Poland Ramsar Information Sheet Published on 10 January 2018

Total Page:16

File Type:pdf, Size:1020Kb

Poland Ramsar Information Sheet Published on 10 January 2018 RIS for Site no. 2320, Przemków Fish Ponds, Poland Ramsar Information Sheet Published on 10 January 2018 Poland Przemków Fish Ponds Designation date 9 April 2015 Site number 2320 Coordinates 51°34'26"N 15°48'40"E Area 4 605,42 ha https://rsis.ramsar.org/ris/2320 Created by RSIS V.1.6 on - 10 January 2018 RIS for Site no. 2320, Przemków Fish Ponds, Poland Color codes Fields back-shaded in light blue relate to data and information required only for RIS updates. Note that some fields concerning aspects of Part 3, the Ecological Character Description of the RIS (tinted in purple), are not expected to be completed as part of a standard RIS, but are included for completeness so as to provide the requested consistency between the RIS and the format of a ‘full’ Ecological Character Description, as adopted in Resolution X.15 (2008). If a Contracting Party does have information available that is relevant to these fields (for example from a national format Ecological Character Description) it may, if it wishes to, include information in these additional fields. 1 - Summary Summary Wetland situated in the river Szprotawa catchment, includes two fish pond complexes (15 ponds-769 ha and 20 ponds-179 ha), and an adjacent to them fens, bogs, wet meadows, reedbeds, and riparian forests. The site is one of the most important iresting and feeding places for birds during migration in this part of Europe – especially for bean goose Anser fabalis and as breeding place for waterbirds. Summary, S1 - Page 1 RIS for Site no. 2320, Przemków Fish Ponds, Poland 2 - Data & location 2.1 - Formal data 2.1.1 - Name and address of the compiler of this RIS Compiler 1 Name Paulina Dzierża Institution/agency General Directorate for Environmental Protection 52/54 Wawelska St. Postal address 00-922 Warszawa Poland E-mail [email protected] Phone +48225792187 Fax +48225792197 2.1.2 - Period of collection of data and information used to compile the RIS From year 2012 To year 2017 2.1.3 - Name of the Ramsar Site Official name (in English, French or Przemków Fish Ponds Spanish) Unofficial name (optional) Stawy Przemkowskie 2.2 - Site location 2.2.1 - Defining the Site boundaries b) Digital map/image <1 file(s) uploaded> Former maps 0 Boundaries description The boundary is the same as an existing Natura 2000 special protection area Przemków Fish Ponds PLB020003. 2.2.2 - General location a) In which large administrative region does Dolnośląskie and Lubuskie Voivodeship the site lie? b) What is the nearest town or population south at a distance of 0.5 km Przemków village, 6500 people. centre? 2.2.3 - For wetlands on national boundaries only a) Does the wetland extend onto the territory of one or more other Yes No countries? b) Is the site adjacent to another designated Ramsar Site on the Yes No territory of another Contracting Party? 2.2.4 - Area of the Site Official area, in hectares (ha): 4605.42 Area, in hectares (ha) as calculated from 4606.35 GIS boundaries 2.2.5 - Biogeography Biogeographic regions Data & location, S2 - Page 1 RIS for Site no. 2320, Przemków Fish Ponds, Poland Regionalisation scheme(s) Biogeographic region EU biogeographic Continental regionalization Other biogeographic regionalisation scheme Geobotanical region of deciduous forests of Central Europe at the edge of the East-European region of mixed forests (boreal) – according to the Polish regionalisation by Jerzy Kondracki, 2001: Regional geography of Poland. The region embraces eastern part of Denmark, southernmost Sweden, central and north-eastern Germany and most of the territory of Poland except for its two mountain ranges (Alpine region) and the north-eastern edge of the country, belonging to sub-boreal or East-European mixed forest biogeographic region. Data & location, S2 - Page 2 RIS for Site no. 2320, Przemków Fish Ponds, Poland 3 - Why is the Site important? 