History of Telepresence

Total Page:16

File Type:pdf, Size:1020Kb

History of Telepresence See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/227591938 History of Telepresence Chapter · January 2006 DOI: 10.1002/0470022736.ch1 CITATIONS READS 23 2,984 1 author: Wijnand A Ijsselsteijn Eindhoven University of Technology 314 PUBLICATIONS 11,558 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Restorative Environments and Healing Media View project Telepresence, Immersion & Embodiment in Mediated Environments View project All content following this page was uploaded by Wijnand A Ijsselsteijn on 29 May 2018. The user has requested enhancement of the downloaded file. 1 History of Telepresence Wijnand A. IJsselsteijn Eindhoven University of Technology, Eindhoven, The Nether- lands ”When anything new comes along, everyone, like a child discovering the world, thinks that they’ve invented it, but you scratch a little and you find a caveman scratching on a wall is creating virtual reality in a sense. What is new here is that more sophisticated instruments give you the power to do it more easily. Virtual reality is dreams” Morton Heilig, quoted in Hamit (1993), p. 57. 1.1 Introduction The term telepresence was first used in the context of teleoperation by Marvin Minsky (suggested to him by his friend Pat Gunkel) in a bold 1979 funding proposal Toward a Remotely-Manned Energy and Production Economy, the essentials of which were laid down in his classic 1980 paper on the topic (Minsky 1980). It refers to the phenomenon that a human operator develops a sense of being physically present at a remote location through interaction with the system’s human interface, that is, through the user’s actions and the subsequent perceptual feedback he/she receives via the appropriate teleoperation technology. The concept of presence had been discussed earlier in the context of theatrical performances, where actors are said to have a ’stage presence’ (to indicate a certain strength and convincingness in the actor’s stage appearance and performance). Bazin 3-D Videocommunications.EditedbyO.Schreer,P.Kauff,andT.Sikora c 2001 John Wiley & Sons, Ltd HISTORY OF TELEPRESENCE 2 (1967) also discussed this type of presence in relation to photography and cinema. He writes: ”Presence, naturally, is defined in terms of time and space. ’To be in the presence of someone’ is to recognise him as existing contemporaneously with us and to note that he comes within the actual range of our senses - in the case of cinema of our sight and in radio of our hearing. Before the arrival of photography and later of cinema, the plastic arts (especially portraiture) were the only intermediaries between actual physical presence and absence.” - Bazin (1967), p. 96, originally published in Esprit in 1951. Bazin noted that in theatre, actors and spectators have a reciprocal relationship, both being able to respond to each other within shared time and space. With televi- sion, and any other broadcast medium, this reciprocity is incomplete in one direction, adding a new variant of ’pseudopresence’ between presence and absence. Bazin: ”The spectator sees without being seen. There is no return flow....Nevertheless, this state of not being present is not truly an absence. The television actor has a sense of the million of ears and eyes virtually present and represented by the electronic camera.” - Bazin (1967), p. 97, footnote. The sense of being together and interacting with others within a real physical space can be traced back to the work of Goffman (1963), who used the concept of co- presence to indicate the individual’s sense of perceiving others as well as the awareness of others being able to perceive the individual: ”The full conditions of co-presence, however, are found in less variable circumstances: persons must sense that they are close enough to be per- ceived in whatever they are doing, including their experiencing of others, and close enough to be perceived in this sensing of being perceived.” - Goffman (1963), p. 17. This mutual and recursive awareness has a range of consequences on how individ- uals present themselves to others. Note, however, that Goffman applied the concept of co-presence only to social interactions in ’real’ physical space. In our current society, the sense of co-presence throughamediumis of significant importance as a grow- ing number of our human social interactions are mediated, rather than co-located in physical space. Since the early 1990s onwards, presence has been studied in relation to various media, most notably virtual environments (VEs). Sheridan (1992) refers to presence elicited by a VE as ’virtual presence’, whereas he uses ’telepresence’ for the case of teleoperation that Minsky (1980) was referring to. From the point of view of psycho- logical analysis, a distinction based on enabling technologies is unnecessary and the broader term presence is used in this chapter to include both variations. A number of authors have used the terms ’presence’ and ’immersion’ interchange- ably, as they regard them as essentially the same thing. However, in