(U-Th)/He Thermochronometry Constraints on Unroofing of the Eastern Kaapvaal Craton and Significance for Uplift of the Southern

Total Page:16

File Type:pdf, Size:1020Kb

(U-Th)/He Thermochronometry Constraints on Unroofing of the Eastern Kaapvaal Craton and Significance for Uplift of the Southern (U-Th)/He thermochronometry constraints on unroofi ng of the eastern Kaapvaal craton and signifi cance for uplift of the southern African Plateau Rebecca M. Flowers1* and Blair Schoene 1Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309, USA 2Department of Geosciences, Princeton University, Princeton, New Jersey 08544, USA ABSTRACT 15oE20oE25oE30oE35oE The timing and causes of the >1.0 km elevation gain of the south- ern African Plateau since Paleozoic time are widely debated. We Africa o Zimbabwe craton report the fi rst apatite and titanite (U-Th)/He thermochronometry 20 S Limpopo belt Lebomb data for southern Africa to resolve the unroofi ng history across a clas- monocline sic portion of the major escarpment that encircles the plateau. The o study area encompasses ~1500 m of relief within Archean basement of 25oS Kaapvaal the Barberton Greenstone Belt region of the eastern Kaapvaal craton. craton Titanite dates are Neoproterozoic. Apatite dates are Cretaceous, with Figure 2 most results clustering at ca. 100 Ma. Thermal history simulations confi rm Mesozoic heating followed by accelerated cooling in mid- to o Late Cretaceous time. The lower temperature sensitivity of the apa- 30 S Kimberlites, tite (U-Th)/He method relative to previous thermochronometry in mostly 143-45 Ma southern Africa allows tighter constraints on the Cenozoic thermal 183 Ma Karoo sills/lavas 0 km 500 history than past work. The data limit Cenozoic temperatures east of o > 2.8 Ga, mostly the escarpment to ≤35 °C, and appear best explained by temperatures 35 S granitoid gneisses Great Escarpment within a few degrees of the modern surface temperature. These results Figure 1. Topography of southern Africa, with Archean base- restrict Cenozoic unroofi ng to less than ~850 m, and permit negligible ment depicted in orange. erosion since the Cretaceous. If substantial uplift of the southern Afri- can Plateau occurred in the Cenozoic as advocated by some workers, then it was not responsible for the majority of post-Paleozoic unroof- the Mesozoic (e.g., Brown et al., 2002; de Wit, 2007; Tinker et al., 2008). ing across the eastern escarpment. Signifi cant Mesozoic unroofi ng is These two hypotheses for the timing of surface uplift suggest fundamen- coincident with large igneous province activity, kimberlite magma- tally different causes of elevation gain. Cenozoic uplift could be due to tism, and continental rifting within and along the margins of south- shallow convection and thermal modifi cation of the upper mantle when ern Africa, compatible with a phase of plateau elevation gain due to Africa attained a stationary position in mid-Tertiary time (e.g., Burke and mantle buoyancy sources associated with these events. Gunnell, 2008). In contrast, Mesozoic elevation gain would point toward deep mantle processes associated with the breakup of Gondwana as the INTRODUCTION source of buoyancy for plateau uplift (e.g., de Wit, 2007). How cratonic plateaus undergo elevation gain with little upper crustal Low-temperature thermochronology is widely used to resolve cool- deformation is a long-standing problem. Cratonic southern Africa, charac- ing during unroofi ng, which in turn can help constrain the uplift history of terized by anomalous elevations and a distinctive topography, is a unique a region. Here “unroofi ng” refers to the thickness of rock removed through example of plateau uplift (Fig. 1). The southern African Plateau, encom- erosion or tectonism, and “uplift” refers to the increase in surface eleva- passing the southeastern half of the African continent, attained >1.0 km tion. We report the fi rst (U-Th)/He data for southern Africa, acquired in of