3.1 - Ramsar Criteria and their justification <no data available> Criterion 2 : Rare species and threatened ecological communities Criterion 3 : Biological diversity 216 species of birds, including 147 breeding, of which 48 species are water birds have been identified Justification within the area. Criterion 4 : Support during critical life cycle stage or in adverse conditions Criterion 5 : >20,000 waterbirds Overall waterbird numbers 29330 Start year 2002 Source of data: SDF Natura 2000 Przemkowskie Fishponds (Stawy Przemkowskie) and Management Plan of Przemków Landscape Park Criterion 6 : >1% waterbird population 3.2 - Plant species whose presence relates to the international importance of the site IUCN Scientific name Common name Criterion 2 Criterion 3 Criterion 4 Red CITES Appendix I Other status Justification List Dianthus superbus VU – vulnerable (according to Red List of Large Pink Plants in Poland) Nymphaea candida VU - vulnerable (according to Polish Red Data Dwarf White Water Lily Book of Plants) Ophioglossum vulgatum VU – vulnerable (according to Red List of Southers Adderstongue Plants in Poland) Platanthera bifolia VU – vulnerable (according to Red List of Lesser-Butterfly Orchid Plants in Poland) 3.3 - Animal species whose presence relates to the international importance of the site Species Species qualifies contributes % IUCN CITES CMS under under Pop. occurrence Phylum Scientific name Common name Size Period of pop. Est. Red Appendix Appendix Other Status Justification criterion criterion 1) List I I 2 4 6 9 3 5 7 8 Birds Alcedo atthis LC CHORDATA / Common 2009 Annex I EU Birds Directive pop. size: 1-5 breeding pairs AVES Kingfisher Why is the Site important?, S3 - Page 1 RIS for Site no. 2320, Przemków Fish Ponds, Poland Species Species qualifies contributes % IUCN CITES CMS under under Pop. occurrence Phylum Scientific name Common name Size Period of pop. Est. Red Appendix Appendix Other Status Justification criterion criterion 1) List I I 2 4 6 9 3 5 7 8 Anas clypeata CHORDATA / Northern Shoveler 400 2014 AVES CHORDATA / Anas crecca Eurasian Teal; LC moulting and ailerons replacement, one of the most important AVES Green-winged 1400 2017 resting areas in the country during migrations Teal Anas moulting and ailerons replacement, one of the most important CHORDATA / platyrhynchos LC AVES Mallard 7800 2017 resting areas in the country during migrations CHORDATA / Anser albifrons Greater White- LC one of the most important resting areas in the country during migrations AVES fronted Goose CHORDATA / Anser anser LC moutling and ailerons replacement, one of the most important Greylag Goose resting areas in the country during migrations AVES one of the most important resting areas in the country during CHORDATA / Anser fabalis LC migrations, supporting at least 1% of NW Europe (non- AVES Bean Goose 8000 2016 19 breeding) population during migration; 1000-10000 ind. in years 2000-2011 (Ławicki et al. 2012) Ardea alba LC CHORDATA / Great Egret 2009 Annex I EU Birds Directive pop. size: 10-290 ind. non-breeding AVES Asio flammeus LC CHORDATA / Short-eared Owl 2009 Annex I EU Birds Directive pop. size: 0-3 ind. non-breeding AVES one of the most important resting areas in the country during CHORDATA / Aythya ferina VU migrations, supporting at least 1% of NE & NW Europe (non- AVES Common Pochard 8000 2016 2.5 breeding) population during migration - data based on one count only CHORDATA / Aythya fuligula LC one of the most important resting areas in the country during Tufted Duck 1600 2016 migrations AVES CHORDATA / Aythya nyroca NT EN - endangered (according to Polish Red Data Book of breeding, 1-2 pairs (2008-2009) Ferruginous Duck Animals), Annex I EU Birds Directive