this chapter, they are considered as different concepts, in line with, for instance, Slater and Wilbur HISTORY OF TELEPRESENCE 3 (1997) and Draper et al. (1998). Immersion is a term which is reserved here for de- scribing a set of physical properties of the media technology that may give rise to presence. A media system that offers display and tracking technologies that match and support the spatial and temporal fidelity of real-world perception and action is considered immersive. For an overview of criteria in the visual domain, see IJsselsteijn (2003). In a similar vein, Slater and Wilbur (1997) refer to immersion as the objec- tively measurable properties of a VE. According to them it is the ”extent to which computer displays are capable of delivering an inclusive, extensive, surrounding, and vivid illusion of reality to the senses of the VE participant” (p. 604). Presence can be conceptualised as the experiential counterpart of immersion - the human response. Presence and immersion are logically separable, yet several studies show a strong em- pirical relationship, as highly immersive systems are likely to engender a high degree of presence for the participant. Lombard and Ditton (1997) reviewed a broad body of literature related to pres- ence and identified six different conceptualizations of presence: realism, immersion, transportation, social richness, social actor within medium, and medium as social actor. Based on the commonalities between these different conceptualizations, they provide a unifying definition of presence as the perceptual illusion of non-mediation, that is, the extent to which a person fails to perceive or acknowledge the existence of a medium during a technologically mediated experience. The conceptualizations Lom- bard and Ditton identified can roughly be divided into two broad categories - physical and social. The physical category refers to the sense of being physically located in mediated space, whereas the social category refers to the feeling of being together, of social interaction with a virtual or remotely located communication partner. At the intersection of these two categories, we can identify co-presence or a sense of being together in a shared space at the same time, combining significant characteristics of both physical and social presence. Figure 1.1 illustrates this relationship with a number of media examples that support the different types of presence to a varying extent. The examples vary signif- icantly in both spatial and temporal fidelity. For example, while a painting may not necessarily represent physical space with a great degree of accuracy (although there are examples to the contrary, as we shall see), interactive computer graphics (i.e., virtual environments) have the potential to engender a convincing sense of physical space by immersing the participant and supporting head-related movement parallax. For communication systems, the extent to which synchronous communication is sup- ported varies considerably. Time-lags are significant in the case of letters, and almost absent in the case of telephone or videoconferencing. It is clear that physical and social presence are distinct categories that can and should be meaningfully distinguished. Whereas a unifying definition, such as the one provided by Lombard and Ditton (1997), accentuates the common elements of these different categories, it is of considerable practical importance to keep the differences between these categories in mind as well. The obvious difference is that of commu- nication which is central to social presence but unnecessary to establish a sense of physical presence. Indeed, a medium can provide a high degree of physical presence without having the capacity for transmitting reciprocal communicative signals at all. Conversely, one can experience a certain amount of social presence, or the ’nearness’ HISTORY OF TELEPRESENCE 4 Figure 1.1: A graphical illustration of the relationship between physical presence, social presence and co-presence, with various media examples. Abbreviations: VR = Virtual Reality; LBE = Location-Based Entertainment; SVEs = Shared Virtual Environments; MUDs = Multi-User Dungeons. Technologies vary in both spatial and temporal fidelity. of communication partners, using applications that supply only a minimal physical representation, as is the case, for example, with telephone or internet chat. This is not to say, however, that the two types of presence are unrelated. There are likely to be a number of common determinants, such as the immediacy of the interaction, that are relevant to both social and physical presence. As illustrated in Figure 1.1, applications such as videoconferencing or shared virtual environments are in fact based on providing a mix of both the physical and social components. The extent to which shared space adds to the social component is an empirical question, but several studies have shown that as technology increasingly conveys non-verbal communicative cues, such as facial expression, gaze direction, gestures, or posture, social presence will increase.