elevation while distal from convergent plate boundaries, unlike most an area characterized by ~1500 m of relief across the Great Escarpment other major continental plateau settings in which horizontal contraction in ancient basement of the eastern Kaapvaal craton (Fig. 2). We exploit was substantial during plateau elevation gain (e.g., Burke, 1996; de Wit, the ability of the apatite (U-Th)/He method to resolve lower temperatures 2007). The “Great Escarpment” encircles much of southern Africa, sepa- (down to 30 °C) than prior thermochronometry in southern Africa to better rating the more highly denuded passive margins from the less denuded limit the magnitude of Cenozoic unroofi ng across the escarpment, evalu- and low-relief plateau interior. The Kaapvaal craton, one of the best-pre- ate the erosional history from the Mesozoic to the present, and consider served Early Archean cratons, is embedded in the Precambrian shield that the implications for uplift of the southern African Plateau. makes up the core of the plateau (Fig. 1). Positioned beneath the cratonic lithosphere is one of the most signifi cant low-seismic-velocity structures TECTONIC SETTING in the deep mantle on Earth, the “African superplume” (e.g., Ritsema et The core of southern Africa is underlain by Archean basement of the al., 1999; Ni et al., 2002). The dramatic escarpment, the atypical eleva- Kaapvaal and Zimbabwe cratons sutured by the Limpopo orogenic belt. tions of the cratonic nucleus, and the distinctive mantle seismic structure Younger terranes were accreted subsequently during the Mesoprotero- all contribute to the unusual character of southern Africa. zoic Namaqua-Natal, Neoproterozoic Pan-African, and Paleozoic Cape Many workers advocate either (1) a mid- to late Tertiary origin of orogenies. The region is last known to have been at sea level in Paleozoic most of the modern topography (e.g., King, 1951; Partridge and Maud, time during deposition of the Karoo Supergroup (Johnson et al., 1996). 1987; Burke, 1996; Burke and Gunnell, 2008), or (2) elevation gain in Deposition began ca. 300 Ma and was terminated by widespread 183 Ma Karoo volcanism during the breakup of Gondwana (e.g., Jourdan et al., *E-mail: rebecca.fl [email protected]. 2005). Other Mesozoic magmatism included the Etendeka fl ood basalts © 2010 Geological Society of America. For permission to copy, contact Copyright Permissions, GSA, or [email protected]. GEOLOGY,Geology, September September 2010; 2010 v. 38; no. 9; p. 827–830; doi: 10.1130/G30980.1; 2 fi gures; Data Repository item 2010230. 827 Downloaded from http://pubs.geoscienceworld.org/gsa/geology/article-pdf/38/9/827/3539730/827.pdf by Princeton University user on 19 October 2020 A Cenozoic sediments B 183 Ma Karoo lavas Lower Permian Ecca Group KPV99-91 claystones 94, 106 Ma Paleoproterozoic Transvaal Supergroup sedimentary rocks KPV99-94 AGC01-5 81 ±10 Ma Archean Pongola Supergroup 97 ±9 Ma sedimentary rocks and volcanics AGC01-4 Archean granitic crust 26°S 101 ±8 Ma Archean Barberton KPV99-96 t: 636, 725 Ma Greenstone Belt 131, 122 Ma EKC02-40 100 ±7 Ma A t: 689, 871 Ma A/ BS04-7 AGC01-2 111 ±22 Ma 136 ±24 Ma EKC02-64 Mozambique EKC02-65 101 ±11 Ma 96 ±9 Ma EKC03-35 78 ±9 Ma South Africa 27°S Swaziland 31°E32°E C / Time (Ma) A A 300 200 100 0 2000 D 0 W 100 ±7 Ma 94, 106 Ma E 136 ±24 Ma 96 ±9 Ma 101 ±8 Ma 50 81 ±10 Ma 97 ±9 Ma 101 ±11 Ma 1000 111 ±22 Ma 131, 122 Ma 78 ±9 Ma Permian Tertiary overlain by 100 Ecca Group younger sediments Cretaceous sedimentary rocks Elevation (m) 0 Precambrian basement 150 183 Ma Karoo lavas (°C) Temperature 0 40 80 120 160 200 Onset of Karoo Karoo Etendeka- Agulhas ~25x vertical exaggeration Distance (km) Supergroup deposition LIP Parana LIP LIP Episodes of significant kimberlite magmatism Figure 2. A: Topography of the study area. Darker and lighter grays represent lower and higher elevations, respectively. Sample locations and mean apatite (U-Th)/He dates are shown. For the two samples with