0.360586194 101/06‐26‐012‐19W3/00 6544 21 0.996801219 101/06‐26‐012‐19W3/00 860 3 0.541967898 111/10‐26‐012‐19W3/02 0 140853 0 111/10‐26‐012‐19W3/02 0 9724 0 111/10‐26‐012‐19W3/00 390 5 0.987341772 111/10‐26‐012‐19W3/00 51 0 0.988636364 101/12‐26‐012‐19W3/00 10191 5 0.999509612 101/12‐26‐012‐19W3/00 402 0 0.581631524 111/14‐26‐012‐19W3/00 4141 3639 0.532262211 111/14‐26‐012‐19W3/00 274 10 0.537151907 101/08‐27‐012‐19W3/00 7263 19 0.997390827 101/06‐27‐012‐19W3/00 101/10‐27‐012‐19W3/00 4797 4 0.99916684 101/08‐27‐012‐19W3/00 886 2 0.995576329 141/12‐27‐012‐19W3/00 9429 136 0.985781495 101/10‐27‐012‐19W3/00 489 0 0.356626992 121/16‐27‐012‐19W3/00 13600 5399 0.715827149 141/12‐27‐012‐19W3/00 727 12 0.982725643 101/03‐28‐012‐19W3/00 4168 382 0.916043956 121/16‐27‐012‐19W3/00 587 76 0.525468883 121/05‐28‐012‐19W3/00 4894 301 0.942059673 101/03‐28‐012‐19W3/00 190 7 0.827400216 141/10‐28‐012‐19W3/02 0 37256 0 121/05‐28‐012‐19W3/00 799 64 0.942059673 101/11‐28‐012‐19W3/00 13367 513 0.963040346 141/10‐28‐012‐19W3/02 0 2500 0 131/12‐28‐012‐19W3/00 2571 11895 0.177727084 101/11‐28‐012‐19W3/00 752 4 0.824146452 121/13‐28‐012‐19W3/00 1497 18 0.988118812 131/12‐28‐012‐19W3/00 92 135 0.176279603 141/01‐29‐012‐19W3/00 9262 2535 0.78511486 121/13‐28‐012‐19W3/00 315 3 0.988118812 111/03‐29‐012‐19W3/00 3276 897 0.785046729 141/01‐29‐012‐19W3/00 670 6 0.715311317 191/04‐29‐012‐19W3/00 4716 9562 0.330298361 111/03‐29‐012‐19W3/00 247 134 0.748881285 111/05‐29‐012‐19W3/00 3509 487 0.878128128 191/04‐29‐012‐19W3/00 598 590 0.331123855 111/07‐29‐012‐19W3/00 2525 22 0.991362387 111/05‐29‐012‐19W3/00 232 75 0.844984802 112/07‐29‐012‐19W3/00 0 62899 0 111/07‐29‐012‐19W3/00 596 7 0.991362387 141/08‐29‐012‐19W3/00 5982 27004 0.181349663 112/07‐29‐012‐19W3/00 0 3543 0 121/09‐29‐012‐19W3/00 14228 1965 0.878651269 141/08‐29‐012‐19W3/00 242 437 0.161026891 141/10‐29‐012‐19W3/00 13634 28264 0.325409327 121/09‐29‐012‐19W3/00 904 10 0.878651269 111/11‐29‐012‐19W3/00 3364 4273 0.440487102

208

CPA Pretty Well ID First 3 mo. Total OIL (m3) First 3 mo. Total WTR (m3) Oil/Oil+Water CPA Pretty Well ID First 120 mo. Total OIL (m3) First 120 mo. Total WTR (m3) Oil/Oil+Water 141/10‐29‐012‐19W3/00 533 8 0.170133405 111/13‐29‐012‐19W3/00 857 197 0.813092979 111/11‐29‐012‐19W3/00 293 497 0.2364388 121/15‐29‐012‐19W3/00 5758 754 0.884213759 111/13‐29‐012‐19W3/00 264 44 0.813092979 121/16‐29‐012‐19W3/00 8744 8807 0.49820523 121/15‐29‐012‐19W3/00 641 19 0.884213759 191/09‐30‐012‐19W3/00 1932 35932 0.05102472 121/16‐29‐012‐19W3/00 290 7 0.343680575 121/01‐32‐012‐19W3/00 11212 3465 0.763916332 191/09‐30‐012‐19W3/00 217 7092 0.051120014 111/03‐32‐012‐19W3/00 423 1448 0.226082309 121/01‐32‐012‐19W3/00 615 6 0.700929839 111/07‐32‐012‐19W3/00 1854 828 0.691275168 111/03‐32‐012‐19W3/00 0 80 0.226082309 121/08‐32‐012‐19W3/00 6540 27300 0.193262411 