Recommended publications
  • Morton Heilig, Through a Combination of Ingenuity, Determination, and Sheer Stubbornness, Was the First Person to Attempt to Create What We Now Call Virtual Reality
    Morton Hei Iig "The [in em a of the Future" << 2 2 >> (1955) ;!fo11o11 Hdlir;. Sens<muna. Cuuri<S_) oJS1o11 Fi1lur. "Thus, individually and collectively, by thoroughly applying the methodology of art, the cinema of the future will become the first art form to reveal the new scientific world to man in the .full sensual vividness and dynamic vitality of his consciousness." 239 240 Horton Heilig << Morton Heilig, through a combination of ingenuity, determination, and sheer stubbornness, was the first person to attempt to create what we now call virtual reality. In the 1 950s it occurred to him that all the sensory splendor of life could be simulated with "reality machines." Heilig was a Hollywood cinematographer, and it was as an extension of cinema that he thought such a machine might be achieved. With his inclination, albeit amateur, toward the ontological aspirations of science, He ilig proposed that an artist's expressive powers would be enhanced by a scientific understanding of the senses and perception. His premise was sim­ ple but striking for its time: if an artist controlled the multisensory stimulation of the audience, he could provide them with the illusion and sensation of first­ person experience, of actually " being there." Inspired by short-Jived curiosities such as Cinerama and 3-D movies, it oc­ curred to Heilig that a logical extension of cinema would be to immerse the au­ dience in a fabricated world that engaged all the senses. He believed that by expanding cinema to involve not only sight and sound but also taste, touch, and smell, the traditional fourth wal l of film and theater would dissolve, transport­ ing the audience into an inhabitable, virtual world; a kind of "experience theater." Unable to find support in Hollywood for his extraordinary ideas, Heilig moved to Mexico City In 1954, finding himself in a fertile mix of artists, filmmakers, writers, and musicians.
    [Show full text]
  • Audio Challenges in Virtual and Augmented Reality Devices
    Audio challenges in virtual and augmented reality devices Dr. Ivan Tashev Partner Software Architect Audio and Acoustics Research Group Microsoft Research Labs - Redmond In memoriam: Steven L. Grant Sep 15, 2016 IWAENC Audio challenges in virtual and augmented reality devices 2 In this talk • Devices for virtual and augmented reality • Binaural recording and playback • Head Related Functions and their personalization • Object-based rendering of spatial audio • Modal-based rendering of spatial audio • Conclusions Sep 15, 2016 IWAENC Audio challenges in virtual and augmented reality devices 3 Colleagues and contributors: Hannes Gamper David Johnston Ivan Tashev Mark R. P. Thomas Jens Ahrens Microsoft Research Microsoft Research Microsoft Research Dolby Laboratories Chalmers University, Sweden Sep 15, 2016 IWAENC Audio challenges in virtual and augmented reality devices 4 Devices for Augmented and Virtual Reality They both need good spatial audio Sep 15, 2016 IWAENC Audio challenges in virtual and augmented reality devices 5 Augmented vs. Virtual Reality • Augmented reality (AR) is a live direct or indirect view of a physical, real-world environment whose elements are augmented (or supplemented) by computer-generated sensory input such as sound, video, graphics • Virtual reality (VR) is a computer technology that replicates an environment, real or imagined, and simulates a user's physical presence in a way that allows the user to interact with it. It artificially creates sensory experience, which can include sight, touch, hearing, etc. Sep
    [Show full text]
  • Virtual and Augmented Reality
    Virtual and Augmented Reality Virtual and Augmented Reality: An Educational Handbook By Zeynep Tacgin Virtual and Augmented Reality: An Educational Handbook By Zeynep Tacgin This book first published 2020 Cambridge Scholars Publishing Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Copyright © 2020 by Zeynep Tacgin All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner. ISBN (10): 1-5275-4813-9 ISBN (13): 978-1-5275-4813-8 TABLE OF CONTENTS List of Illustrations ................................................................................... x List of Tables ......................................................................................... xiv Preface ..................................................................................................... xv What is this book about? .................................................... xv What is this book not about? ............................................ xvi Who is this book for? ........................................................ xvii How is this book used? .................................................. xviii The specific contribution of this book ............................. xix Acknowledgements ...........................................................
    [Show full text]
  • Virtual Reality: Principles and Applications Frédéric Mérienne
    Virtual Reality: Principles and Applications Frédéric Mérienne To cite this version: Frédéric Mérienne. Virtual Reality: Principles and Applications. Encyclopedia of Computer Science and Technology, Taylor and Francis, pp.1-11, 2017, 10.1081/E-ECST2-140000194. hal-01728062 HAL Id: hal-01728062 https://hal.archives-ouvertes.fr/hal-01728062 Submitted on 9 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Virtual Reality: Principles and Applications Fre´de´ric Merienne Le2i, Arts et Metiers, France Abstract Virtual reality aims at immersing a user in a virtual environment. Dedicated virtual reality technologies of human–computer interaction enable to make the link between the user and a virtual environment in capturing the user’s motion, acting on his senses as well as computing the virtual experience in real-time. The immersion in virtual environment is evaluated through the user’s perception and reaction. Virtual reality is used in a large variety of application domains which need multisensory interaction and navigation facilities. Virtual prototyping is also used in the industry to improve design process. INTRODUCTION digital representation in the design process of the object. The principle and main issues of virtual prototyping are Virtual reality is widely used in different application exposed.