AVES CHORDATA / Botaurus stellaris LC Annex I EU Birds Directive, Polish Red Data Book of Animals pop. size: 6-9 males, breeding Eurasian Bittern 2009 (LC) AVES Ciconia ciconia LC CHORDATA / White Stork 2009 Annex I EU Birds Directive pop. size: 1-3 breeding pairs AVES Ciconia nigra LC CHORDATA / Black Stork 2009 Annex I EU Birds Directive pop size: 1 breeding pair AVES Circus LC CHORDATA / aeruginosus Western Marsh Annex I EU Birds Directive pop. size: 10-15 breeding pairs AVES Harrier 2009 Circus cyaneus LC VU – vulnerable (according to Polish Red Data Book of CHORDATA / Northern Harrier Animals), Annex I EU Birds Directive non-breeding, 3-5 individuals (2008-2009) AVES Circus pygargus LC CHORDATA / Montagu's Harrier 2009 Annex I EU Birds Directive pop. size: 0-3 breeding pairs AVES Crex crex LC CHORDATA / Corn Crake Annex I EU Birds Directive breeding, 5-25 males (2008-2009) AVES Cygnus cygnus LC CHORDATA / Whooper Swan 2009 Annex I EU Birds Directive pop. size: 1-3 breeding pairs, rare in Poland AVES Why is the Site important?, S3 - Page 2 RIS for Site no. 2320, Przemków Fish Ponds, Poland Species Species qualifies contributes % IUCN CITES CMS under under Pop. occurrence Phylum Scientific name Common name Size Period of pop. Est. Red Appendix Appendix Other Status Justification criterion criterion 1) List I I 2 4 6 9 3 5 7 8 CHORDATA / Cygnus olor LC moutling and ailerons replacement, one of the most important Mute Swan 130 2016 resting areas in the country during migrations AVES CHORDATA / Fulica atra LC moutling and ailerons replacement, one of the most important Eurasian Coot 10000 2016 resting areas in the country during migrations AVES Gallinago CHORDATA / gallinago LC moutling and ailerons replacement AVES Common Snipe CHORDATA / Grus grus LC Annex I EU Birds Directive breeding/non-breeding, 8-10 pairs/ 150 pairs (2008-2009), Common Crane moutling and ailerons replacement AVES Haliaeetus LC LC - least concerned (according to Polish Red Data Book of CHORDATA / albicilla breeding, 1 pair (2008-2009) AVES White-tailed Eagle Animals), Annex I EU Birds Directive Lanius collurio LC CHORDATA / Red-backed 2009 Annex I EU Birds Directive pop.
Recommended publications
  • View Full Text-PDF
    Int.J.Curr.Res.Aca.Rev.2017; 5(5): 15-18 International Journal of Current Research and Academic Review ISSN: 2347-3215 (Online) ҉҉ Volume 5 ҉҉ Number 5 (May-2017) Journal homepage: http://www.ijcrar.com doi: https://doi.org/10.20546/ijcrar.2017.505.003 Some Preliminary Observations on Abundance of Black Kite (Milvus migrans) and Brahminy Kite (Haliastur indus) in Kerala, South India Binu Chullakattil1* and K. Seedikkoya2 1Research and Development Centre, Bharathiar University, Coimbatore-641 046, India 2M.E.S.Mampad College, Malappuram, Pin-676 542, Kerala, India *Corresponding author Abstract Article Info The Black Kites [Milvus migrans] and Brahminy kites (Haliastur indus) are found in a Accepted: 05 May 2017 variety of habitats, from wooded streams to open plains and are commonly seen in and Available Online: 20 May 2017 around remote towns. The Present study shows that there is a considerable decline in the abundance of Black kites during heavy monsoon [June- September]. Thereafter the Keywords number gradually increases from October to May to reach its peak during March and April. The study indicates that there is a local migration among Black kites during Milvus migrans, Habitats, Haliastur South-West monsoon. Such a trend is not shown by Brahminykites. The probable indus, Southwest monsoon, Streams, reasons are also discussed. Migration. Introduction Walz (2000), Walz and Sammulung (2005). In this context this study is significant. The Black Kites are found in a variety of habitats, from wooded streams to open plains, and is often observed in Materials and Methods and around remote towns. It is a medium-sized raptor.