111/07‐32‐012‐19W3/00 416 277 0.691275168 111/09‐32‐012‐19W3/00 15078 6967 0.683964618 121/08‐32‐012‐19W3/00 286 231 0.193262411 191/13‐32‐012‐19W3/00 104 2281 0.04360587 111/09‐32‐012‐19W3/00 747 6 0.62623839 111/15‐32‐012‐19W3/00 3666 301 0.924124023 191/13‐32‐012‐19W3/00 30 1197 0.04360587 191/15‐32‐012‐19W3/00 2713 12182 0.182141658 111/15‐32‐012‐19W3/00 193 7 0.88638245 101/16‐32‐012‐19W3/00 6818 1486 0.821050096 191/15‐32‐012‐19W3/00 537 1537 0.185235282 121/03‐33‐012‐19W3/00 549 35 0.940068493 101/16‐32‐012‐19W3/00 229 13 0.799802029 131/05‐33‐012‐19W3/00 6534 450 0.93556701 121/03‐33‐012‐19W3/00 117 14 0.940068493 191/07‐33‐012‐19W3/00 2 126 0.015625 191/04‐33‐012‐19W3/00 436 4867 0.073066202 111/08‐33‐012‐19W3/00 55 9 0.859375 131/05‐33‐012‐19W3/00 253 10 0.92303433 101/09‐33‐012‐19W3/02 0 59410 0 191/07‐33‐012‐19W3/00 0 61 0.015625 101/09‐33‐012‐19W3/00 268 660 0.288793103 111/08‐33‐012‐19W3/00 9 1 0.859375 131/13‐33‐012‐19W3/00 1417 36 0.975223675 101/09‐33‐012‐19W3/02 0 2556 0 101/15‐33‐012‐19W3/00 125 80 0.609756098 101/09‐33‐012‐19W3/00 115 10 0.288793103 141/02‐34‐012‐19W3/00 7059 125 0.982600223 131/13‐33‐012‐19W3/00 257 10 0.975223675 131/04‐34‐012‐19W3/00 2184 129 0.944228275 101/15‐33‐012‐19W3/00 44 24 0.609756098 111/06‐34‐012‐19W3/00 825 118 0.874867444 141/02‐34‐012‐19W3/00 263 5 0.202869185 141/08‐34‐012‐19W3/00 1969 20 0.989944696 131/04‐34‐012‐19W3/00 187 8 0.888024883 111/10‐34‐012‐19W3/00 12430 1756 0.876215988 111/06‐34‐012‐19W3/00 20 3 0.874867444 111/16‐34‐012‐19W3/00 6404 686 0.903244006 141/08‐34‐012‐19W3/00 694 8 0.989944696 101/02‐35‐012‐19W3/00 472 12 0.975206612 111/10‐34‐012‐19W3/00 677 8 0.629997335 131/04‐35‐012‐19W3/00 6732 421 0.941143576 111/16‐34‐012‐19W3/00 356 4 0.903244006 131/12‐35‐012‐19W3/00 4466 12916 0.256932459 101/02‐35‐012‐19W3/00 152 2 0.975206612 131/15‐36‐012‐19W3/00 467 1412 0.248536456 131/04‐35‐012‐19W3/00 204 3 0.941143576 111/01‐01‐012‐20W3/02 0 115762 0 111/01‐01‐012‐20W3/02 0 961 0 111/01‐01‐012‐20W3/00 4 43 0.085106383 111/01‐01‐012‐20W3/00 2 40 0.085106383 111/07‐01‐012‐20W3/00 6024 2896 0.675336323 111/07‐01‐012‐20W3/00 342 77 0.33789865 141/03‐11‐012‐20W3/00 0 1764 0 141/03‐11‐012‐20W3/00 0 0 0 121/03‐04‐013‐19W3/00 1845 163 0.918824701 121/03‐04‐013‐19W3/00 183 0 0.918824701 121/05‐04‐013‐19W3/00 1671 98 0.94460147 121/05‐04‐013‐19W3/00 175 9 0.91643002 111/01‐05‐013‐19W3/00 9385 1263 0.881386176 111/01‐05‐013‐19W3/00 619 7 0.839941501 111/07‐05‐013‐19W3/00 3602 401 0.899825131 111/07‐05‐013‐19W3/00 279 9 0.899825131 111/09‐05‐013‐19W3/02 4841 901 0.843086033 111/09‐05‐013‐19W3/02 64 17 0.843086033 111/15‐05‐013‐19W3/00 1942 111 0.945932781 111/15‐05‐013‐19W3/00 199 7 0.945932781 199/06‐06‐013‐19W3/00 0 154507 0 199/06‐06‐013‐19W3/00 0 8843 0

209

