Position-And-Length-Dependent Context-Free Grammars – a New Type of Restricted Rewriting

Total Page:16

File Type:pdf, Size:1020Kb

Position-And-Length-Dependent Context-Free Grammars – a New Type of Restricted Rewriting Position-and-Length-Dependent Context-Free Grammars – A New Type of Restricted Rewriting fCFL flCFL fldCFL eREG fedREG REG feREG CFL lCFL feCFL fedCFL fledCFL fleCFL fREG eCFL leCFL ledCFL Vom Fachbereich Informatik der Technischen Universität Kaiserslautern zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Dr. rer. nat) genehmigte Dissertation von Frank Weinberg Dekan: Prof. Dr. Klaus Schneider Vorsitzender der Prüfungskommission: Prof. Dr. Hans Hagen 1. Berichterstatter: Prof. Dr. Markus Nebel 2. Berichterstatter: Prof. Dr. Hening Fernau Datum der wissenschaftlichen Aussprache: 3. März 2014 D 386 Abstract For many decades, the search for language classes that extend the context-free laguages enough to include various languages that arise in practice, while still keeping as many of the useful properties that context-free grammars have – most notably cubic parsing time – has been one of the major areas of research in formal language theory. In this thesis we add a new family of classes to this field, namely position-and-length- dependent context-free grammars. Our classes use the approach of regulated rewriting, where derivations in a context-free base grammar are allowed or forbidden based on, e.g., the sequence of rules used in a derivation or the sentential forms, each rule is applied to. For our new classes we look at the yield of each rule application, i.e. the subword of the final word that eventually is derived from the symbols introduced by the rule application. The position and length of the yield in the final word define the position and length of the rule application and each rule is associated a set of positions and lengths where it is allowed to be applied. We show that – unless the sets of allowed positions and lengths are erally complex – the languages in our classes can be parsed in the same time as context-free grammars, using slight adaptations of well-known parsing algorithms. We also show that they form a proper hierarchy above the context-free languages and examine their relation to language classes defined by other types of regulated rewriting. We complete the treatment of the language classes by introducing pushdown automata with position counter, an extension of traditional pushdown automata that recognizes the languages generated by position-and-length- dependent context-free grammars, and we examine various closure and decidability properties of our classes. Additionally, we gather the corresponding results for the subclasses that use right-linear resp. left-linear base grammars and the corresponding class of automata, finite automata with position counter. Finally, as an application of our idea, we introduce length-dependent stochastic context-free grammars and show how they can be employed to improve the quality of predictions for RNA secondary structures. iii iv Acknowledgements Of course, producing such a thesis is usually not possible without the support of various people. In the case of this thesis, the major supporters are the Algorithms and Complexity Group of Prof. Markus Nebel. They did not only provide a very pleasant environment to work in – so pleasant that it actually proved difficult to cut myself loose from it – but they also allowed many helpful discussions, not only on the topics of the thesis, helping to find or evaluate new ideas, but also on other topics, helping to free the mind from failed approaches. A special “Thank You!” goes to Raphael Reitzig and Anne Berres, both of whom made numerous helpful suggestions when proofreading – or in some places rather fighting through – earlier drafts of this document. v vi Contents 1. Introduction 1 1.1. Overview............................................1 1.2. Notation.............................................2 1.3. Motivation............................................2 1.4. Known Forms of Restricted Rewriting.............................3 1.4.1. Conditions on Sentential Forms............................3 1.4.2. Restrictions on the Rule Sequence...........................4 1.4.3. Coupled Nonterminal Symbols.............................5 1.4.4. Overview........................................6 1.5. New Idea: Position and Length Restrictions..........................6 2. Definitions and Basic Results9 2.1. Grammars............................................9 3. Automata 19 3.1. Finite Automata......................................... 19 3.2. Pushdown Automata...................................... 23 4. Parsing 29 4.1. Parsing the Regular-Based Language Classes......................... 29 4.2. Parsing the context-free-based Language Classes....................... 30 4.2.1. CYK Algorithm.................................... 30 4.2.2. Valiant’s Algorithm................................... 31 4.2.3. Earley’s Algorithm................................... 33 5. Hierarchy of Language Classes 37 5.1. Internal Hierarchy........................................ 39 5.2. Relation to Other Classes.................................... 52 6. Decidability Properties 57 7. Closure Properties 59 8. Application: Prediction of RNA Secondary Structures 65 8.1. Problem Setting......................................... 65 8.2. Formal Definitions....................................... 66 8.3. Estimating Rule Probabilities.................................. 69 8.4. Determining the Most Probable Derivation........................... 74 8.4.1. CYK Algorithm.................................... 74 8.4.2. Valiant’s Algorithm................................... 75 8.4.3. Earley’s Algorithm................................... 75 8.5. Experiments........................................... 