    [Show full text]
  • Systematics and Conservation of the Hook-Billed Kite Including the Island Taxa from Cuba and Grenada J
    Animal Conservation. Print ISSN 1367-9430 Systematics and conservation of the hook-billed kite including the island taxa from Cuba and Grenada J. A. Johnson1,2, R. Thorstrom1 & D. P. Mindell2 1 The Peregrine Fund, Boise, ID, USA 2 Department of Ecology & Evolutionary Biology, University of Michigan Museum of Zoology, Ann Arbor, MI, USA Keywords Abstract phylogenetics; coalescence; divergence; conservation; cryptic species; Chondrohierax. Taxonomic uncertainties within the genus Chondrohierax stem from the high degree of variation in bill size and plumage coloration throughout the geographic Correspondence range of the single recognized species, hook-billed kite Chondrohierax uncinatus. Jeff A. Johnson, Department of Ecology & These uncertainties impede conservation efforts as local populations have declined Evolutionary Biology, University of Michigan throughout much of its geographic range from the Neotropics in Central America Museum of Zoology, 1109 Geddes Avenue, to northern Argentina and Paraguay, including two island populations on Cuba Ann Arbor, MI 48109, USA. and Grenada, and it is not known whether barriers to dispersal exist between any Email: [email protected] of these areas. Here, we present mitochondrial DNA (mtDNA; cytochrome B and NADH dehydrogenase subunit 2) phylogenetic analyses of Chondrohierax, with Received 2 December 2006; accepted particular emphasis on the two island taxa (from Cuba, Chondrohierax uncinatus 20 April 2007 wilsonii and from Grenada, Chondrohierax uncinatus mirus). The mtDNA phylo- genetic results suggest that hook-billed kites on both islands are unique; however, doi:10.1111/j.1469-1795.2007.00118.x the Cuban kite has much greater divergence estimates (1.8–2.0% corrected sequence divergence) when compared with the mainland populations than does the Grenada hook-billed kite (0.1–0.3%).
    [Show full text]
  • A Black Kite Milvus Migrans on the Saint Peter and Saint Paul Archipelago, Brazil
    Revista Brasileira de Ornitologia, 23(1), 31-35 March 2015 A Black Kite Milvus migrans on the Saint Peter and Saint Paul Archipelago, Brazil Guilherme T. Nunes1,2,6, Lilian S. Hoffmann3, Bruno C. L. Macena4,5, Glayson A. Bencke3 and Leandro Bugoni1 1 Laboratório de Aves Aquáticas e Tartarugas Marinhas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande – FURG, CP 474, CEP 96203-900, Rio Grande, RS, Brazil. 2 Programa de Pós-Graduação em Oceanografia Biológica, Instituto de Oceanografia, Universidade Federal do Rio Grande – FURG, CP 474, CEP 96203-900, Rio Grande, RS, Brazil. 3 Museu de Ciências Naturais, Fundação Zoobotânica do Rio Grande do Sul, CEP 90690-000, Porto Alegre, RS, Brazil. 4 Laboratório de Oceanografia Pesqueira, Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco – UFRPE, CEP 52171- 900, Recife, PE, Brazil. 5 Programa de Pós-Graduação em Oceanografia, Centro de Tecnologia e Geociências, Departamento de Oceanografia, Universidade Federal de Pernambuco – UFPE, CEP 50740-550, Recife, PE, Brazil. 6 Corresponding author: [email protected] Received on 17 November 2014. Accepted on 16 March 2015. ABSTRACT: The lB ack Kite Milvus migrans is a widespread migratory raptor found over much of the Old World. Vagrants have been widely recorded far from its main migratory routes. Here, we report the occurrence of a Black Kite in the Brazilian Saint Peter and Saint Paul Archipelago (SPSPA) in April/May 2014. The bird remained for 32 days in the SPSPA, disappearing at the end of the rainy season. It looked healthy for most of this period and was once seen preying on a seabird chick.