CPA Pretty Well ID First 12 mo. Total OIL (m3) First 12 mo. Total WTR (m3) Oil/Oil+Water CPA Pretty Well ID First 12 mo. Total OIL (m3) First 12 mo. Total WTR (m3) Oil/Oil+Water 131/06‐19‐011‐18W3/00 577 0 1 111/03‐32‐011‐19W3/00 469 1547 0.232638889 111/09‐19‐011‐18W3/00 922 333 0.734661355 141/07‐32‐011‐19W3/00 2634 743 0.779982233 101/03‐20‐011‐18W3/00 126 48 0.724137931 101/09‐32‐011‐19W3/00 329 725 0.312144213 131/05‐28‐011‐18W3/00 4368 379 0.920160101 131/01‐33‐011‐19W3/00 3333 14 0.99581715 141/06‐28‐011‐18W3/00 1901 3382 0.359833428 102/05‐33‐011‐19W3/00 1470 1334 0.52425107 101/10‐28‐011‐18W3/00 1031 3227 0.242132457 101/07‐33‐011‐19W3/00 245 144 0.629820051 101/11‐28‐011‐18W3/00 23 1928 0.011788826 141/08‐33‐011‐19W3/00 1006 1921 0.343696618 101/15‐28‐011‐18W3/02 41 726 0.05345502 131/11‐33‐011‐19W3/00 2797 654 0.810489713 131/16‐28‐011‐18W3/00 144 641 0.18343949 131/12‐33‐011‐19W3/00 977 2067 0.320959264 101/05‐29‐011‐18W3/00 840 38 0.956719818 101/14‐33‐011‐19W3/00 2219 303 0.879857256 101/07‐29‐011‐18W3/00 5444 305 0.946947295 101/15‐33‐011‐19W3/00 1578 43 0.973473165 141/01‐30‐011‐18W3/02 13 131 0.090277778 131/16‐33‐011‐19W3/00 583 1380 0.296994396 101/02‐30‐011‐18W3/00 398 159 0.71454219 150/01‐34‐011‐19W3/00 1604 915 0.636760619 141/03‐30‐011‐18W3/00 387 398 0.492993631 141/03‐34‐011‐19W3/00 100 28 0.78125 101/04‐30‐011‐18W3/00 3207 595 0.843503419 101/05‐34‐011‐19W3/00 4357 107 0.976030466 101/05‐30‐011‐18W3/00 1125 77 0.9359401 140/07‐34‐011‐19W3/00 6305 51 0.991976086 121/06‐30‐011‐18W3/00 538 110 0.830246914 101/09‐34‐011‐19W3/00 1478 1071 0.57983523 101/07‐30‐011‐18W3/00 1513 212 0.877101449 111/11‐34‐011‐19W3/00 668 0 1 141/10‐30‐011‐18W3/00 958 216 0.816013629 150/13‐34‐011‐19W3/00 1492 24 0.984168865 131/11‐30‐011‐18W3/00 2308 700 0.767287234 101/14‐34‐011‐19W3/00 1922 1812 0.514729513 131/12‐30‐011‐18W3/00 3900 3226 0.547291608 101/15‐34‐011‐19W3/00 3340 2 0.999401556 121/13‐30‐011‐18W3/00 4950 772 0.865082139 101/01‐35‐011‐19W3/00 2570 103 0.961466517 131/14‐30‐011‐18W3/00 1878 1482 0.558928571 131/02‐35‐011‐19W3/00 1483 427 0.776439791 121/15‐30‐011‐18W3/00 1444 235 0.860035736 101/03‐35‐011‐19W3/00 3457 1672 0.674010528 141/01‐31‐011‐18W3/00 6688 186 0.972941519 141/04‐35‐011‐19W3/00 930 3576 0.206391478 101/03‐31‐011‐18W3/00 1089 408 0.72745491 101/05‐35‐011‐19W3/00 3628 11 0.996977192 101/07‐31‐011‐18W3/00 9641 183 0.98137215 101/06‐35‐011‐19W3/00 3369 1403 0.705993294 111/11‐31‐011‐18W3/00 2119 100 0.954934655 101/07‐35‐011‐19W3/00 5085 52 0.98987736 101/05‐32‐011‐18W3/00 2565 1678 0.6045251 131/08‐35‐011‐19W3/00 566 2835 0.166421641 111/14‐32‐011‐18W3/00 1524 11234 0.11945446 121/09‐35‐011‐19W3/00 3583 4048 0.469532171 111/01‐21‐011‐19W3/00 123 124 0.497975709 121/10‐35‐011‐19W3/00 539 603 0.471978984 111/11‐22‐011‐19W3/00 879 274 0.762359063 121/11‐35‐011‐19W3/00 3758 680 0.846777828 101/15‐22‐011‐19W3/00 1841 773 0.704284621 