    [Show full text]
  • History of Virtual Reality
    History of Virtual Reality Reading: 3D User Interfaces: Theory and Practice (2nd Edition), Ch. 2 Evan Suma Rosenberg | CSCI 5619 | Fall 2020 This course content is offered under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license. 1838 – Wheatstone Stereoscope The Wheatstone stereoscope used angled mirrors (A) to reflect stereoscopic drawings (E) towards the viewer’s eyes. 1849 – Brewster Stereoscope P. Hoberman, D. Krum, E. Suma, and M. Bolas. Immersive training games for smartphone-based head mounted displays. IEEE Virtual Reality, 2012. 1903 – Parallax Barrier 1929 – Link Flight Simulator Edward Link developed a mechanical flight simulator for training. Simulator was instrument-only (flying blind with no visuals). 1956 – Sensorama Morton Heilig’s Sensorama was an immersive multisensory experience that combined 3D film, stereo sound, vibration, wind, and even smell. 1960 – Telesphere Mask The first head-mounted display (HMD) was patented by Heilig in 1960. 1965 – The Ultimate Display • 3D Display: “A display connected to a digital computer gives us a chance to gain familiarity with concepts not realizable in the physical world. It is a looking glass into a mathematical wonderland.” • Motion Tracking: “The computer can easily sense the positions of almost any of our body muscles.” • Haptics: “The ultimate display would, of course, be a room within which the computer can control the existence of matter. A chair displayed in such a room would be good enough to sit in. Handcuffs displayed in such a room would be confining, and a bullet displayed in such a room would be fatal.” 1968 - Sword of Damocles First virtual reality head-mounted display system, created by Ivan Sutherland and Bob Sproull.
    [Show full text]
  • “Tvcation” Visual Communication System for Manufacturing Industry
    INFORMATION & COMMUNICATIONS Development of “TVcation” Visual Communication System for Manufacturing Industry Yoichi HATA*, Yasuhito FUJITA, Yoshimitsu GOTO and Toshiaki KAKII As broadband Internet services become more widespread, visual communications especially video conferencing are becoming more popular. With an aim of improving the efficiency of business in industry sectors, the authors have developed visual communication system software named “TVcation” as a solution to more efficient manufacturing. When dealing with information related to manufacturing business, the processing of still images and photographs is particularly important. TVcation supports for the JPEG2000 image compression algorithm and provides scalability, and therefore the quality of received image data can be freely selected even in an environment where the networks of different band widths intermingled. 1. Introduction Visual communications Recently, as the Internet becomes widespread and (Conference using image streaming) faster, visual communication technology as typified by videoconferencing is receiving widespread attention. Especially in business enterprises, there are demands Web conference TV conference for the introduction of video or web conference for the (Desktop conference) (Video conference) purposes of reducing business trip expenditures, travel times, carbon-dioxide emissions, and decision making times. Audio teleconference and The authors have developed a prototype of a visual Data sharing, etc. communication system (hereafter called “TVcation”)
    [Show full text]
  • A Interação De Ferramentas Lean Com a Realidade Aumentada - Estudo Exploratório
    UNIVERSIDADE DA BEIRA INTERIOR Faculdade de Engenharia A interação de ferramentas Lean com a Realidade Aumentada - Estudo Exploratório Hugo Meireles Dantas Gonçalves Dissertação para obtenção do Grau de Mestre em Engenharia e Gestão Industrial (2º ciclo de estudos) Orientador: Prof. Doutor Fernando Manuel Bigares Charrua Santos Covilhã, Outubro de 2016 ii Dedicatória À minha mãe. iii iv Agradecimentos Aos meus irmãos de curso pela ajuda e companheirismo durante esta jornada que agora termina. Aos irmãos de Engenharia Eletromecânica e aos de Engenharia e Gestão Industrial. Incluindo as infiltradas de Gestão. Aos meus amigos de Leça da Palmeira pela compreensão pelas minhas falhas e ausências ao longo destes últimos anos. Ao meu orientador, Prof. Doutor Fernando Manuel Bigares Charrua Santos, pela sua compreensão, orientação e disponibilidade. À minha família pelo apoio. Por fim agradeço à mulher da minha vida. À minha mãe, por acreditar em mim em todas as alturas. Por nunca condicionar as minhas escolhas. Agradeço por me proporcionar tudo o que sou e que tenho. Por todo o esforço que fiz para que pudesse agora concluir este ciclo. Muito obrigado. v vi Resumo O Lean Manufacturing é uma filosofia de gestão industrial. Esta incorpora diferentes metodologias que têm como objetivo identificar e eliminar todos os desperdícios que existam numa empresa melhorando a organização e a competitividade. Este teve a sua origem no japão do pós segunda guerra mundial devido à necessidade de competir em mercados a milhares de quilómetros de distância e para isso era essencial produzir bem, à primeira e de forma célere. A Realidade Aumentada é uma tecnologia recente que tem vindo a ser cada vez mais explorada e publicitada.