    [Show full text]
  • Dieter Thomas Tietze Editor How They Arise, Modify and Vanish
    Fascinating Life Sciences Dieter Thomas Tietze Editor Bird Species How They Arise, Modify and Vanish Fascinating Life Sciences This interdisciplinary series brings together the most essential and captivating topics in the life sciences. They range from the plant sciences to zoology, from the microbiome to macrobiome, and from basic biology to biotechnology. The series not only highlights fascinating research; it also discusses major challenges associated with the life sciences and related disciplines and outlines future research directions. Individual volumes provide in-depth information, are richly illustrated with photographs, illustrations, and maps, and feature suggestions for further reading or glossaries where appropriate. Interested researchers in all areas of the life sciences, as well as biology enthusiasts, will find the series’ interdisciplinary focus and highly readable volumes especially appealing. More information about this series at http://www.springer.com/series/15408 Dieter Thomas Tietze Editor Bird Species How They Arise, Modify and Vanish Editor Dieter Thomas Tietze Natural History Museum Basel Basel, Switzerland ISSN 2509-6745 ISSN 2509-6753 (electronic) Fascinating Life Sciences ISBN 978-3-319-91688-0 ISBN 978-3-319-91689-7 (eBook) https://doi.org/10.1007/978-3-319-91689-7 Library of Congress Control Number: 2018948152 © The Editor(s) (if applicable) and The Author(s) 2018. This book is an open access publication. Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.
    [Show full text]
  • <I>MILVUS MIGRANS</I>
    j. RaptorRes. 33(3):207-217 ¸ 1999 The Raptor Research Foundation, Inc. NEST DISPERSION, DIET, AND BREEDING SUCCESS OF BLACK KITES (MILVUS MIGRANS) IN THE ITALIAN PRE-ALPS FABRIZIO SERGIO Edward GreyInstitute of Field Ornithology,Department of Zoology,South Parhs Road, OxfordOX1 3PS, U.K. ALBERTO BOTO Dipartimentodi BiologiaAnimale, Piazza Botta 9, 27100 Pavia, Italy ABSTRACT.--Westudied a population of Black Kites (Milvus migrans)from 1992-96 in a 100-km')study area in the Italian pre-Alps around Lake Lugano. Population densityincreased from 24 territorial pairs per 100 km'• in 1992 to 38 in 1996. Nearest neighbor distanceswere variable, averaging1288 m for solitary pairs (N = 24) and 306 m for colonial ones (N = 151). Regular spacing of nest siteswas the rule within colonies, but inter-nest distance for solitary breeders increased as new pairs settled in the area. Nests occurred both in trees (58%, N = 84) and on cliffs (42%); 23% and 5% (N = 84) of the nestswere originally built by Common Buzzards (Buteobuteo) and Ravens (C0rvuscorax), respectively. Mean laying date was 25 April (N = 42), mean clutch size was 2.29 eggs (N = 42) and mean number of fledged young was 0.97, 1.11, and 1.78 young per territorial, reproductive, and successfulpairs, respectively(N = 143, 95, 78). The percentageof successfulterritorial pairswas 55% (N = 143). Diet was dominated by fish and birds, which accounted for 62% and 28% of 307 identified prey items, respectively.Compared with other European populations, this population showedan intermediate den- sityand an averageclutch sizebut the lowestfledging and breeding successever recorded for the species.