76 8.5.1. Data........................................... 77 8.5.2. Grammars........................................ 77 8.5.3. Observations and Dicussion.............................. 78 vii Contents 8.5.4. Runtime......................................... 79 8.5.5. Second Experiment................................... 79 9. Conclusion and Outlook 81 9.1. Possible Future Work...................................... 81 9.1.1. Other base grammars.................................. 81 9.1.2. Extending the Application............................... 82 Bibliography 83 A. Index of Notations 89 Lebenslauf des Verfassers 95 viii 1. Introduction In this thesis, we will introduce position-and-length-dependent context-free grammars, a new type of formal grammars based on the abstract idea of restricted rewriting. The basic idea of restricted rewriting is to extend the generative power of a simple grammar class – typically the context-free grammars – by restricting the applicability of the rules based on conditions that may refer to things as the current sentential form or the sequence of rules applied before. As an example, consider context-sensitive grammars. In these, each rule replaces a single nonterminal symbol, just as the rules of a context-free grammar do. But in the context-sensitive grammar the rule may only be applied if the replaced nonterminal is surrounded by a specific context that is given with the rule. In this example the condition on a rule is local, i.e., we can decide if a rule is applicable to a specific nonterminal in a sentential form by looking at the sentential form alone. Other types of restricted rewriting have global constraints. For example, in unordered vector grammars, the rules are grouped into sets, called vectors, and a derivation is valid, if all the rules in a vector have been used equally often in the derivation. (The number of applications may differ between vectors.) For position-and-length-dependent context-free grammars we use a mixed approach. While the validity is checked for each individual rule application, the conditions depend on the derivation as a whole and thus can only be verified for a complete derivation. Specifically, we look at the yield of a rule application, i.e. the subword that is eventually derived from the symbols introduced by the rule. We then allow or forbid the rule application based on position and length of this yield, where the position is defined by the number of characters in front of resp. behind the yield. 1.1. Overview The remaining sections of this chapter introduce – after a short explanation of some notational conventions we use – the motivation that prompted the research of restricted rewriting along with several of the approaches that have been previously examined. Then, we give an informal overview of position-and-length-dependent grammars and the subclasses we are going to examine. These subclasses result from allowing fewer restrictions or using right- resp. left-linear base grammars. We formally introduce the grammar classes in Chapter2. There we also give some basic results, e.g. the fact that our grammars can be transformed into equivalent ones in Chomsky Normal Form. In Chapter3, we define equivalent automata for each of the classes. Unsurprisingly, they result from adding position checks and/or length checks to pushdown automata resp. finite automata in a suitable way. We also show that the same language classes result from right- and left-linear grammars, though the type of restrictions needed to arrive at some class can differ for the two grammar types. In Chapter4, we describe how several well-known parsing algorithms can be adapted to the new grammar classes. This can be done without using additional space or time except what is necessary to verify membership in the restriction sets for triples encountered during the parsing. This is not immediately obvious since, other than for traditional CFG, the conditions
Recommended publications
  • Extended Finite Autómata O Ver Group S
    Extended finite autómata o ver group s Víctor Mitrana , Ralf Stiebe Abstract Some results from Dassow and Mitrana (Internat. J. Comput. Algebra (2000)), Griebach (Theoret. Comput. Sci. 7 (1978) 311) and Ibarra et al. (Theoret. Comput. Sci. 2 (1976) 271) are generalized for finite autómata over arbitrary groups. The closure properties of these autómata are poorer and the accepting power is smaller when abelian groups are considered. We prove that the addition of any abelian group to a finite automaton is less powerful than the addition of the multiplicative group of rational numbers. Thus, each language accepted by a finite au­ tomaton over an abelian group is actually a unordered vector language. Characterizations of the context-free and recursively enumerable languages classes are set up in the case of non-abelian groups. We investigate also deterministic finite autómata over groups, especially over abelian groups. Keywords: Finite autómata over groups; Closure properties; Accepting capacity; Interchange lemma; Free groups 1. Introduction One of the oldest and most investigated device in the autómata theory is the finite automaton. Many fundamental properties have been established and many problems are still open. Unfortunately, the finite autómata without any external control have a very limited accepting power. DirTerent directions of research have been considered for overcoming this limitation. The most known extensión added to a finite autómata is the pushdown memory. In this way, a considerable increasing of the accepting capacity has been achieved: the pushdown autómata are able to recognize all context-free languages. Another simple and natural extensión, related somehow to the pushdown memory, was considered in a series of papers [2,4,5], namely to associate an element of a given group to each configuration, but no information regarding the associated element is allowed.
