Mutations in Both Env and Gag Genes Are Required for HIV-1 Resistance to the Polysulfonic Dendrimer SPL2923, As Corroborated by Chimeric Virus Technology

Total Page:16

File Type:pdf, Size:1020Kb

Mutations in Both Env and Gag Genes Are Required for HIV-1 Resistance to the Polysulfonic Dendrimer SPL2923, As Corroborated by Chimeric Virus Technology Antiviral Chemistry & Chemotherapy 16:253–266 Mutations in both env and gag genes are required for HIV-1 resistance to the polysulfonic dendrimer SPL2923, as corroborated by chimeric virus technology Anke Hantson1,†, Valery Fikkert1,†, Barbara Van Remoortel1, Chistophe Pannecouque3, Peter Cherepanov1, Barry Matthews2, George Holan2, Erik De Clercq3, Anne-Mieke Vandamme3, Zeger Debyser1 and Myriam Witvrouw1* 1Laboratory for Molecular Virology, Molecular Medicine, Katholieke Universiteit Leuven and KULAK, Flanders, Belgium 2Starpharma Limited, Melbourne, Victoria, Australia 3Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium *Corresponding author: Tel: +32 1633 2170; Fax: +32 1633 6336; E-mail: [email protected] †Anke Hantson and Valery Fikkert contributed equally to this paper A drug-resistant NL4.3/SPL2923 strain has previ- NL4.3/SPL2923 were sufficient to reproduce the ously been generated by in vitro selection of HIV- cross resistance to enfuvirtide. Unexpectedly, the 1(NL4.3) in the presence of the polysulfonic reduced sensitivity towards SPL2923 was not fully dendrimer SPL2923 and mutations were reported reproduced after gp160-recombination. The search in its gp120 gene (Witvrouw et al., 2000). Here, we for mutations in NL4.3/SPL2923 in viral genes further analysed the (cross) resistance profile of other than env revealed several mutations in the NL4.3/SPL2923. NL4.3/SPL2923 was found to gene encoding the HIV p17 matrix protein (MA) contain additional mutations in gp41 and showed and one mutation in the gene encoding the p24 reduced susceptibility to SPL2923, dextran sulfate capsid protein (CA). In order to analyse the impact (DS) and enfuvirtide. To delineate to what extent of the gag mutations alone and in combination the mutations in each env gene were accountable with the mutations in env on the phenotypic resis- for the phenotypic (cross) resistance of tance towards SPL2923, we developed a novel NL4.3/SPL2923, the gp120-, gp41- and gp160- p17- and p17/gp160-CVT. Phenotypic analysis of sequences derived from this strain were placed the NL4.3/SPL2923 p17- and p17/gp160-recom- into a wild-type background using env chimeric bined strains indicated that the mutations in both virus technology (CVT). The cross resistance of env and gag have to be present to fully reproduce NL4.3/SPL2923 towards DS was fully reproduced the resistance of NL4.3/SPL2923 towards SPL2923. following gp160-recombination, while it was only partially reproduced following gp120- or gp41- Key words: HIV, entry, bicyclams, gag, env, recombination. The mutations in gp41 of resistance Introduction Current treatments for human immunodeficiency virus entry into its target cells involves the interaction of the viral type 1 (HIV-1) infection are based on drug combination protein gp120 with the CD4 receptor on the cell surface regimens, consisting of drugs that target reverse transcrip- and the successive interaction of gp120 with the coreceptor. tase (RT) and protease (PR) (Richman, 2001). Due to toxi- This results in a conformational change to the prehairpin city and the emergence of virus strains resistant