only two analyses, the individual dates are listed. The individual ti- tanite dates are denoted by “t”. A–A′ marks the location of the cross section in C. B: Simplifi ed geological map of the study area, from Wilson (1982). C: Cross section through the eastern Kaapvaal craton, with samples projected at the appropriate elevations. Relationships of Cre- taceous and Tertiary units are from Frankel (1972). D: Post–300 Ma inverse modeling simulation results depicted as individual t-T paths for the ca. 100 Ma coastal plain samples. The black square and gray rectangles show the constraints imposed on the thermal history. The dark and light gray lines represent good and acceptable fi ts, respectively. The bold black line depicts the “best-fi t” history. LIPs and episodes of signifi cant kimberlite magmatism are noted. (e.g., Renne et al., 1996), the Agulhas large igneous province (LIP; e.g., elevation, and include the escarpment that separates the elevated plateau Parsiegla et al., 2008), and the emplacement of numerous kimberlite pipes from the coastal region (Fig. 2). (e.g., Jelsma et al., 2004). The Barberton Greenstone Belt and Ancient Gneiss Complex APATITE AND TITANITE (U-Th)/He in Swaziland and eastern South Africa contain the oldest recognized THERMOCHRONOMETRY (3.66 Ga) and best-exposed rocks of the Archean Kaapvaal craton We acquired (U-Th)/He data for 43 individual apatite crystals (Fig. 2B) (e.g., Schoene et al., 2008). The two major post-Archean tec- from 11 samples ranging in elevation from 315 m to 1515 m across the tonic events in this area were accretion of the ca. 1.2–1.1 Ga Natal meta- southeastern African escarpment (Fig. 2). Samples were 3.6–2.75 Ga morphic province to the south and ca. 580–480 Ma Pan-African over- orthogneisses collected from basement terranes fl anking the Barberton printing to the northeast. Permian to Jurassic Karoo sedimentary rocks Greenstone Belt. Data were acquired at the California Institute of Tech- and volcanics of the southern Lebombo monocline, marking the rifted nology.
Recommended publications
  • Upper Mantle P and S Wave Velocity Structure of the Kalahari Craton And
    RESEARCH LETTER Upper Mantle P and S Wave Velocity Structure of the 10.1029/2019GL084053 Kalahari Craton and Surrounding Proterozoic Key Points: • Thick cratonic lithosphere extends Terranes, Southern Africa beneath the Rehoboth Province and Kameron Ortiz1, Andrew Nyblade1,5 , Mark van der Meijde2, Hanneke Paulssen3 , parts of the northern Okwa Terrane 4 4 5 2,6 and Magondi Belt Motsamai Kwadiba , Onkgopotse Ntibinyane , Raymond Durrheim , Islam Fadel , • The northern edge of the greater and Kyle Homman1 Kalahari Craton lithosphere lies along the northern boundary of the 1Department of Geosciences, Pennsylvania State University, University Park, PA, USA, 2Faculty for Geo‐information Rehoboth Province and Magondi Science and Earth Observation (ITC), University of Twente, Enschede, Netherlands, 3Department of Earth Sciences, Belt 4 • Cratonic mantle lithosphere Faculty of Geosciences, Utrecht University, Utrecht, Netherlands, Botswana Geoscience Institute, Lobatse, Botswana, 5 6 beneath the Okwa Terrane and School of Geosciences, The University of the Witwatersrand, Johannesburg, South Africa, Geology Department, Faculty Magondi Belt may have been of Science, Helwan University, Ain Helwan, Egypt chemically altered by Proterozoic magmatic events Abstract New broadband seismic data from Botswana and South Africa have been combined with Supporting Information: existing data from the region to develop improved P and S wave velocity models for investigating the • Supporting Information S1 upper mantle structure of southern Africa. Higher craton‐like velocities are imaged beneath the Rehoboth Province and parts of the northern Okwa Terrane and the Magondi Belt, indicating that the Correspondence to: northern edge of the greater Kalahari Craton lithosphere lies along the northern boundary of these A. Nyblade, terranes.