    [Show full text]
  • A Second Course in Formal Languages and Automata Theory Jeffrey Shallit Index More Information
    Cambridge University Press 978-0-521-86572-2 - A Second Course in Formal Languages and Automata Theory Jeffrey Shallit Index More information Index 2DFA, 66 Berstel, J., 48, 106 2DPDA, 213 Biedl, T., 135 3-SAT, 21 Van Biesbrouck, M., 139 Birget, J.-C., 107 abelian cube, 47 blank symbol, B, 14 abelian square, 47, 137 Blum, N., 106 Ackerman, M., xi Boolean closure, 221 Adian, S. I., 43, 47, 48 Boolean grammar, 223 Aho, A. V., 173, 201, 223 Boolean matrices, 73, 197 Alces, A., 29 Boonyavatana, R., 139 alfalfa, 30, 34, 37 border, 35, 104 Allouche, J.-P., 48, 105 bordered, 222 alphabet, 1 bordered word, 35 unary, 1 Borges, M., xi always-halting TM, 209 Borwein, P., 48 ambiguous, 10 Boyd, D., 223 NFA, 102 Brady, A. H., 200 Angluin, D., 105 branch point, 113 angst Brandenburg, F.-J., 139 existential, 54 Brauer, W., 106 antisymmetric, 92 Brzozowski, J., 27, 106 assignment Bucher, W., 138 satisfying, 20 Buntrock, J., 200 automaton Burnside problem for groups, 42 pushdown, 11 Buss, J., xi, 223 synchronizing, 105 busy beaver problem, 183, 184, 200 two-way, 66 Axelrod, R. M., 105 calliope, 3 Cantor, D. C., 201 Bader, C., 138 Cantor set, 102 balanced word, 137 cardinality, 1 Bar-Hillel, Y., 201 census generating function, 133 Barkhouse, C., xi Cerny’s conjecture, 105 base alphabet, 4 Chaitin, G. J., 200 Berman, P., 200 characteristic sequence, 28 233 © Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-86572-2 - A Second Course in Formal Languages and Automata Theory Jeffrey Shallit Index More information 234 Index chess,
    [Show full text]
  • Applications of an Infinite Square-Free Co-Cfl”
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Theoretical Computer Science 49 (1987) 113-119 113 North-Holland APPLICATIONS OF AN INFINITE SQUARE-FREE CO-CFL” Michael G. MAIN Department of Computer Science, University of Colorado, Boulder, CO 80309, U.S.A. Walter BUCHER Institutes for information Processing, Technical Universify sf Graz, A-8010 Graz, Austria David HAUSSLER Department of Mathematics and Computer Science, University of Denver, Denver, CO 80208, U.S.A. Abstract. We disprove several conjectures about context-free languages. The proofs use the set of all strings which are nor prefixes of Thue’s infinite square-free sequence. This is a context-free language with an infinite square-free complement. 1. Introduction A square is an immediately repeated nonempty string, e.g., au, abub, newyorknewyork. A string x is called square-conruining if it contains a substring which is a square. For example, the string mississippi contains the segment iss twice in a row; in fact, mississippi contains a total of five squares. On the other hand, colorudo contains no squares (the character o appears several times, but not consecu- tively). A string without squares is called square-free. In a study of context-free languages, Autebert et al. [2,3] collected several conjectures about square-containing strings. One of the weakest conjectures was that no context-free language (CFL) could include all of the square-containing strings and still have an infinite complement. Contrary to this conjecture, such a language has recently been constructed [ 141.