to the intermediate, in which the fusion peptide of gp41 pene- antiretrovirals, the development of drugs preferentially trates the cell membrane. The prehairpin intermediate acting on new targets in the HIV replication cycle remains resolves to the fusion-active hairpin structure, resulting in crucial (Vandamme et al., 1999). An attractive new target the apposition of the viral envelope and the plasma for anti-HIV therapy is entry, since blocking entry should membrane and is followed by the fusion of the envelope lead to suppression of infectivity and replication. HIV with the cellular lipid bilayer (Chan & Kim, 1998). ©2005 International Medical Press 253 A Hantson et al. Numerous entry inhibitors acting at different stages of peptidic agents, for example, the polyphemusin T22, T134 the entry process have been reported, of which a growing and T140 (Arakaki et al., 1999; Murakami et al., 1997; number has recently been introduced into clinical trials or Tamamura et al., 1998a; Tamamura et al., 1998b), and the is in preclinical development. Typical polyanionic Tat protein analogues ALX40-4C (Doranz et al., 1997) compounds, like dextran sulfate (DS) inhibit HIV binding and CGP64222 (Daelemans et al., 2000). Also, low molec- to its target cells (Baba et al., 1988). They exert their anti- ular weight CXCR4 antagonists are the highly potent and HIV activity by shielding off the positively charged sites in selective bicyclams (De Clercq et al., 1992; De Vreese et al., the V3 loop of gp120, thereby blocking the attachment to 1996; Schols et al., 1997), represented by AMD3100, cell surface heparan sulfate (Witvrouw & De Clercq, which has been evaluated in Phase II clinical trials (Schols 1997). The dendrimer SPL2923 shares an analogous mode D, Claes S, De Clercq E, Hendrix C, Bridger G, Calandra of action due to its polysulfonated periphery. Dendrimers G, Henson GW, Fransen S, Huang W, Whitcomb JM & are highly branched macromolecules that are built up in Petropoulos CJ [2002] AMD3100 HIV study group. generations from a reactive core group by the use of AMD3100, a CXCR4 antagonist reduced HIV viral load branched building blocks to give spherical molecules. and X4 virus levels in humans. 9th Conference on SPL2923 consists of a fourth generation polyamidoamine Retroviruses & Opportunistic Infections. Seattle, WA, USA, (PAMAM) dendrimer scaffold built from an ammonia 24–28 February 2002. Oral Abstract 2.) but has not been core, which is fully capped on the surface with 24 naph- further pursued for the treatment of HIV infections thyldisulfonic acids (Witvrouw et al., 2000). PRO 542, an because of the lack of oral bioavailability. antibody-like fusion protein of the D1D2 domains of CD4 From the group of HIV entry inhibitors that interfere and IgG2, is a specific CD4 attachment inhibitor (Allaway with the hairpin formation and membrane fusion, enfuvir- et al., 1995; Jacobson et al., 2000). The conserved CD4- tide (T20), has recently been approved to be included in binding pocket on gp120 is a target for BMS-806, another anti-HIV combination regimens (Lalezari et al., 2003; HIV binding inhibitor. Preclinical development of this Lazzarin, 2003). T20 is a synthetic 36-amino acid peptide inhibitor is ongoing (Guo et al., 2003; Lin et al., 2003; segment corresponding to residues 127-162 of the Wang et al., 2003). ectodomain of gp41, that is, the envelope HR2 domain. In addition, co-receptor antagonists can inhibit replica- T20 binds to the N-terminal