    [Show full text]
  • Mafic Dyke Swarm, Brazil: Implications for Archean Supercratons
    Michigan Technological University Digital Commons @ Michigan Tech Michigan Tech Publications 12-3-2018 Revisiting the paleomagnetism of the Neoarchean Uauá mafic dyke swarm, Brazil: Implications for Archean supercratons J. Salminen University of Helsinki E. P. Oliveira State University of Campinas, Brazil Elisa J. Piispa Michigan Technological University Aleksey Smirnov Michigan Technological University, [email protected] R. I. F. Trindade Universidade de Sao Paulo Follow this and additional works at: https://digitalcommons.mtu.edu/michigantech-p Part of the Geological Engineering Commons, and the Physics Commons Recommended Citation Salminen, J., Oliveira, E. P., Piispa, E. J., Smirnov, A., & Trindade, R. I. (2018). Revisiting the paleomagnetism of the Neoarchean Uauá mafic dyke swarm, Brazil: Implications for Archean supercratons. Precambrian Research, 329, 108-123. http://dx.doi.org/10.1016/j.precamres.2018.12.001 Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/443 Follow this and additional works at: https://digitalcommons.mtu.edu/michigantech-p Part of the Geological Engineering Commons, and the Physics Commons Precambrian Research 329 (2019) 108–123 Contents lists available at ScienceDirect Precambrian Research journal homepage: www.elsevier.com/locate/precamres Revisiting the paleomagnetism of the Neoarchean Uauá mafic dyke swarm, T Brazil: Implications for Archean supercratons ⁎ J. Salminena,b, , E.P. Oliveirac, E.J. Piispad,e, A.V. Smirnovd,f, R.I.F. Trindadeg a Physics Department, University of Helsinki, P.O. Box
    [Show full text]
  • Variations in the Thickness of the Crust of the Kaapvaal Craton, and Mantle Structure Below Southern Africa
    Earth Planets Space, 56, 125–137, 2004 Variations in the thickness of the crust of the Kaapvaal craton, and mantle structure below southern Africa C. Wright, M. T. O. Kwadiba∗,R.E.Simon†,E.M.Kgaswane‡, and T. K. Nguuri∗∗ Bernard Price Institute of Geophysical Research, School of Geosciences, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa (Received September 17, 2003; Revised March 3, 2004; Accepted March 3, 2004) Estimates of crustal thicknesses using Pn times and receiver functions agree well for the southern part of the Kaapvaal craton, but not for the northern region. The average crustal thicknesses determined from Pn times for the northern and southern regions of the craton were 50.52 ± 0.88 km and 38.07 ± 0.85 km respectively, with corresponding estimates from receiver functions of 43.58 ± 0.57 km and 37.58 ± 0.70 km. The lower values of crustal thicknesses for receiver functions in the north are attributed to variations in composition and metamorphic grade in an underplated, mafic lower crust, resulting in a crust-mantle boundary that yields weak P-to-SV conversions. P and S wavespeeds in the uppermost mantle of the central regions of the Kaapvaal craton are high and uniform with average values of 8.35 and 4.81 km/s respectively, indicating the presence of depleted magnesium-rich peridotite. The presence of a low wavespeed zone for S waves in the upper mantle between depths of 210 and about 345 km that is not observed for P waves was inferred outside the Kaapvaal craton.