    [Show full text]
  • Bibliography
    Bibliography [57391] ISO/IEC JTC1/SC21 N 5739. Database language SQL, April 1991. [69392] ISO/IEC JTC1/SC21 N 6931. Database language SQL (SQL3), June 1992. [A+76] M. M. Astrahan et al. System R: a relational approach to data management. ACM Trans. on Database Systems, 1(2):97–137, 1976. [AA93] P. Atzeni and V. De Antonellis. Relational Database Theory. Benjamin/Cummings Publishing Co., Menlo Park, CA, 1993. [AABM82] P. Atzeni, G. Ausiello, C. Batini, and M. Moscarini. Inclusion and equivalence between relational database schemata. Theoretical Computer Science, 19:267–285, 1982. [AB86] S. Abiteboul and N. Bidoit. Non first normal form relations: An algebra allowing restructuring. Journal of Computer and System Sciences, 33(3):361–390, 1986. [AB87a] M. Atkinson and P. Buneman. Types and persistence in database programming languages. ACM Computing Surveys, 19(2):105–190, June 1987. [AB87b] P. Atzeni and M. C. De Bernardis. A new basis for the weak instance model. In Proc. ACM Symp. on Principles of Database Systems, pages 79–86, 1987. [AB88] S. Abiteboul and C. Beeri. On the manipulation of complex objects. Technical Report, INRIA and Hebrew University, 1988. (To appear, VLDB Journal.) [AB91] S. Abiteboul and A. Bonner. Objects and views. In Proc. ACM SIGMOD Symp. on the Management of Data, 1991. [ABD+89] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, and S. Zdonik. The object- oriented database system manifesto. In Proc. of Intl. Conf. on Deductive and Object-Oriented Databases (DOOD), pages 40–57, 1989. [ABGO93] A. Albano, R. Bergamini, G. Ghelli, and R. Orsini.
    [Show full text]
  • Formal Languages and Logics Lecture Notes
    Formal Languages and Logics Jacobs University Bremen Herbert Jaeger Course Number 320211 Lecture Notes Version from Oct 18, 2017 1 1. Introduction 1.1 What these lecture notes are and aren't This lecture covers material that is relatively simple, extremely useful, superbly described in a number of textbooks, and taught in almost precisely the same way in hundreds of university courses. It would not make much sense to re-invent the wheel and re-design this lecture to make it different from the standards. Thus I will follow closely the classical textbook of Hopcroft, Motwani, and Ullman for the first part (automata and formal languages) and, somewhat more freely, the book of Schoening in the second half (logics). Both books are available at the IRC. These books are not required reading; the lecture notes that I prepare are a fully self-sustained reference for the course. However, I would recommend to purchase a personal copy of these books all the same for additional and backup reading because these are highly standard reference books that a computer scientist is likely to need again later in her/his professional life, and they are more detailed than this lecture or these lecture notes. There are several sets of course slides and lecture notes available on the Web which are derived from the Hopcroft/Motwani/Ullman book. At http://www- db.stanford.edu/~ullman/ialc/win00/win00.html, you will find lecture notes prepared by Jeffrey Ullman himself. Given the highly standardized nature of the material and the availablity of so many good textbooks and online lecture notes, these lecture notes of mine do not claim originality.
    [Show full text]
  • On the Language of Primitive Words*
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Theoretical Computer Science ELSEVIER Theoretical Computer Science 161 (1996) 141-156 On the language of primitive words* H. Petersen *J Universitiit Stuttgart, Institut fiir Informatik, Breitwiesenstr. 20-22, D-70565 Stuttgart, Germany Received April 1994; revised June 1995 Communicated by P. Enjalbert Abstract A word is primitive if it is not a proper power of a shorter word. We prove that the set Q of primitive words over an alphabet is not an unambiguous context-free language. This strengthens the previous result that Q cannot be deterministic context-free. Further we show that the same holds for the set L of Lyndon words. We investigate the complexity of Q and L. We show that there are families of constant-depth, polynomial-size, unbounded fan-in boolean circuits and two-way deterministic pushdown automata recognizing both languages. The latter result implies efficient decidability on the RAM model of computation and we analyze the number of comparisons required for deciding Q. Finally we give a new proof showing a related language not to be context-free, which only relies on properties of semi-linear and regular sets. 1. Introduction This paper presents some further steps towards characterizing the set of primitive words over some fixed alphabet in terms of classical formal language theory and com- plexity. The notion of primitivity of words plays a central role in algebraic coding theory [28] and combinatorial theory of words [23,24]. Recently attention has been drawn to the language Q of all primitive words over an alphabet with at least two symbols.