fusion peptide of the pre- tion. SCH-C is an orally bioavailable CCR5 antagonist hairpin intermediate and prevents the subsequent forma- (Strizki et al., 2001) which demonstrates good pharmaco- tion of the fusion-active hairpin conformation (Eckert & kinetics, safety and tolerability besides a clear decrease in Kin, 2001). A second generation fusion inhibitor, T1249, HIV RNA in Phase I/II clinical trials (Reynes J, Rouzier has already been identified (Sista P, Melby T, Dhingra U, R, Kanouni T, Baillet V, Baroudy B, Keung A, Hogan C, Cammack N, McKenna P, Dehertogh P & Matthews T Malowitz M & Laughlin [2002] SCH C. safety and [2001] The fusion inhibitors T20 and T1249 demonstrate antiviral effects of a CCR5 receptor antagonist in HIV-1 potent in vitro antiviral activity against clade B HIV-1 infected subjects. 9th Conference on Retroviruses & isolates resistant to reverse transcriptase and protease Opportunistic Infections. Seattle, WA, USA, 24–28 February inhibitors and non-B clades. 5th International Workshop on 2002. Oral Abstract 1.). SCH-D acts in a similar mode, but HIV Drug resistance & Treatment Strategies. Scottsdale, shows higher antiviral potency (Chen Z, Hu B, Huang W, Arizona, USA, 4–8 June 2001. Abstract 2.) and demon- He T, Huang Y, Strizki J, Xu S, Wojcik L, Whitcom J, strated a strong dose response in patients with multi-drug Zhang L, Petropoulos C, Baroudy B & Ho DD [2002] resistant strains (Miralles GD, DeMasi R, Sista P,Melby T, HIV-1 mutants less susceptible to SCH-D a novel small Duff F, Matthews T & the T1249-101 study group [2001] antagonist of CCR5. 9th Conference on Retroviruses & Baseline genotype and prior antiretroviral history do not Opportunistic Infections. 24–28 February, Seattle, WA, affect virologic response to T1249. 5th International USA. Abstract 396-T). PRO 140, an anti-CCR5 mono- Workshop on HIV Drug resistance & Treatment Strategies. clonal antibody, displayed anti-HIV activity in the thera- Scottsdale, Arizona, USA, 4–8 June 2001. Abstract 3.). peutic hu-PBMC-SCID mouse model (Franti M, O’Neill Most likely, more HIV entry inhibitors will follow. This Maddon P,Burton D, Poignard P & Olson W [2002] PRO makes the study of resistance towards inhibitors of viral 542 (CD4IgG2) has a profound impact on HIV-1 replica- entry and the development of phenotypic assays to evaluate tion in the Hu-PBL-SCID mouse model. 9th Conference on the susceptibility of clinical isolates towards HIV entry Retroviruses & Opportunistic Infections. Seattle, USA, 24–28 inhibitors mandatory. February 2002. Abstract 396-T.). A number of polycationic We previously reported the anti-HIV activity of polyan- molecules were found to interact electrostatically with the ionic dendrimers inhibiting the replication of HIV-1 in MT- negatively charged amino acid residues of CXCR4. The 4 cells in the nanomolar range (Witvrouw et al., 2000). In a majority of these compounds are high molecular weight time-of-addition experiment SPL2923 had to be present at 254 ©2005 International Medical Press HIV-1 resistance to entry inhibitors the moment of viral entry. However, at much higher concen- (Bethesda, MD, USA). NL4.3/SPL2923 has previously trations it was found to exert its anti-HIV activity by inter- been selected in our laboratory by serial passage of HIV-1 fering at a later stage in the replicative cycle, that is, at a step (NL4.3) in the presence of increasing concentrations of coinciding with the RT and/or integrase process.