101/13‐35‐011‐19W3/00 3923 9 0.997711089 141/05‐23‐011‐19W3/00 3236 193 0.943715369 101/15‐35‐011‐19W3/00 2849 430 0.868862458 141/07‐23‐011‐19W3/00 859 22 0.975028377 121/01‐36‐011‐19W3/00 1427 1382 0.508009968 101/09‐23‐011‐19W3/00 3121 106 0.967152154 131/05‐36‐011‐19W3/00 2729 315 0.89651774 111/10‐23‐011‐19W3/00 2570 960 0.728045326 101/13‐36‐011‐19W3/00 782 14 0.98241206 111/11‐23‐011‐19W3/00 1925 198 0.906735751 101/11‐14‐011‐20W3/00 138 492 0.219047619 101/15‐23‐011‐19W3/00 1993 50 0.975526187 111/15‐14‐011‐20W3/00 380 7 0.981912145 141/16‐23‐011‐19W3/00 184 1063 0.14755413 121/01‐23‐011‐20W3/00 301 385 0.43877551 131/11‐24‐011‐19W3/00 369 50 0.880668258 101/09‐23‐011‐20W3/00 2 0 1 131/12‐24‐011‐19W3/00 279 77 0.783707865 141/05‐24‐011‐20W3/00 437 11 0.975446429 101/13‐24‐011‐19W3/00 4512 37 0.991866344 131/06‐24‐011‐20W3/00 1747 227 0.885005066 131/15‐24‐011‐19W3/00 3645 39 0.989413681 131/11‐24‐011‐20W3/00 3089 0 1 121/01‐25‐011‐19W3/00 4944 330 0.937428896 111/13‐24‐011‐20W3/00 109 44 0.712418301 101/03‐25‐011‐19W3/00 1271 2381 0.348028478 131/02‐25‐011‐20W3/00 564 3357 0.143840857 101/05‐25‐011‐19W3/00 3707 65 0.982767762 101/03‐25‐011‐20W3/00 1398 24 0.983122363 121/07‐25‐011‐19W3/00 3867 0 1 141/06‐25‐011‐20W3/00 2855 2822 0.502906465 121/09‐25‐011‐19W3/02 1240 65 0.950191571 131/07‐25‐011‐20W3/00 578 9 0.984667802 111/11‐25‐011‐19W3/00 656 131 0.833545108 101/09‐25‐011‐20W3/00 1205 0 1 130/13‐25‐011‐19W3/00 935 3 0.996801706 111/15‐25‐011‐20W3/00 328 11 0.967551622 101/01‐26‐011‐19W3/00 2625 3052 0.462392109 111/01‐36‐011‐20W3/00 153 10 0.938650307 141/05‐26‐011‐19W3/00 191 20 0.90521327 111/08‐36‐011‐20W3/00 1198 1807 0.398668885 101/07‐26‐011‐19W3/00 1185 563 0.67791762 141/09‐36‐011‐20W3/00 126 292 0.301435407 121/08‐26‐011‐19W3/02 958 637 0.600626959 131/05‐04‐012‐18W3/00 4853 689 0.875676651 111/09‐26‐011‐19W3/00 866 99 0.897409326 131/12‐04‐012‐18W3/00 4043 409 0.908131177 101/11‐26‐011‐19W3/00 7007 281 0.961443469 131/14‐04‐012‐18W3/00 2739 299 0.901579987 101/13‐26‐011‐19W3/00 2651 0 1 141/03‐05‐012‐18W3/02 2386 786 0.75220681 101/15‐26‐011‐19W3/00 3214 0 1 141/04‐05‐012‐18W3/00 3383 1795 0.653341058 101/03‐27‐011‐19W3/00 1527 811 0.653122327 141/05‐05‐012‐18W3/00 1339 154 0.896851976 141/05‐27‐011‐19W3/00 1408 1230 0.53373768 131/07‐05‐012‐18W3/00 5771 666 0.896535653 101/06‐27‐011‐19W3/00 500 121 0.805152979 101/08‐05‐012‐18W3/03 5109 1076 0.826030719 121/13‐27‐011‐19W3/00 798 473 0.627852085 131/09‐05‐012‐18W3/00 4038 993 0.802623733 101/15‐27‐011‐19W3/00 1579 29 0.981965174 131/11‐05‐012‐18W3/00 10893 3225 0.771568211 101/05‐28‐011‐19W3/00 853 332 0.719831224 111/12‐05‐012‐18W3/00 739 57 0.92839196 101/15‐28‐011‐19W3/00 277 0 1 111/14‐05‐012‐18W3/00 14739 5127 0.74192087 131/16‐28‐011‐19W3/00 665 81 0.891420912 131/15‐05‐012‐18W3/00 10934 6152 0.639939131 131/13‐30‐011‐19W3/00 