    [Show full text]
  • Proposals 2018-C
    AOS Classification Committee – North and Middle America Proposal Set 2018-C 1 March 2018 No. Page Title 01 02 Adopt (a) a revised linear sequence and (b) a subfamily classification for the Accipitridae 02 10 Split Yellow Warbler (Setophaga petechia) into two species 03 25 Revise the classification and linear sequence of the Tyrannoidea (with amendment) 04 39 Split Cory's Shearwater (Calonectris diomedea) into two species 05 42 Split Puffinus boydi from Audubon’s Shearwater P. lherminieri 06 48 (a) Split extralimital Gracula indica from Hill Myna G. religiosa and (b) move G. religiosa from the main list to Appendix 1 07 51 Split Melozone occipitalis from White-eared Ground-Sparrow M. leucotis 08 61 Split White-collared Seedeater (Sporophila torqueola) into two species (with amendment) 09 72 Lump Taiga Bean-Goose Anser fabalis and Tundra Bean-Goose A. serrirostris 10 78 Recognize Mexican Duck Anas diazi as a species 11 87 Transfer Loxigilla portoricensis and L. violacea to Melopyrrha 12 90 Split Gray Nightjar Caprimulgus indicus into three species, recognizing (a) C. jotaka and (b) C. phalaena 13 93 Split Barn Owl (Tyto alba) into three species 14 99 Split LeConte’s Thrasher (Toxostoma lecontei) into two species 15 105 Revise generic assignments of New World “grassland” sparrows 1 2018-C-1 N&MA Classification Committee pp. 87-105 Adopt (a) a revised linear sequence and (b) a subfamily classification for the Accipitridae Background: Our current linear sequence of the Accipitridae, which places all the kites at the beginning, followed by the harpy and sea eagles, accipiters and harriers, buteonines, and finally the booted eagles, follows the revised Peters classification of the group (Stresemann and Amadon 1979).
    [Show full text]
  • Phylogeny, Historical Biogeography and the Evolution of Migration in Accipitrid Birds of Prey (Aves: Accipitriformes)
    Ornis Hungarica 2014. 22(1): 15–35. DOI: 10.2478/orhu-2014-0008 Phylogeny, historical biogeography and the evolution of migration in accipitrid birds of prey (Aves: Accipitriformes) Jenő nagy1 & Jácint tökölyi2* Jenő Nagy & Jácint Tökölyi 2014. Phylogeny, historical biogeography and the evolution of mig ration in accipitrid birds of prey (Aves: Accipitriformes). – Ornis Hungarica 22(1): 15–35. Abstract Migration plays a fundamental part in the life of most temperate bird species. The re­ gu lar, large­scale seasonal movements that characterize temperate migration systems appear to have originated in parallel with the postglacial northern expansion of tropical species. Migratoriness is also in- fluenced by a number of ecological factors, such as the ability to survive harsh winters. Hence, understanding the origins and evolution of migration requires integration of the biogeographic history and ecology of birds in a phylogenetic context. We used molecular dating and ancestral state reconstruction to infer the origins and evolu- tionary changes in migratory behavior and ancestral area reconstruction to investigate historical patterns of range evolution in accipitrid birds of prey (Accipitriformes). Migration evolved multiple times in birds of prey, the ear- liest of which occurred in true hawks (Accipitrinae), during the middle Miocene period, according to our analy- ses. In most cases, a tropical ancestral distribution was inferred for the non­migratory ancestors of migratory line- ages. Results from directional evolutionary tests indicate that migration evolved in the tropics and then increased the rate of colonization of temperate habitats, suggesting that temperate species might be descendants of tropi- cal ones that dispersed into these seasonal habitats.