Recommended publications
  • Symposium on Viral Membrane Proteins
    Viral Membrane Proteins ‐ Shanghai 2011 交叉学科论坛 Symposium for Advanced Studies 第二十七期:病毒离子通道蛋白的结构与功能研讨会 Symposium on Viral Membrane Proteins 主办单位:中国科学院上海交叉学科研究中心 承办单位:上海巴斯德研究所 1 Viral Membrane Proteins ‐ Shanghai 2011 Symposium on Viral Membrane Proteins Shanghai Institute for Advanced Studies, CAS Institut Pasteur of Shanghai,CAS 30.11. – 2.12 2011 Shanghai, China 2 Viral Membrane Proteins ‐ Shanghai 2011 Schedule: Wednesday, 30th of November 2011 Morning Arrival Thursday, 1st of December 2011 8:00 Arrival 9:00 Welcome Bing Sun, Co-Director, Pasteur Institute Shanghai 9: 10 – 9:35 Bing Sun, Pasteur Institute Shanghai Ion channel study and drug target fuction research of coronavirus 3a like protein. 9:35 – 10:00 Tim Cross, Tallahassee, USA The proton conducting mechanism and structure of M2 proton channel in lipid bilayers. 10:00 – 10:25 Shy Arkin, Jerusalem, IL A backbone structure of SARS Coronavirus E protein based on Isotope edited FTIR, X-ray reflectivity and biochemical analysis. 10:20 – 10:45 Coffee Break 10:45 – 11:10 Rainer Fink, Heidelberg, DE Elektromechanical coupling in muscle: a viral target? 11:10 – 11:35 Yechiel Shai, Rehovot, IL The interplay between HIV1 fusion peptide, the transmembrane domain and the T-cell receptor in immunosuppression. 11:35 – 12:00 Christoph Cremer, Mainz and Heidelberg University, DE Super-resolution Fluorescence imaging of cellular and viral nanostructures. 12:00 – 13:30 Lunch Break 3 Viral Membrane Proteins ‐ Shanghai 2011 13:30 – 13:55 Jung-Hsin Lin, National Taiwan University Robust Scoring Functions for Protein-Ligand Interactions with Quantum Chemical Charge Models. 13:55 – 14:20 Martin Ulmschneider, Irvine, USA Towards in-silico assembly of viral channels: the trials and tribulations of Influenza M2 tetramerization.
    [Show full text]
  • A Novel Ebola Virus VP40 Matrix Protein-Based Screening for Identification of Novel Candidate Medical Countermeasures
    viruses Communication A Novel Ebola Virus VP40 Matrix Protein-Based Screening for Identification of Novel Candidate Medical Countermeasures Ryan P. Bennett 1,† , Courtney L. Finch 2,† , Elena N. Postnikova 2 , Ryan A. Stewart 1, Yingyun Cai 2 , Shuiqing Yu 2 , Janie Liang 2, Julie Dyall 2 , Jason D. Salter 1 , Harold C. Smith 1,* and Jens H. Kuhn 2,* 1 OyaGen, Inc., 77 Ridgeland Road, Rochester, NY 14623, USA; [email protected] (R.P.B.); [email protected] (R.A.S.); [email protected] (J.D.S.) 2 NIH/NIAID/DCR/Integrated Research Facility at Fort Detrick (IRF-Frederick), Frederick, MD 21702, USA; courtney.fi[email protected] (C.L.F.); [email protected] (E.N.P.); [email protected] (Y.C.); [email protected] (S.Y.); [email protected] (J.L.); [email protected] (J.D.) * Correspondence: [email protected] (H.C.S.); [email protected] (J.H.K.); Tel.: +1-585-697-4351 (H.C.S.); +1-301-631-7245 (J.H.K.) † These authors contributed equally to this work. Abstract: Filoviruses, such as Ebola virus and Marburg virus, are of significant human health concern. From 2013 to 2016, Ebola virus caused 11,323 fatalities in Western Africa. Since 2018, two Ebola virus disease outbreaks in the Democratic Republic of the Congo resulted in 2354 fatalities. Although there is progress in medical countermeasure (MCM) development (in particular, vaccines and antibody- based therapeutics), the need for efficacious small-molecule therapeutics remains unmet. Here we describe a novel high-throughput screening assay to identify inhibitors of Ebola virus VP40 matrix protein association with viral particle assembly sites on the interior of the host cell plasma membrane.