1150 49 0.959132611 131/16‐05‐012‐18W3/00 2204 908 0.708226221 111/02‐31‐011‐19W3/00 831 220 0.790675547 101/02‐06‐012‐18W3/00 1779 92 0.950828434 121/03‐31‐011‐19W3/00 4281 180 0.959650303 141/03‐06‐012‐18W3/00 413 146 0.73881932 111/05‐31‐011‐19W3/00 3185 3 0.999058971 131/05‐06‐012‐18W3/00 2376 938 0.716958358 121/06‐31‐011‐19W3/00 3115 146 0.955228458 111/06‐06‐012‐18W3/00 930 100 0.902912621 131/07‐31‐011‐19W3/00 765 464 0.622457282 121/07‐06‐012‐18W3/00 150 180 0.454545455 131/08‐31‐011‐19W3/00 2791 6412 0.303270673 121/08‐06‐012‐18W3/00 1188 171 0.874172185 131/09‐31‐011‐19W3/00 2762 242 0.919440746 141/09‐06‐012‐18W3/00 681 180 0.790940767 121/10‐31‐011‐19W3/00 654 374 0.63618677 101/10‐06‐012‐18W3/00 378 117 0.763636364 121/11‐31‐011‐19W3/00 6111 5 0.999182472 141/11‐06‐012‐18W3/00 2816 2136 0.568659128 111/13‐31‐011‐19W3/00 1421 1776 0.444479199 141/12‐06‐012‐18W3/00 7069 2557 0.734365261 121/15‐31‐011‐19W3/00 7714 170 0.978437341 101/13‐06‐012‐18W3/00 9617 2614 0.786280762 101/02‐32‐011‐19W3/00 1936 776 0.713864307 141/14‐06‐012‐18W3/02 1342 1404 0.488710852 210

CPA Pretty Well ID First 12 mo. Total OIL (m3) First 12 mo. Total WTR (m3) Oil/Oil+Water CPA Pretty Well ID First 12 mo. Total OIL (m3) First 12 mo. Total WTR (m3) Oil/Oil+Water 101/02‐07‐012‐18W3/00 366 1207 0.232676414 101/06‐06‐012‐19W3/00 465 5 0.989361702 141/03‐07‐012‐18W3/00 892 1974 0.311235171 121/07‐06‐012‐19W3/00 6425 42 0.993505489 101/04‐07‐012‐18W3/00 7691 7827 0.495617992 131/08‐06‐012‐19W3/00 572 87 0.867981791 111/05‐07‐012‐18W3/00 3488 20074 0.148034972 131/09‐06‐012‐19W3/00 1595 91 0.946026097 141/06‐07‐012‐18W3/00 1175 1345 0.466269841 111/11‐06‐012‐19W3/00 3230 15 0.995377504 101/07‐07‐012‐18W3/00 2412 620 0.795514512 111/14‐06‐012‐19W3/00 2710 175 0.939341421 121/08‐07‐012‐18W3/00 2569 1902 0.574591814 111/15‐06‐012‐19W3/00 6031 35 0.994230135 121/10‐07‐012‐18W3/00 3118 289 0.91517464 111/01‐07‐012‐19W3/00 4568 17 0.996292257 131/11‐07‐012‐18W3/00 2512 2297 0.52235392 111/02‐07‐012‐19W3/00 2732 43 0.984504505 101/16‐07‐012‐18W3/00 130 0 1 141/07‐07‐012‐19W3/00 2121 92 0.958427474 121/01‐08‐012‐18W3/00 12171 9796 0.55405836 131/08‐07‐012‐19W3/00 7463 137 0.981973684 101/02‐08‐012‐18W3/00 4763 197 0.960282258 111/09‐07‐012‐19W3/00 4003 26 0.993546786 131/03‐08‐012‐18W3/00 8995 8770 0.506332677 141/15‐07‐012‐19W3/00 484 1799 0.212001752 101/06‐08‐012‐18W3/00 124 300 0.29245283 111/16‐07‐012‐19W3/00 1774 679 0.723196086 111/06‐08‐012‐18W3/00 4757 10043 0.321418919 121/01‐08‐012‐19W3/00 1097 57 0.950606586 131/07‐08‐012‐18W3/00 9660 10038 0.490405117 141/04‐08‐012‐19W3/00 823 2470 0.249924081 131/11‐08‐012‐18W3/00 1501 99 0.938125 121/08‐08‐012‐19W3/00 196 518 0.274509804 111/14‐08‐012‐18W3/00 1414 3560 0.284278247 141/13‐08‐012‐19W3/00 1550 3170 0.328389831 121/03‐09‐012‐18W3/00 4648 2730 0.629981025 