    [Show full text]
  • Continuance and Transience of Lifetime Co-Authorships
    Open Archive TOULOUSE Archive Ouverte ( OATAO ) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ Eprints ID : 13197 To link to this article : doi:10.1007/s11192-014-1426-0 URL : http://dx.doi.org/10.1007/s11192-014-1426-0 To cite this version : Cabanac, Guillaume and Hubert, Gilles and Milard, Béatrice Academic careers in Computer Science: Continuance and transience of lifetime co-authorships. (2015) Scientometrics, vol. 102 (n° 1). pp. 135-150. ISSN 0138-9130 Any correspondance concerning this service should be sent to the repository administrator: [email protected] DOI 10.1007/s11192-014-1426-0 Academic careers in Computer Science: Continuance and transience of lifetime co-authorships Guillaume Cabanac · Gilles Hubert · Béatrice Milard Abstract Scholarly publications reify fruitful collaborations between co-authors. A branch of research in the Science Studies focuses on analyzing the co-authorship networks of established scientists. Such studies tell us about how their collaborations developed through their careers. This paper updates previous work by reporting a transversal and a longitudinal studies spanning the lifelong careers of a cohort of researchers from the DBLP bibliographic database. We mined 3,860 researchers’ publication records to study the evolution patterns of their co-authorships. Two features of co-authors were considered: 1) their expertise, and 2) the history of their partnerships with the sampled researchers. Our findings reveal the ephemeral nature of most collaborations: 70% of the new co-authors were only one-shot partners since they did not appear to collaborate on any further publications.
    [Show full text]
  • Pattern Selector Grammars and Several Parsing Algorithms in the Context-Free Style
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF COMPUTER AND SYSTEM SCIENCES 30, 249-273 (1985) Pattern Selector Grammars and Several Parsing Algorithms in the Context-free Style J. GONCZAROWSKI AND E. SHAMIR* Institute of Mathematics and Computer Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel Received March 30, 1982; accepted March 5, 1985 Pattern selector grammars are defined in general. We concentrate on the study of special grammars, the pattern selectors of which contain precisely k “one% (0*( 10*)k) or k adjacent “one? (O*lkO*). This means that precisely k symbols (resp. k adjacent symbols) in each sen- tential form are rewritten. The main results concern parsing algorithms and the complexity of the membership problem. We first obtain a polynomial bound on the shortest derivation and hence an NP time bound for parsing. In the case k = 2, we generalize the well-known context- free dynamic programming type algorithms, which run in polynomial time. It is shown that the generated languages, for k = 2, are log-space reducible to the context-free languages. The membership problem is thus solvable in log2 space. 0 1985 Academic Press, Inc. 1. INTRODUCTION The parsing and membership testing algorithms for context-free (CF) grammars occupy a peculiar border position in the complexity hierarchy. The dynamic programming algorithm runs in 0(n3) steps [21], but more relined methods reduce the problem to matrix multiplication with O(n*+‘) run-time, where a < 1 ([20]. Earley’s algorithm runs in time O(n*) for grammars with bounded ambiguity [4].
    [Show full text]
  • Comparisons of Parikh's Condition
    J. Lopez, G. Ramos, and R. Morales, \Comparaci´onde la Condici´onde Parikh con algunas Condiciones de los Lenguajes de Contexto Libre", II Jornadas de Inform´atica y Autom´atica, pp. 305-314, 1996. NICS Lab. Publications: https://www.nics.uma.es/publications COMPARISONS OF PARIKH’S CONDITION TO OTHER CONDITIONS FOR CONTEXT-FREE LANGUAGES G. Ramos-Jiménez, J. López-Muñoz and R. Morales-Bueno E.T.S. de Ingeniería Informática - Universidad de Málaga Dpto. Lenguajes y Ciencias de la Computación P.O.B. 4114, 29080 - Málaga (SPAIN) e-mail: [email protected] Abstract: In this paper we first compare Parikh’s condition to various pumping conditions - Bar-Hillel’s pumping lemma, Ogden’s condition and Bader-Moura’s condition; secondly, to interchange condition; and finally, to Sokolowski’s and Grant’s conditions. In order to carry out these comparisons we present some properties of Parikh’s languages. The main result is the orthogonality of the previously mentioned conditions and Parikh’s condition. Keywords: Context-Free Languages, Parikh’s Condition, Pumping Lemmas, Interchange Condition, Sokolowski’s and Grant’s Condition. 1. INTRODUCTION The context-free grammars and the family of languages they describe, context free languages, were initially defined to formalize the grammatical properties of natural languages. Afterwards, their considerable practical importance was noticed, specially for defining programming languages, formalizing the notion of parsing, simplifying the translation of programming languages and in other string-processing applications. It’s very useful to discover the internal structure of a formal language class during its study. The determination of structural properties allows us to increase our knowledge about this language class.