    [Show full text]
  • A Review of the Neoproterozoic to Cambrian Tectonic Evolution
    Accepted Manuscript Orogen styles in the East African Orogen: A review of the Neoproterozoic to Cambrian tectonic evolution H. Fritz, M. Abdelsalam, K.A. Ali, B. Bingen, A.S. Collins, A.R. Fowler, W. Ghebreab, C.A. Hauzenberger, P.R. Johnson, T.M. Kusky, P. Macey, S. Muhongo, R.J. Stern, G. Viola PII: S1464-343X(13)00104-0 DOI: http://dx.doi.org/10.1016/j.jafrearsci.2013.06.004 Reference: AES 1867 To appear in: African Earth Sciences Received Date: 8 May 2012 Revised Date: 16 June 2013 Accepted Date: 21 June 2013 Please cite this article as: Fritz, H., Abdelsalam, M., Ali, K.A., Bingen, B., Collins, A.S., Fowler, A.R., Ghebreab, W., Hauzenberger, C.A., Johnson, P.R., Kusky, T.M., Macey, P., Muhongo, S., Stern, R.J., Viola, G., Orogen styles in the East African Orogen: A review of the Neoproterozoic to Cambrian tectonic evolution, African Earth Sciences (2013), doi: http://dx.doi.org/10.1016/j.jafrearsci.2013.06.004 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 Orogen styles in the East African Orogen: A review of the Neoproterozoic to Cambrian 2 tectonic evolution 3 H.
    [Show full text]
  • Trading Partners: Tectonic Ancestry of Southern Africa and Western Australia, In
    Precambrian Research 224 (2013) 11–22 Contents lists available at SciVerse ScienceDirect Precambrian Research journa l homepage: www.elsevier.com/locate/precamres Trading partners: Tectonic ancestry of southern Africa and western Australia, in Archean supercratons Vaalbara and Zimgarn a,b,∗ c d,e f g Aleksey V. Smirnov , David A.D. Evans , Richard E. Ernst , Ulf Söderlund , Zheng-Xiang Li a Department of Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton, MI 49931, USA b Department of Physics, Michigan Technological University, Houghton, MI 49931, USA c Department of Geology and Geophysics, Yale University, New Haven, CT 06520, USA d Ernst Geosciences, Ottawa K1T 3Y2, Canada e Carleton University, Ottawa K1S 5B6, Canada f Department of Earth and Ecosystem Sciences, Division of Geology, Lund University, SE 223 62 Lund, Sweden g Center of Excellence for Core to Crust Fluid Systems, Department of Applied Geology, Curtin University, Perth, WA 6845, Australia a r t i c l e i n f o a b s t r a c t Article history: Original connections among the world’s extant Archean cratons are becoming tractable by the use of Received 26 April 2012 integrated paleomagnetic and geochronologic studies on Paleoproterozoic mafic dyke swarms. Here we Received in revised form ∼ report new high-quality paleomagnetic data from the 2.41 Ga Widgiemooltha dyke swarm of the Yil- 19 September 2012 garn craton in western Australia, confirming earlier results from that unit, in which the primary origin Accepted 21 September 2012 of characteristic remanent magnetization is now confirmed by baked-contact tests. The correspond- Available online xxx ◦ ◦ ◦ ing paleomagnetic pole (10.2 S, 159.2 E, A95 = 7.5 ), in combination with newly available ages on dykes from Zimbabwe, allow for a direct connection between the Zimbabwe and Yilgarn cratons at 2.41 Ga, Keywords: Paleomagnetism with implied connections as early as their cratonization intervals at 2.7–2.6 Ga.