    [Show full text]
  • First Recorded Polygynous Mating in the Red Kite &Lpar;<I>Milvus Milvus</I>&Rpar;
    254 SHORTCOMMUNICATIONS VOL. 33, NO. 3 the Southern England Kite Group for helping to collect DEP,SSON, M. SYLVAN, A. SENOSIAIN AND EC. CARBO. kite chicksfor releasein the midlandsin 1997.The paper 1997. The re-establishment of Red Kite Milvus milvus benefitted greatly from the commentsof Dr. Ian Newton, breeding populationsin Scotlandand England. Br. Tom J. Cade and Harrison Tordoff. Birds 90:123-138. LOVEGROVE,R., G. ELLIOT AND K. SMITH. 1990. The Red LITERATURE CITED Kite in Britain. In CJ. Cadbury [ED.], RSPBConser- C&qTER, I.C., I.M. EV•NS •ND N. CROCKFORD.1995. The vation Review1990. Sandy,U.K. Red Kite re-introduction project in Britain--progress NEWTON,I. 1979. Populationecology of raptors.T. & A. so far and future plans. Br. Wildl. 7:18-25. D. Poyser,London, U.K. CR•vtP,S. 1985. Handbook of the birds of Europe, the , P.E. DAVISAND J.E. DAWS.1987. Age of first Middle East and North Africa: the birds of the West- breeding, dispersaland survivalof Red Kites Milvus ern Palearctic. Vol. 4. Oxford Univ. Press, Oxford, milvus in Wales. Ibis 131:16-21. U.K. , -- ANDD. Moss. 1994. Philopatryand pop- and K.E.L. SIMMONS. 1980. Handbook of the birds ulation growth of Red Kites Milvus milvusin Wales. Proc. R. Soc.Lond. B, 257:317-323. of Europe, the Middle East and North Africa: the INTERNATIONAL UNION FOR THE CONSERVATION OF NA- birds of the Western Palearctic. Vol. 2. Oxford Univ. TURE AND NATURAL RESOURCES. 1987. Translocation of Press, Oxford, U.K. living organisms:introductions, re-introductionsand EVANS, I.M., M.W.
    [Show full text]
  • Sibling Aggression, Hatching Asynchrony, and Nestling Mortality in the Black Kite (Milvus Migrans)
    Behav Ecol Sociobiol (1999) 45: 33±45 Ó Springer-Verlag 1999 ORIGINAL ARTICLE Javier VinÄ uela Sibling aggression, hatching asynchrony, and nestling mortality in the black kite (Milvus migrans) Received: 9 March 1998 / Accepted after revision: 8 August 1998 Abstract In siblicidal species, hatching asynchrony high-quality chicks, but a manifestation of a parent- could act to reduce sibling rivalry or promote the death ospring con¯ict over brood size. of last-hatched chicks. The pattern of hatching asyn- chrony was experimentally altered in the black kite Key words Hatching asynchrony á Sibling aggression á Milvus migrans. Hatching asynchrony in control broods Nestling mortality á Parent-ospring con¯ict á was intermediate between those of experimentally syn- Milvus migrans chronised and asynchronised broods. Sibling aggression and wounds on the chicks were more commonly ob- served early in the nestling period and in synchronous nests. Serious injuries were observed on last-hatched Introduction chicks in asynchronous nests, as were observations of intimidated or crushed chicks. Sibling aggression was Sibling aggression and hatching asynchrony are com- related to food abundance, but some chicks died at an mon in raptors (Newton 1979), and may promote sib- early age in nests with abundant food (cainism). Cainism licide (Simmons 1988). Hatching asynchrony could was more commonly found in asynchronous nests. For reduce sibling aggression between size-matched chicks species with facultative siblicide, moderate hatching (Hahn 1981), allowing the establishment of a size hier- asynchrony could be a compromise between reducing archy with a minimum of aggressive interactions. Al- sibling rivalry and avoiding large size dierences be- ternatively, it could promote the death of last-hatched tween sibs that would result in cainism.
