Multi-Agent Recognition System Based on Object Based Image Analysis Using Worldview-2
intervals, between −3 and +3, for a total of 19 different EVs To mimic airborne imagery collection from a terrestrial captured (see Table 1). WB variable images were captured location, we attempted to approximate an equivalent path utilizing the camera presets listed in Table 1 at the EVs of 0, radiance to match a range of altitudes (750 to 1500 m) above −1 and +1, for a total of 27 images. Variable light metering ground level (AGL), that we commonly use as platform alti- tests were conducted using the “center weighted” light meter tudes for our simulated damage assessment research. Optical setting, at the EVs listed in Table 1, for a total of seven images. depth increases horizontally along with the zenith angle, from The variable ISO tests were carried out at the EVs of −1, 0, and a factor of one at zenith angle 0°, to around 40° at zenith angle +1, using the ISO values listed in Table 1, for a total of 18 im- 90° (Allen, 1973), and vertically, with a zenith angle of 0°, the ages. The variable aperture tests were conducted using 19 dif- magnitude of an object at the top of the atmosphere decreases ferent apertures ranging from f/2 to f/16, utilizing a different by 0.28 at sea level, 0.24 at 500 m, and 0.21 at 1,000 m above camera system from all the other tests, with ISO = 50, f = 105 sea level, to 0 at around 100 km (Green, 1992). With 25 mm, four different degrees of onboard vignetting control, and percent of atmospheric scattering due to atmosphere located EVs of −⅓, ⅔, 0, and +⅔, for a total of 228 images.
[Show full text]