141/14‐08‐012‐19W3/00 561 288 0.660777385 121/04‐09‐012‐18W3/00 6199 2276 0.731445428 121/15‐08‐012‐19W3/00 99 2440 0.038991729 121/05‐09‐012‐18W3/00 4850 912 0.841721624 131/01‐09‐012‐19W3/00 1124 900 0.555335968 121/06‐09‐012‐18W3/00 191 148 0.563421829 131/02‐09‐012‐19W3/00 1042 2680 0.279957012 101/11‐09‐012‐18W3/00 3220 224 0.93495935 121/03‐09‐012‐19W3/00 2649 1273 0.675420704 101/12‐09‐012‐18W3/00 798 214 0.788537549 121/04‐09‐012‐19W3/00 92 68 0.575 111/14‐09‐012‐18W3/00 1650 713 0.698264917 111/05‐09‐012‐19W3/00 1075 28 0.974614687 121/15‐09‐012‐18W3/00 3786 547 0.87375952 131/06‐09‐012‐19W3/02 822 2231 0.269243367 101/02‐16‐012‐18W3/00 319 185 0.632936508 101/07‐09‐012‐19W3/00 1174 235 0.833215046 111/02‐17‐012‐18W3/00 280 4433 0.059410142 131/08‐09‐012‐19W3/00 2620 546 0.827542641 101/06‐18‐012‐18W3/00 4032 0 1 111/09‐09‐012‐19W3/00 1750 1948 0.473228772 101/07‐18‐012‐18W3/00 720 409 0.637732507 121/10‐09‐012‐19W3/00 2040 416 0.830618893 101/10‐18‐012‐18W3/00 2299 4325 0.347071256 111/12‐09‐012‐19W3/00 722 66 0.916243655 141/12‐18‐012‐18W3/00 1572 5227 0.231210472 111/13‐09‐012‐19W3/00 507 558 0.476056338 121/13‐18‐012‐18W3/00 2620 1581 0.623661033 111/15‐09‐012‐19W3/02 1101 755 0.593211207 101/14‐18‐012‐18W3/00 3434 7 0.997965708 141/16‐09‐012‐19W3/00 2122 555 0.792678371 131/14‐18‐012‐18W3/00 1293 1486 0.465275279 121/01‐10‐012‐19W3/00 323 499 0.392944039 111/01‐01‐012‐19W3/00 774 22 0.972361809 101/02‐10‐012‐19W3/00 528 2753 0.160926547 101/07‐01‐012‐19W3/00 480 13 0.973630832 111/03‐10‐012‐19W3/00 559 64 0.897271268 111/08‐01‐012‐19W3/00 148 5 0.967320261 101/05‐10‐012‐19W3/00 2146 9 0.995823666 101/09‐01‐012‐19W3/00 1717 39 0.977790433 131/13‐10‐012‐19W3/00 1070 254 0.8081571 101/10‐01‐012‐19W3/00 1152 300 0.79338843 141/01‐11‐012‐19W3/00 33 431 0.07112069 101/11‐01‐012‐19W3/00 939 1611 0.368235294 121/05‐11‐012‐19W3/00 2580 5 0.998065764 101/13‐01‐012‐19W3/00 84 777 0.097560976 101/06‐11‐012‐19W3/00 3044 16 0.994771242 121/14‐01‐012‐19W3/00 4648 4172 0.526984127 101/07‐11‐012‐19W3/00 591 309 0.656666667 141/15‐01‐012‐19W3/00 1421 52 0.964697895 121/08‐11‐012‐19W3/00 768 2437 0.239625585 121/16‐01‐012‐19W3/00 838 1058 0.441983122 101/09‐11‐012‐19W3/00 1380 15 0.989247312 111/01‐02‐012‐19W3/00 2003 632 0.760151803 131/10‐11‐012‐19W3/00 639 160 0.799749687 101/03‐02‐012‐19W3/00 10939 138 0.987541753 131/11‐11‐012‐19W3/00 1777 65 0.964712269 101/05‐02‐012‐19W3/00 3594 21 0.994190871 101/12‐11‐012‐19W3/00 0 5 0 121/07‐02‐012‐19W3/00 1051 155 0.871475954 131/13‐11‐012‐19W3/00 3274 2 0.999389499 111/08‐02‐012‐19W3/00 2567 1346 0.6560184 101/14‐11‐012‐19W3/00 403 313 0.562849162 101/11‐02‐012‐19W3/00 2021 73 0.965138491 101/02‐12‐012‐19W3/00 524 61 0.895726496 111/12‐02‐012‐19W3/00 1396 1275 0.522650693 141/03‐12‐012‐19W3/00 1131 0 1 111/13‐02‐012‐19W3/00 2315 125 0.948770492 