    [Show full text]
  • Lentivirus and Lentiviral Vectors Fact Sheet
    Lentivirus and Lentiviral Vectors Family: Retroviridae Genus: Lentivirus Enveloped Size: ~ 80 - 120 nm in diameter Genome: Two copies of positive-sense ssRNA inside a conical capsid Risk Group: 2 Lentivirus Characteristics Lentivirus (lente-, latin for “slow”) is a group of retroviruses characterized for a long incubation period. They are classified into five serogroups according to the vertebrate hosts they infect: bovine, equine, feline, ovine/caprine and primate. Some examples of lentiviruses are Human (HIV), Simian (SIV) and Feline (FIV) Immunodeficiency Viruses. Lentiviruses can deliver large amounts of genetic information into the DNA of host cells and can integrate in both dividing and non- dividing cells. The viral genome is passed onto daughter cells during division, making it one of the most efficient gene delivery vectors. Most lentiviral vectors are based on the Human Immunodeficiency Virus (HIV), which will be used as a model of lentiviral vector in this fact sheet. Structure of the HIV Virus The structure of HIV is different from that of other retroviruses. HIV is roughly spherical with a diameter of ~120 nm. HIV is composed of two copies of positive ssRNA that code for nine genes enclosed by a conical capsid containing 2,000 copies of the p24 protein. The ssRNA is tightly bound to nucleocapsid proteins, p7, and enzymes needed for the development of the virion: reverse transcriptase (RT), proteases (PR), ribonuclease and integrase (IN). A matrix composed of p17 surrounds the capsid ensuring the integrity of the virion. This, in turn, is surrounded by an envelope composed of two layers of phospholipids taken from the membrane of a human cell when a newly formed virus particle buds from the cell.
    [Show full text]
  • Influenza Virus M2 Protein Ion Channel Activity Helps to Maintain Pandemic 2009 H1N1 Virus Hemagglutinin Fusion Competence Durin
    Influenza Virus M2 Protein Ion Channel Activity Helps To Maintain Pandemic 2009 H1N1 Virus Hemagglutinin Fusion Competence during Transport to the Cell Surface Esmeralda Alvarado-Facundo,a,b Yamei Gao,a Rosa María Ribas-Aparicio,b Alicia Jiménez-Alberto,b Carol D. Weiss,a Wei Wanga Division of Viral Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USAa; Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexicob ABSTRACT The influenza virus hemagglutinin (HA) envelope protein mediates virus entry by first binding to cell surface receptors and then fusing viral and endosomal membranes during endocytosis. Cleavage of the HA precursor (HA0) into a surface receptor-binding Downloaded from subunit (HA1) and a fusion-inducing transmembrane subunit (HA2) by host cell enzymes primes HA for fusion competence by repositioning the fusion peptide to the newly created N terminus of HA2. We previously reported that the influenza virus M2 protein enhances pandemic 2009 influenza A virus [(H1N1)pdm09] HA-pseudovirus infectivity, but the mechanism was unclear. In this study, using cell-cell fusion and HA-pseudovirus infectivity assays, we found that the ion channel function of M2 was re- quired for enhancement of HA fusion and HA-pseudovirus infectivity. The M2 activity was needed only during HA biosynthesis, and proteolysis experiments indicated that M2 proton channel activity helped to protect (H1N1)pdm09 HA from premature conformational changes as it traversed low-pH compartments during transport to the cell surface. While M2 has previously been shown to protect avian influenza virus HA proteins of the H5 and H7 subtypes that have polybasic cleavage motifs, this study demonstrates that M2 can protect HA proteins from human H1N1 strains that lack a polybasic cleavage motif.