    [Show full text]
  • Magmatic Records of the Late Paleoproterozoic to Neoproterozoic 14 Extensional and Rifting Events in the North China Craton: a Preliminary Review
    Magmatic Records of the Late Paleoproterozoic to Neoproterozoic 14 Extensional and Rifting Events in the North China Craton: A Preliminary Review Shuan-Hong Zhang and Yue Zhao Abstract The North China Craton (NCC) is characterized by multistages of extensional and continental rifting and deposition of thick marine or interactive marine and terrestrial clastic and carbonate platform sediments without angular unconformity during Earth’s middle age of 1.70–0.75 Ga. Factors controlling these multistages of extensional and continental rifting events in the NCC can be either from the craton itself or from the neighboring continents being connected during these periods. Two large igneous provinces including the ca. 1.32 Ga mafic sill swarms in Yanliao rift (aulacogen) in the northern NCC and the ca. 0.92–0.89 Ga Xu-Huai–Dalian–Sariwon mafic sill swarms in southeastern and eastern NCC, have recently been identified from the NCC. Rocks from these two large igneous provinces exhibit similar geochemical features of tholeiitic compositions and intraplate characteristics. Formation of these two large igneous provinces was accompanied by pre-magmatic uplift as indicated by the field relations between the sills and their hosted sedimentary rocks. The Yanliao and Xu-Huai–Dalian–Sariwon large igneous provinces represent two continental rifting events that have led to rifting to drifting transition and breakup of the northern margin of the NCC from the Columbia (Nuna) supercontinent and the southeastern margin of the NCC from the Rodinia supercontinent, respectively. As shown by the ca. 200 Ma Central Atlantic Magmatic Province related to breakup of the Pangea supercontinent and initial opening of the Central Atlantic Ocean and the ca.
    [Show full text]
  • Imaging Crust and Upper Mantle Beneath Southern Africa: the Southern Africa Broadband Seismic Experiment
    Imaging crust and upper mantle beneath southern Africa: The southern Africa broadband seismic experiment DAVID E. JAMES, Carnegie Institution of Washington, Washington, D.C., U.S. The view from the rim of the Big Hole in Kimberley, South Africa, can only be described as spectacular (Figure 1). Both the size of that legendary kimberlite pipe and the prodigious amount of backbreaking labor that went into removing some 27 million tons of dirt to extract 14.5 million carats (2722 kilos) of diamonds are powerful testaments to the timeless allure of diamonds. The Big Hole, the largest hand-dug excavation in the world (820 m deep and 1.6 km across), lies at an improbable elevation above 1100 m (3500 ft) in the heart of the great Archean Kaapvaal craton of South Africa. The Kaapvaal, perforated with thousands of kimberlite pipes similar to that from which the Big Hole was dug, has a rich and colorful history of exhaustive and painstaking geologic study and exploration that the presence of exotic mantle sam- ples and large quantities of gem quality diamonds inspires. In this classic Archean craton we launched the largest seis- mic investigation ever to probe the deep crust and upper Figure 1. The Big Hole in Kimberley, South Africa. Abandoned since mantle beneath the ancient continental nucleus (Figure 2). 1914 and now mostly filled with water, the Big Hole is the world's most famous diamond-mining locality and the source of much of Cecil Rhodes' The formation and long-term stability of the cratonic fortune. Today diamond mining in Kimberley is confined largely to rela- cores of continents remain among the more formidable puz- tively small-scale underground and secondary recovery operations.