101/04‐12‐012‐19W3/00 3008 63 0.97948551 101/01‐03‐012‐19W3/00 1773 262 0.871253071 121/05‐12‐012‐19W3/00 1513 1 0.999339498 111/02‐03‐012‐19W3/00 1738 7039 0.198017546 101/06‐12‐012‐19W3/00 161 82 0.66255144 101/03‐03‐012‐19W3/00 1278 641 0.66597186 111/07‐12‐012‐19W3/00 819 1 0.998780488 101/05‐03‐012‐19W3/00 4180 26 0.993818355 101/11‐12‐012‐19W3/00 878 4 0.995464853 131/06‐03‐012‐19W3/02 592 1431 0.292634701 121/12‐12‐012‐19W3/00 1961 28 0.985922574 101/07‐03‐012‐19W3/00 5692 5 0.999122345 121/13‐12‐012‐19W3/00 1399 378 0.787281936 101/09‐03‐012‐19W3/00 318 5 0.984520124 101/14‐12‐012‐19W3/00 2935 6 0.997959878 101/11‐03‐012‐19W3/00 1653 374 0.815490873 111/03‐13‐012‐19W3/00 1806 256 0.875848691 111/13‐03‐012‐19W3/00 524 103 0.835725678 101/16‐13‐012‐19W3/00 1360 2074 0.396039604 101/15‐03‐012‐19W3/00 2885 8 0.997234704 111/06‐14‐012‐19W3/00 202 161 0.556473829 141/16‐03‐012‐19W3/00 251 179 0.58372093 131/15‐14‐012‐19W3/00 55 73 0.4296875 121/01‐04‐012‐19W3/00 3872 410 0.90425035 111/01‐15‐012‐19W3/00 9 14 0.391304348 101/02‐04‐012‐19W3/00 5068 47 0.990811339 101/09‐15‐012‐19W3/00 32 46 0.41025641 111/03‐04‐012‐19W3/00 1111 805 0.579853862 111/09‐15‐012‐19W3/00 468 0 1 111/04‐04‐012‐19W3/00 567 660 0.462102689 121/09‐16‐012‐19W3/02 782 1030 0.431567329 111/05‐04‐012‐19W3/00 776 59 0.929341317 121/13‐16‐012‐19W3/00 1264 158 0.888888889 101/06‐04‐012‐19W3/00 1311 932 0.584485065 141/03‐17‐012‐19W3/00 1425 2176 0.39572341 121/07‐04‐012‐19W3/00 1967 130 0.938006676 131/04‐17‐012‐19W3/00 3287 4561 0.418832824 101/09‐04‐012‐19W3/00 655 1279 0.338676319 121/05‐17‐012‐19W3/00 5506 124 0.977975133 111/11‐04‐012‐19W3/00 501 150 0.769585253 121/06‐17‐012‐19W3/00 211 1163 0.15356623 101/15‐04‐012‐19W3/00 8 0 1 121/07‐17‐012‐19W3/00 733 1039 0.413656885 111/01‐05‐012‐19W3/00 569 46 0.925203252 111/09‐17‐012‐19W3/00 331 730 0.31196984 141/09‐05‐012‐19W3/00 708 227 0.757219251 111/10‐17‐012‐19W3/00 405 959 0.296920821 121/13‐05‐012‐19W3/00 711 2561 0.217298289 121/11‐17‐012‐19W3/00 1902 31 0.983962752 131/02‐06‐012‐19W3/00 2450 22 0.991100324 131/12‐17‐012‐19W3/00 260 263 0.497131931 111/04‐06‐012‐19W3/00 138 16 0.896103896 121/13‐17‐012‐19W3/00 607 412 0.595682041 141/05‐06‐012‐19W3/03 431 6097 0.066023284 111/14‐17‐012‐19W3/00 739 1501 0.329910714

211

CPA Pretty Well ID First 12 mo. Total OIL (m3) First 12 mo. Total WTR (m3) Oil/Oil+Water CPA Pretty Well ID First 12 mo. Total OIL (m3) First 12 mo. Total WTR (m3) Oil/Oil+Water 121/15‐17‐012‐19W3/00 1179 1340 0.468042874 121/13‐28‐012‐19W3/00 1133 15 0.986933798 121/16‐17‐012‐19W3/00 922 220 0.807355517 141/01‐29‐012‐19W3/00 1980 19 0.990495248 101/01‐18‐012‐19W3/00 3251 86 0.974228349 111/03‐29‐012‐19W3/00 590 376 0.610766046 121/05‐18‐012‐19W3/00 135 9 0.9375 111/05‐29‐012‐19W3/00 795 227 0.777886497 121/07‐18‐012‐19W3/00 201 21 0.905405405 111/07‐29‐012‐19W3/00 