    [Show full text]
  • HIV-1) CD4 Receptor and Its Central Role in Promotion of HIV-1 Infection
    MICROBIOLOGICAL REVIEWS, Mar. 1995, p. 63–93 Vol. 59, No. 1 0146-0749/95/$04.0010 Copyright q 1995, American Society for Microbiology The Human Immunodeficiency Virus Type 1 (HIV-1) CD4 Receptor and Its Central Role in Promotion of HIV-1 Infection STEPHANE BOUR,* ROMAS GELEZIUNAS,† AND MARK A. WAINBERG* McGill AIDS Centre, Lady Davis Institute-Jewish General Hospital, and Departments of Microbiology and Medicine, McGill University, Montreal, Quebec, Canada H3T 1E2 INTRODUCTION .........................................................................................................................................................63 RETROVIRAL RECEPTORS .....................................................................................................................................64 Receptors for Animal Retroviruses ........................................................................................................................64 CD4 Is the Major Receptor for HIV-1 Infection..................................................................................................65 ROLE OF THE CD4 CORECEPTOR IN T-CELL ACTIVATION........................................................................65 Structural Features of the CD4 Coreceptor..........................................................................................................65 Interactions of CD4 with Class II MHC Determinants ......................................................................................66 CD4–T-Cell Receptor Interactions during T-Cell Activation
    [Show full text]
  • Localization of Membrane Permeabilization and Receptor Binding Sites on the VP4 Hemagglutinin of Rotavirus: Implications for Cell Entry
    doi:10.1006/jmbi.2001.5238 available online at http://www.idealibrary.com on J. Mol. Biol. (2001) 314, 985±992 Localization of Membrane Permeabilization and Receptor Binding Sites on the VP4 Hemagglutinin of Rotavirus: Implications for Cell Entry Mariana Tihova1, Kelly A. Dryden1, A. Richard Bellamy2 Harry B. Greenberg3 and Mark Yeager1,4* 1The Scripps Research Institute The surface of rotavirus is decorated with 60 spike-like projections, each Departments of Cell and composed of a dimer of VP4, the viral hemagglutinin. Trypsin cleavage Molecular Biology, 10550 N. of VP4 generates two fragments, VP8*, which binds sialic acid (SA), and Torrey Pines Rd., La Jolla VP5*, containing an integrin binding motif and a hydrophobic region CA 92037, USA that permeabilizes membranes and is homologous to fusion domains. Although the mechanism for cell entry by this non-enveloped virus is 2Biochemistry and Molecular unclear, it is known that trypsin cleavage enhances viral infectivity and Biology, School of Biological facilitates viral entry. We used electron cryo-microscopy and difference Sciences, University of map analysis to localize the binding sites for two neutralizing mono- Auckland, Private Bag clonal antibodies, 7A12 and 2G4, which are directed against the SA-bind- Auckland, New Zealand ing site within VP8* and the membrane permeabilization domain within 3Departments of Medicine and VP5*, respectively. Fab 7A12 binds at the tips of the dimeric heads of Microbiology and Immunology VP4, and 2G4 binds in the cleft between the two heads of the spike. Stanford University Medical When these binding results are combined with secondary structure anal- Center, 300 Pasteur Drive ysis, we predict that the VP4 heads are composed primarily of b-sheets Stanford, CA 94305, USA in VP8* and that VP5* forms the body and base primarily in b-structure 4 and a-helical conformations, respectively.
    [Show full text]
  • An Investigation of the Mechanisms Underlying HIV-1-Mediated Inflammasome Activation
    An investigation of the mechanisms underlying HIV-1-mediated inflammasome activation Christopher JK Ward Doctorate of Philosophy in Medicine Supervised by Dr. Martha Triantafilou & Prof. Kathy Triantafilou Submitted July 2017 i DECLARATION This work has not been submitted in substance for any other degree or award at this or any other university or place of learning, nor is being submitted concurrently in candidature for any degree or other award. Signed ……………………………………………………… (candidate) Date 01.07.2017 STATEMENT 1 This thesis is being submitted in partial fulfilment of the requirements for the degree of Doctorate of Philosophy (Medicine) Signed ………………………………………….…………… (candidate) Date 01.07.2017 STATEMENT 2 This thesis is the result of my own independent work/investigation, except where otherwise stated, and the thesis has not been edited by a third party beyond what is permitted by Cardiff University’s Policy on the Use of Third Party Editors by Research Degree Students. Other sources are acknowledged by explicit references. The views expressed are my own. Signed ……………………………………….……….…… (candidate) Date 01.07.2017 STATEMENT 3 I hereby give consent for my thesis, if accepted, to be available online in the University’s Open Access repository and for inter-library loan, and for the title and summary to be made available to outside organisations. Signed ……………………………………………..…..….. (candidate) Date 01.07.2017 ii Table of Contents Table of Contents ...........................................................................................................