    [Show full text]
  • Direct Evidence of Poison-Driven Widespread Population Decline in a Wild Vertebrate
    Direct evidence of poison-driven widespread population decline in a wild vertebrate Patricia Mateo-Tomása,b,c,1,2, Pedro P. Olead,e,1, Eva Mínguezf,g, Rafael Mateoh, and Javier Viñuelac aResearch Unit of Biodiversity, Oviedo University - Spanish Research Council - Principado de Asturias (UO-CSIC-PA), 33600 Mieres, Spain; bCentre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; cGame and Wildlife Management Group, Institute for Game and Wildlife Research (IREC), University of Castilla-La Mancha - Spanish Research Council - Junta de Comunidades de Castilla-La Mancha (UCLM-CSIC-JCCM), 13005 Ciudad Real, Spain; dTerrestrial Ecology Group, Departamento de Ecología, Universidad Autónoma de Madrid, 28049 Madrid, Spain; eCentro de Investigación en Biodiversidad y Cambio Global, Universidad Autónoma de Madrid, 28049 Madrid, Spain; fWorld Wildlife Fund Spain (WWF Spain), 28005 Madrid, Spain; gSpanish Ornithological Society (SEO/BirdLife), 28053 Madrid, Spain and hWildlife Toxicology Group, Institute for Game and Wildlife Research (IREC), University of Castilla-La Mancha - Spanish Research Council - Junta de Comunidades de Castilla-La Mancha (UCLM-CSIC-JCCM), 13005 Ciudad Real, Spain Edited by Gerardo Ceballos, Universidad Nacional Autónoma de México, Mexico City, Mexico, and approved May 20, 2020 (received for review December 19, 2019) Toxicants such as organochlorine insecticides, lead ammunition, decline due to such processes as density-dependent productivity or and veterinary drugs have caused severe wildlife poisoning, immigration, which may compensate for toxic effects at an indi- pushing the populations of several apex species to the edge of vidual level (1). As a result, forecasting the fate of populations extinction. These prime cases epitomize the serious threat that affected by toxicants is a challenging task (10).
    [Show full text]
  • Preservation of Wide-Ranging Top Predators by Site-Protection: Black and Red Kites in Doñana National Park
    Biological Conservation 125 (2005) 11–21 www.elsevier.com/locate/biocon Preservation of wide-ranging top predators by site-protection: Black and red kites in Doñana National Park Fabrizio Sergio a,¤, Julio Blas b, Manuela Forero a, Néstor Fernández a,c, José Antonio Donázar a, Fernando Hiraldo a a Department of Applied Biology, Estación Biológica de Doñana, C.S.I.C., Avda de María Luisa s/n., Pabellón del Perú, Apdo 1056, 41013 Seville, Spain b Department of Biology, University of Saskatchewan, Canada S7NSE2 c Department of Ecological Modelling, UFZ – Centre for Environmental Research, Permoserstrasse 15, D-04301 Leipzig, Germany Received 25 August 2004 Available online 14 April 2005 Abstract We used data from a long-term study on two medium-sized generalist predators, the black kite (Milvus migrans) and the red kite (Milvus milvus), to illustrate the complexity of managing wide-ranging top predators by site-protection. The study was con- ducted between 1989 and 2000 in the Reserva Biológica de Doñana, located at the core of Doñana National Park. Both species occurred at high density and showed high productivity. Black kites were slightly increasing, and red kites showed a non-signiWcant trend. The main cause of breeding failure was nest predation, mainly by mammalian predators, most likely Iberian lynx (Lynx pardinus) or common genet (Genetta genetta). The main cause of mortality was illegal poisoning, which sharply increased in the late 1990s. Nest-site selection models showed that: (1) black kites selected areas near the seasonal marshes, rich in their main prey species and (2) red kites selected areas rich in marshland and far from the park border, possibly in response to illegal poisoning epi- sodes.
    [Show full text]
  • Kenya National Biodiversity Threat Assessment
    Kenya National Biodiversity Threat Assessment Direct Human Threats Impacting Kenya’s Biodiversity 1st September 2020 The report was prepared by Masumi S. Gudka for IUCN – BIODEV2030 Contents Acknowledgements ........................................................................................................................ c Abbreviations and Acronyms ........................................................................................................ e Executive Summary ........................................................................................................................ 1 Introduction ................................................................................................................................... 1 Methodology, Results & Analyses ................................................................................................. 1 Conclusion & Recommendations................................................................................................... 3 1. Introduction ................................................................................................................................. 5 1.1 BIODEV2030: Mainstreaming Biodiversity into Key Economic Sectors ................................... 5 1.2 BIODEV2030: Supporting Kenya Vision 2030 ......................................................................... 6 1.3 Purpose of the Assessment ..................................................................................................... 8 2. Methodology ..............................................................................................................................
    [Show full text]