    [Show full text]
  • Gravity Evidence for a Larger Limpopo Belt in Southern Africa and Geodynamic Implications
    Geophys. J. Int. (2002) 149, F9–F14 FAST TRACK PAPER Gravity evidence for a larger Limpopo Belt in southern Africa and geodynamic implications R. T. Ranganai,1 A. B. Kampunzu,2 E. A. Atekwana,2,*B.K.Paya,3 J. G. King,1 D. I. Koosimile3 and E. H. Stettler4 1University of Botswana, Department of Physics, Private Bag UB00704, Gaborone, Botswana. E-mail: [email protected] 2University of Botswana, Department of Geology, Private Bag UB00704, Gaborone, Botswana 3Geological Survey of Botswana, Private Bag 14, Lobatse, Botswana 4Council for Geosciences, Bag X112, Pretoria 0001, South Africa Downloaded from https://academic.oup.com/gji/article/149/3/F9/2016109 by guest on 02 October 2021 Accepted 2002 February 18. In original form 2001 October 10 SUMMARY The Limpopo Belt of southern Africa is a Neoarchean orogenic belt located between two older Archean provinces, the Zimbabwe craton to the north and the Kaapvaal craton to the south. Previous studies considered the Limpopo Belt to be a linearly trending east-northeast belt with a width of ∼250 km and ∼600 km long. We provide evidence from gravity data constrained by seismic and geochronologic data suggesting that the Limpopo Belt is much larger than previously assumed and includes the Shashe Belt in Botswana, thus defining a southward convex orogenic arc sandwiched between the two cratons. The 2 Ga Magondi orogenic belt truncates the Limpopo–Shahse Belt to the west. The northern marginal, central and southern marginal tectonic zones define a single gravity anomaly on upward continued maps, indicating that they had the same exhumation history.
    [Show full text]
  • Geology.Gsapubs.Org on June 10, 2010
    Downloaded from geology.gsapubs.org on June 10, 2010 Geology Search for evidence of impact at the Permian-Triassic boundary in Antarctica and Australia: Comment and Reply John L. Isbell, Rosemary A. Askin and Gregory J. Retallack Geology 1999;27;859-860 doi: 10.1130/0091-7613(1999)027<0859:SFEOIA>2.3.CO;2 Email alerting services click www.gsapubs.org/cgi/alerts to receive free e-mail alerts when new articles cite this article Subscribe click www.gsapubs.org/subscriptions/ to subscribe to Geology Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. Notes Geological Society of America Downloaded from geology.gsapubs.org on June 10, 2010 Low-latitude sea-surface temperatures for the mid-Cretaceous and the evolution of planktic foraminifera: Comment and Reply COMMENT simplex and Hedbergella delrioensis occur in the same range as the keeled forms Praeglobotruncana delrioensis, Rotalipora brotzeni, Planomalina G.
    [Show full text]
  • New Late Permian Tectonic Model for South Africa's Karoo Basin
    www.nature.com/scientificreports OPEN New Late Permian tectonic model for South Africa’s Karoo Basin: foreland tectonics and climate Received: 12 December 2016 Accepted: 1 August 2017 change before the end-Permian Published: xx xx xxxx crisis Pia A. Viglietti 1,2, Bruce S. Rubidge1,2 & Roger M. H. Smith1,2,3 Late Permian Karoo Basin tectonics in South Africa are refected as two fning-upward megacycles in the Balfour and upper Teekloof formations. Foreland tectonics are used to explain the cyclic nature and distribution of sedimentation, caused by phases of loading and unloading in the southern source areas adjacent to the basin. New data supports this model, and identifes potential climatic efects on the tectonic regime. Diachronous second-order subaerial unconformities (SU) are identifed at the base and top of the Balfour Formation. One third-order SU identifed coincides with a faunal turnover which could be related to the Permo-Triassic mass extinction (PTME). The SU are traced, for the frst time, to the western portion of the basin (upper Teekloof Formation). Their age determinations support the foreland basin model as they coincide with dated paroxysms. A condensed distal (northern) stratigraphic record is additional support for this tectonic regime because orogenic loading and unloading throughout the basin was not equally distributed, nor was it in-phase. This resulted in more frequent non-deposition with increased distance from the tectonically active source. Refning basin dynamics allows us to distinguish between tectonic and climatic efects and how they have infuenced ancient ecosystems and sedimentation through time. Te Karoo Basin of South Africa represented a large depocenter situated in southern Gondwana supported by the Kaapvaal Craton in the northeast and the Namaqua-Natal Metamorphic Belt (NNMB) in the southwest1, 2.