1704 16 0.990697674 111/09‐18‐012‐19W3/00 1051 138 0.883936081 121/09‐29‐012‐19W3/00 3192 30 0.990689013 141/11‐18‐012‐19W3/00 257 177 0.592165899 141/10‐29‐012‐19W3/00 2427 70 0.97196636 101/01‐20‐012‐19W3/00 1318 17 0.987265918 111/11‐29‐012‐19W3/00 928 1163 0.443806791 131/07‐20‐012‐19W3/00 3488 5 0.998568566 111/13‐29‐012‐19W3/00 700 138 0.835322196 111/09‐20‐012‐19W3/00 2687 154 0.945793735 121/15‐29‐012‐19W3/00 1919 46 0.976590331 101/11‐20‐012‐19W3/00 1464 21 0.985858586 121/16‐29‐012‐19W3/00 1205 76 0.940671351 111/13‐20‐012‐19W3/00 1742 152 0.919746568 121/01‐32‐012‐19W3/00 2223 18 0.991967871 141/15‐20‐012‐19W3/00 1369 22 0.98418404 111/03‐32‐012‐19W3/00 0 80 0 131/11‐21‐012‐19W3/00 629 6 0.990551181 111/07‐32‐012‐19W3/00 1702 769 0.688789964 111/02‐22‐012‐19W3/00 918 53 0.945417096 121/08‐32‐012‐19W3/00 1271 1293 0.495709828 101/08‐22‐012‐19W3/00 728 163 0.817059484 111/09‐32‐012‐19W3/00 2687 16 0.994080651 101/16‐22‐012‐19W3/00 3593 0 1 111/15‐32‐012‐19W3/00 750 19 0.975292588 101/14‐23‐012‐19W3/00 532 2 0.996254682 101/16‐32‐012‐19W3/00 1080 27 0.975609756 101/16‐23‐012‐19W3/00 757 22 0.971758665 121/03‐33‐012‐19W3/00 328 23 0.934472934 111/02‐24‐012‐19W3/00 1968 30 0.984984985 131/05‐33‐012‐19W3/00 1111 30 0.973707274 141/04‐24‐012‐19W3/00 729 24 0.96812749 111/08‐33‐012‐19W3/00 36 6 0.857142857 101/06‐24‐012‐19W3/00 746 55 0.93133583 101/09‐33‐012‐19W3/00 263 106 0.712737127 131/12‐24‐012‐19W3/00 1085 44 0.961027458 131/13‐33‐012‐19W3/00 783 24 0.970260223 101/04‐25‐012‐19W3/00 2758 29 0.989594546 101/15‐33‐012‐19W3/00 76 66 0.535211268 101/12‐25‐012‐19W3/00 3307 5 0.998490338 141/02‐34‐012‐19W3/00 846 11 0.987164527 101/02‐26‐012‐19W3/00 2449 22 0.991096722 131/04‐34‐012‐19W3/00 519 16 0.970093458 101/04‐26‐012‐19W3/00 537 342 0.610921502 111/06‐34‐012‐19W3/00 81 15 0.84375 101/06‐26‐012‐19W3/00 2815 3 0.998935415 141/08‐34‐012‐19W3/00 1969 20 0.989944696 111/10‐26‐012‐19W3/00 107 1 0.990740741 111/10‐34‐012‐19W3/00 1737 17 0.990307868 101/12‐26‐012‐19W3/00 1411 0 1 111/16‐34‐012‐19W3/00 1038 12 0.988571429 111/14‐26‐012‐19W3/00 988 131 0.882931189 101/02‐35‐012‐19W3/00 472 12 0.975206612 101/08‐27‐012‐19W3/00 2316 2 0.999137187 131/04‐35‐012‐19W3/00 1061 8 0.99251637 101/10‐27‐012‐19W3/00 1401 0 1 111/01‐01‐012‐20W3/00 4 43 0.085106383 141/12‐27‐012‐19W3/00 2071 33 0.984315589 111/07‐01‐012‐20W3/00 1100 237 0.822737472 121/16‐27‐012‐19W3/00 1943 562 0.775648703 121/03‐04‐013‐19W3/00 470 6 0.987394958 101/03‐28‐012‐19W3/00 593 18 0.970540098 121/05‐04‐013‐19W3/00 466 22 0.954918033 121/05‐28‐012‐19W3/00 2047 232 0.898200965 111/01‐05‐013‐19W3/00 2014 22 0.989194499 101/11‐28‐012‐19W3/00 2511 17 0.993275316 111/07‐05‐013‐19W3/00 769 22 0.972187105 131/12‐28‐012‐19W3/00 450 934 0.325144509 111/09‐05‐013‐19W3/02 918 36 0.962264151 111/15‐05‐013‐19W3/00 494 22 0.957364341

212