    [Show full text]
  • History of Virtual Reality Trends & Milestones Visually Coupled
    Trends & Milestones Displays (head-mounted) • video only, CG overlay, CG only, mixed video • CRT vs. LCD History of Virtual Reality Tracking • magnetic, mechanical, ultrasonic, optical • local vs. wide area Haptics • vibration, 2D fields, 6D fields • Large vs. small working volume and forces Systems, Applications (thanks, Greg Welch) • Aerospace, surveillance • Scientific, research • Entertainment, telepresence, etc. Visually Coupled Systems Sensorama (1956) Morton Heilig Aerospace and Defense Requirements • cinematographer/director of documentaries • Cost-effective and safe training Motorcycle simulator - all senses • Put heads-up-display (HUD) in pilot’s view • visual (city scenes) Other Applications • sound (engine, city sounds) • Off-boresight weapons aiming • vibration (engine) • Steerable night vision aids • smell (exhaust, food) (not a big commercial success) Heilig’s HMD (1960) “Simulation Mask” • 3D photographic slides • WFOV optics with focus control • Stereo sound • Smell Virtual Reality Technology, Burdea & Coiffet 1 Philco Headsight TV Surveillance System (1961) Comeau & Bryan Components From Heilig’s • Remote closed-circuit TV 1960 patent • HMD Custom magnetic tracking Head-sight camera linkage Suggested HMD resolution matching • match display to eye’s resolution Virtual Reality Technology, Burdea & Coiffet Ivan Sutherland and The Ultimate Display (1965) • Suggested HMD as a a window into a virtual world • Inspired many of the great achievers in interactive computer graphics Sutherland’s HMD 2 UNC Haptic Systems (1967-1980’s)
    [Show full text]
  • Cisco Telepresence Cisco on Cisco Technology Seminar
    Cisco TelePresence Cisco on Cisco Technology Seminar Suresha Bhat, Manager—Emerging Technology IT Julie Nordquist, Program Manager—Cisco on Cisco (Host) Presentation_ID © 2007 Cisco Systems, Inc. All rights reserved. Cisco Public 1 Agenda TelePresence Technology Overview Design Solution for Cisco Architecture Network Deploy Solution Readiness Deployment Experience ( RRA, CTX ) Support and Management Support Engineering Metrics Entitlement Presentation_ID © 2007 Cisco Systems, Inc. All rights reserved. Cisco Public 2 TelePresence Cisco TelePresence Is an Innovative, New Technology That Creates Unique, In-Person Experiences Between People, Places, and Events in Their Work and Personal Lives—over the Network Greater Productivity Faster Decision Making and Improved Time to Market Improved Responsiveness Improved Communication and Collaboration with Co-Workers, Partners, and Customers Presentation_ID © 2007 Cisco Systems, Inc. All rights reserved. Cisco Public 3 TelePresence Technology Overview Audio/Visual Technology Telepresence systems incorporate the most up-to-date standards and technologies to offer the best audio and visual results: H.264 video codecs to offer the highest quality at lowest bit rate Session Initiation Protocol ( SIP ) Native 720p and 1080p high-definition cameras Native 720p and 1080p high-definition encoding/decoding Low-latency architecture and low bandwidth utilization Wideband advanced audio coding with low delay (AAC LD) Multichannel spatial audio with echo cancellation and interference filters to eliminate
    [Show full text]
  • Telepresence After Death
    FORUM Telepresence after Death Abstract edge the role of technology that makes it appear that he or she is communicating with one or more other people This paper examines some of the increasingly sophisticated or entities” (International Society for Presence Re- attempts by humans to evoke the presence of themselves search, 2000). or others after death and considers these efforts in the We begin with a brief discussion of attitudes and be- context of telepresence theory and research. Potential fu- haviors that demonstrate the strong human need for a ture research and ethical implications are also addressed. sense of the presence of those who have died. 1 Introduction 2 The Need for Presence after Death At Wired magazine’s NextFest 2005, Hanson Ro- Because death is a universal, mysterious, and often botics presented an android in the image of deceased sci- disturbing phenomenon, we are naturally interested in ence fiction writer Philip K. Dick. A team of scientists, art- death and develop complex beliefs and