    [Show full text]
  • Structure and Dynamics of Influenza M2 Proton Channels from Solid-State NMR By
    Structure and Dynamics of Influenza M2 Proton Channels from Solid-State NMR by Venkata Shiva Mandala B.A. Biochemistry Oberlin College, 2015 Submitted to the Department of Chemistry in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 2021 ©2020 Massachusetts Institute of Technology. All rights reserved. Signature of Author _____________________________________________________________ Department of Chemistry September 28, 2020 Certified by ____________________________________________________________________ Mei Hong Professor of Chemistry Thesis Supervisor Accepted by ___________________________________________________________________ Adam P. Willard Associate Professor of Chemistry Graduate Officer This doctoral thesis has been examined by a committee of professors from the Department of Chemistry as follows: ______________________________________________________________________________ Matthew D. Shoulders Whitehead Career Development Associate Professor Thesis Committee Chair ______________________________________________________________________________ Mei Hong Professor of Chemistry Thesis Supervisor ______________________________________________________________________________ Robert G. Griffin Arthur Amos Noyes Professor of Chemistry Thesis Committee Member 2 Structure and Dynamics of Influenza M2 Proton Channels from Solid-State NMR by Venkata Shiva Mandala Submitted to the Department of Chemistry on October 9, 2020 in Partial Fulfillment of the
    [Show full text]
  • Towards a Universal Influenza Vaccine: Different Approaches for One Goal Giuseppe A
    Sautto et al. Virology Journal (2018) 15:17 DOI 10.1186/s12985-017-0918-y REVIEW Open Access Towards a universal influenza vaccine: different approaches for one goal Giuseppe A. Sautto1, Greg A. Kirchenbaum1 and Ted M. Ross1,2* Abstract Influenza virus infection is an ongoing health and economic burden causing epidemics with pandemic potential, affecting 5–30% of the global population annually, and is responsible for millions of hospitalizations and thousands of deaths each year. Annual influenza vaccination is the primary prophylactic countermeasure aimed at limiting influenza burden. However, the effectiveness of current influenza vaccines are limited because they only confer protective immunity when there is antigenic similarity between the selected vaccine strains and circulating influenza isolates. The major targets of the antibody response against influenza virus are the surface glycoprotein antigens hemagglutinin (HA) and neuraminidase (NA). Hypervariability of the amino acid sequences encoding HA and NA is largely responsible for epidemic and pandemic influenza outbreaks, and are the consequence of antigenic drift or shift, respectively. For this reason, if an antigenic mismatch exists between the current vaccine and circulating influenza isolates, vaccinated people may not be afforded complete protection. There is currently an unmet need to develop an effective “broadly-reactive” or “universal” influenza vaccine capable of conferring protection against both seasonal and newly emerging pre-pandemic strains. A number of novel influenza vaccine approaches are currently under evaluation. One approach is the elicitation of an immune response against the “Achille’s heel” of the virus, i.e. conserved viral proteins or protein regions shared amongst seasonal and pre- pandemic strains.
    [Show full text]
  • Role of Lipids on Entry and Exit of Bluetongue Virus, a Complex Non-Enveloped Virus
    Viruses 2010, 2, 1218-1235; doi:10.3390/v2051218 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Review Role of Lipids on Entry and Exit of Bluetongue Virus, a Complex Non-Enveloped Virus Bishnupriya Bhattacharya and Polly Roy * London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +44 (0)20 7927 2324; Fax: +44 (0)20 7927 2324. Received: 17 March 2010; in revised form: 4 May 2010 / Accepted: 11 May 2010 / Published: 18 May 2010 Abstract: Non-enveloped viruses such as members of Picornaviridae and Reoviridae are assembled in the cytoplasm and are generally released by cell lysis. However, recent evidence suggests that some non-enveloped viruses exit from infected cells without lysis, indicating that these viruses may also utilize alternate means for egress. Moreover, it appears that complex, non-enveloped viruses such as bluetongue virus (BTV) and rotavirus interact with lipids during their entry process as well as with lipid rafts during the trafficking of newly synthesized progeny viruses. This review will discuss the role of lipids in the entry, maturation and release of non-enveloped viruses, focusing mainly on BTV. Keywords: BTV; non enveloped; lipid rafts; entry; exit 1. Introduction The replication cycle of viruses involves entry into host cells, synthesis of viral genes and proteins, assembly of progeny virus particles and their subsequent egress or release. Along with the plasma membrane, viruses also have to interact with the endosomal and vesicular membranes during their replication in host cells.