    [Show full text]
  • SOURCES Choubert, G., Faure-Muret, A
    AFRICA GONDWANA PROJECT – IGCP-628 MAIN SOURCES Choubert, G., Faure-Muret, A. (general coordinators), Chanteux P. (Cartographic work), Simpson, E.S.W., Shackleton, L., Ségoufin, J., Seguin, C. (Oceanic domain coordinators), Sougy, J. (Editorial Committee) 1987-1990. International Geological Map of Africa. UNESCO/CGMW, sheets 1, 2, 3, 4, 5, scale 1:5,000,000. De Wit, M. J., Stankiewicz, J. and Reeves, C. 2008.Restoring Pan-African-Brasiliano conections: more Gondwana control, less trans-Atlantic corruption. Geological Society, London, Special Publications. Geological Society of London, 294(1), 399–412. Feliks, M.P., Ahlbrandt, T.S., Tuttle, M.L., Charpentier, R.R., Brownfield, M.E., Takahashi, K.I. 2001. Map Showing Geology, Oil and Gas Fields, and Geologic Provinces of Africa at 1:5.000.000 scale. U.S. Geological Survey's World Energy Project (WEP). Fritz, H., Tenczer, V., Hauzenberger, C., Wallbrecher, E., & Muhongo, S. 2009. Hot granulite nappes—tectonic styles and thermal evolution of the Proterozoic granulite belts in East Africa. Tectonophysics, 477(3), 160-173. Fritz, H., Abdelsalam, M., Ali, K. A., Bingen, B., Collins, A. S., Fowler, A. R., Macey, P. 2013. Orogen styles in the East African Orogen: a review of the Neoproterozoic to Cambrian tectonic evolution. Journal of African Earth Sciences, 86, 65-106. Hunter, Donald Raymond (Ed.) 1981. Precambrian of the southern hemisphere. Elsevier,. Johnson, P.R. 2006. Explanatory Notes to the Map of Proterozoic Geology of Western Saudi Arabia. Saudi Geological Survey Technical Report SGS-TR-2006- 4, 62 p., Scale 1:1,500,000. Kröner, A. and Cordani, U. 2003.African, southern Indian and South American cratons were not part of the Rodinia supercontinent: evidence from field relationships and geochronology.Tectonophysics.
    [Show full text]
  • New Insights Into the Crust and Lithospheric Mantle Structure of Africa from Elevation, Geoid, and Thermal Analysis
    New insights into the crust and lithospheric mantle structure of Africa from elevation, geoid, and thermal analysis Jan Globig(1), Manel Fernàndez(1), Montserrat Torne(1), Jaume Vergés(1), Alexandra Robert(2) and Claudio Faccenna(3) (1) Institute of Earth Sciences Jaume Almera, ICTJA-CSIC, Group of Dynamics of the Lithosphere (G.D.L.), Barcelona, Spain (2) Géosciences Environnement Toulouse, Observatoire Midi-Pyrénées, France (3) University Roma TRE, Dept. of Geological Sciences, Italy Key points: 1) We present 10 min resolution crust and lithosphere maps of Africa constrained by a compilation of seismic Moho data and tomography models. 2) Our maps cover large areas of Africa where no data are available showing 76% fit with seismic data after excluding the Afar plume region. 3) Misfits with seismic data in the Afar region are discussed in terms of residual topography related to sublithospheric processes. Abstract 1. Introduction 2. Tectonic Background 3. Data 4. Method and model parameters 5. Results This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/2016JB012972 © 2016 American Geophysical Union. All rights reserved. 6. Discussion 7. Conclusion Appendix References Acknowledgments Abstract We present new crust and lithosphere thickness maps of the African mainland based on integrated modeling of elevation and geoid data and thermal analysis. The approach assumes local isostasy, thermal steady-state, and linear density increase with depth in the crust and temperature-dependent density in the lithospheric mantle.
    [Show full text]