behaviors re- ists, literary scholars and writers created it as a “powerful garding it. Margaret Mead (1930) writes: memorial to the author.” “Celebrating and resurrecting” Dick using “expressive robot hardware, natural language Death plays an important part in our lives at the un- AI, and machine vision,” the android was said to “depict conscious level. Cultural attitudes toward death have the author with stunning accuracy” (Rhodes, 2006; see been influenced by and are illustrative of unconscious also Christensen, 2005). dynamic mechanisms known to psychoanalysis as re- While humans have used grave markers, paintings, gression, repression, projection and rationalization...
    [Show full text]
  • Virtual & Augmented Reality
    HISTORY If you know what a ViewMaster is — a hand held device you place round slides into then hold up Virtual & Augmented Reality to your eyes to see 3D images — then you might be surprised to learn ViewMasters were created in People have changed the world around them, and World War II as a training device. Their use as toys The first story which thought about how to change the world, since the for everyday people happened after the war. View- describes what we rec- start of human history. The idea of hand held tools Masters work similar to Google Cardboard today, ognize as head mounted to transport people to different worlds, however, with a smartphone replacing the round slides. displays — a key part of appears to be a mostly new idea. The popularity of virtual reality, appeared HG Wells and his science fiction novels, for exam- in a short story, Pygma- ple, led readers and writers to think and write about lion’s Spectacles, written how technology might change or replace the world. by Stanley G. Weinbaum What we call virtual reality can be traced back at and published in 1935. least to a short story by Stanley G. Weinbaum, Pyg- He describes goggles malion’s Spectacles, published in 1935. The spectacles that, when placed over Photo by Nan Palmero on Flickr are goggles that, when worn, transport the narrator the head, transport a Today virtual and augmented reality tools are finally powerful enough and into a paradise with people, sounds, smells, and person to an alternate universe, a paradise where he can affordable to more people than in the past.
    [Show full text]
  • Immersive Robotic Telepresence for Remote Educational Scenarios
    sustainability Article Immersive Robotic Telepresence for Remote Educational Scenarios Jean Botev 1,* and Francisco J. Rodríguez Lera 2 1 Department of Computer Science, University of Luxembourg, L-4364 Esch-sur-Alzette, Luxembourg 2 Department of Mechanical, Informatics and Aerospace Engineering, University of León, 24071 León, Spain; [email protected] * Correspondence: [email protected] Abstract: Social robots have an enormous potential for educational applications and allow for cognitive outcomes that are similar to those with human involvement. Remotely controlling a social robot to interact with students and peers in an immersive fashion opens up new possibilities for instructors and learners alike. Using immersive approaches can promote engagement and have beneficial effects on remote lesson delivery and participation. However, the performance and power consumption associated with the involved devices are often not sufficiently contemplated, despite being particularly important in light of sustainability considerations. The contributions of this research are thus twofold. On the one hand, we present telepresence solutions for a social robot’s location-independent operation using (a) a virtual reality headset with controllers and (b) a mobile augmented reality application. On the other hand, we perform a thorough analysis of their power consumption and system performance, discussing the impact of employing the various technologies. Using the QTrobot as a platform, direct and immersive control via different interaction modes, including motion, emotion, and voice output, is possible. By not focusing on individual subsystems or motor chains, but the cumulative Citation: Botev, J.; Rodríguez Lera, energy consumption of an unaltered robot performing remote tasks, this research provides orientation F.J. Immersive Robotic Telepresence regarding the actual cost of deploying immersive robotic telepresence solutions.
    [Show full text]