    [Show full text]
  • Crystal Structure of the Oligomerization Domain of NSP4 from Rotavirus Reveals a Core Metal-Binding Site
    doi:10.1006/jmbi.2000.4250 available online at http://www.idealibrary.com on J. Mol. Biol. (2000) 304, 861±871 Crystal Structure of the Oligomerization Domain of NSP4 from Rotavirus Reveals a Core Metal-binding Site Gregory D.Bowman 1,2{, Ilana M.Nodelman 1,2{, Orlie Levy3, Shuo L.Lin 3 Peng Tian3, Timothy J.Zamb 3, Stephen A.Udem 3 Babu Venkataraghavan3 and Clarence E.Schutt 2* 1Department of Molecular During the maturation of rotaviral particles, non-structural protein 4 Biology, Lewis Thomas (NSP4) plays a critical role in the translocation of the immature capsid Laboratories, Princeton into the lumen of the endoplasmic reticulum.Full-length NSP4 and a 22 University, Princeton amino acid peptide (NSP4114-135) derived from this protein have been NJ 08544, USA shown to induce diarrhea in young mice in an age-dependent manner, and may therefore be the agent responsible for rotavirally-induced symp- 2Department of Chemistry toms.We have determined the crystal structure of the oligomerization Henry H. Hoyt Laboratory domain of NSP4 which spans residues 95 to 137 (NSP4 ).NSP4 Princeton University 95-137 95-137 self-associates into a parallel, tetrameric coiled-coil, with the hydrophobic Princeton, NJ 08544, USA core interrupted by three polar layers occupying a and d-heptad pos- 3Viral Vaccine Research itions.Side-chains from two consecutive polar layers, consisting of four Wyeth-Lederle Vaccines Gln123 and two of the four Glu120 residues, coordinate a divalent cation. 401 North Middletown Road Two independent structures built from MAD-phased data indicated the Pearl River, NY 10965, USA presence of a strontium and calcium ion bound at this site, respectively.
    [Show full text]
  • Viral Surface Glycoproteins, Gp120 and Gp41, As Potential Drug Targets
    European Journal of Medicinal Chemistry 46 (2011) 979e992 Contents lists available at ScienceDirect European Journal of Medicinal Chemistry journal homepage: http://www.elsevier.com/locate/ejmech Invited review Viral surface glycoproteins, gp120 and gp41, as potential drug targets against HIV-1: Brief overview one quarter of a century past the approval of zidovudine, the first anti-retroviral drug Cátia Teixeira a,b,c, José R.B. Gomes b, Paula Gomes c,*, François Maurel a a ITODYS, Université Paris Diderot, CNRS e UMR7086, 15 Rue Jean Antoine de Baif, 75205 Paris Cedex 13, France b CICECO, Universidade de Aveiro, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal c Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, R. Campo Alegre, 687, P-4169-007 Porto, Portugal article info abstract Article history: The first anti-HIV drug, zidovudine (AZT), was approved by the FDA a quarter of a century ago, in 1985. Received 22 September 2010 Currently, anti-HIV drug-combination therapies only target HIV-1 protease and reverse transcriptase. Received in revised form Unfortunately, most of these molecules present numerous shortcomings such as viral resistances and 15 January 2011 adverse effects. In addition, these drugs are involved in later stages of infection. Thus, it is necessary to Accepted 25 January 2011 develop new drugs that are able to block the first steps of viral life cycle. Entry of HIV-1 is mediated by its Available online 3 February 2011 two envelope glycoproteins: gp120 and gp41. Upon gp120 binding to cellular receptors, gp41 undergoes a series of conformational changes from a non-fusogenic to a fusogenic conformation.
    [Show full text]