    [Show full text]
  • Extended Finite Automata Over Groups
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Discrete Applied Mathematics 108 (2001) 287–300 Extended ÿnite automata over groups Victor Mitranaa;∗;1, Ralf Stiebeb aFaculty of Mathematics, University of Bucharest, Str. Academiei 14, 70109, Bucharest, Romania bFaculty of Computer Science, University of Magdeburg, P.O. Box 4120, D-39016, Magdeburg, Germany Received 18 November 1998; revised 4 October 1999; accepted 31 January 2000 Abstract Some results from Dassow and Mitrana (Internat. J. Comput. Algebra (2000)), Griebach (Theoret. Comput. Sci. 7 (1978) 311) and Ibarra et al. (Theoret. Comput. Sci. 2 (1976) 271) are generalized for ÿnite automata over arbitrary groups. The closure properties of these automata are poorer and the accepting power is smaller when abelian groups are considered. We prove that the addition of any abelian group to a ÿnite automaton is less powerful than the addition of the multiplicative group of rational numbers. Thus, each language accepted by a ÿnite au- tomaton over an abelian group is actually a unordered vector language. Characterizations of the context-free and recursively enumerable languages classes are set up in the case of non-abelian groups. We investigate also deterministic ÿnite automata over groups, especially over abelian groups. ? 2001 Elsevier Science B.V. All rights reserved. Keywords: Finite automata over groups; Closure properties; Accepting capacity; Interchange lemma; Free groups 1. Introduction One of the oldest and most investigated device in the automata theory is the ÿnite automaton. Many fundamental properties have been established and many problems are still open.
    [Show full text]
  • Foundations of Databases
    Foundations of Databases Foundations of Databases Serge Abiteboul INRIA–Rocquencourt Richard Hull University of Southern California Victor Vianu University of California–San Diego Addison-Wesley Publishing Company Reading, Massachusetts . Menlo Park, California New York . Don Mills, Ontario . Wokingham, England Amsterdam . Bonn . Sydney . Singapore Tokyo . Madrid . San Juan . Milan . Paris Sponsoring Editor: Lynne Doran Cote Associate Editor: Katherine Harutunian Senior Production Editor: Helen M. Wythe Cover Designer: Eileen R. Hoff Manufacturing Coordinator: Evelyn M. Beaton Cover Illustrator: Toni St. Regis Production: Superscript Editorial Production Services (Ann Knight) Composition: Windfall Software (Paul C. Anagnostopoulos, Marsha Finley, Jacqueline Scarlott), using ZzTEX Copy Editor: Patricia M. Daly Proofreader: Cecilia Thurlow The procedures and applications presented in this book have been included for their instructional value. They have been tested with care but are not guaranteed for any purpose. The publisher does not offer any warranties or representations, nor does it accept any liabilities with respect to the programs and applications. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and Addison-Wesley was aware of a trademark claim, the designations have been printed in initial caps or all caps. Library of Congress Cataloging-in-Publication Data Abiteboul, S. (Serge) Foundations of databases / Serge Abiteboul. Richard Hull, Victor Vianu. p. cm. Includes bibliographical references and index. ISBN 0-201-53771-0 1. Database management. I. Hull, Richard, 1953–. II. Vianu, Victor. III. Title. QA76.9.D3A26 1995 005.74’01—dc20 94-19295 CIP Copyright © 1995 by Addison-Wesley Publishing Company, Inc.
    [Show full text]
  • Automatic Data Restructuring
    Journal of Universal Computer Science, vol. 5, no. 4 (1999), 243-286 submitted: 12/4/99, accepted: 23/4/99, appeared: 28/4/99 Springer Pub. Co. Automatic Data Restructuring Seymour Ginsburg घComputer Science Department, University of Southern California, Los Angeles, California, 90089 e-mail: ginsburg@p ollux.usc.eduङ Nan C. Shu घIBM Los Angeles Scienti c Center, Los Angeles,Californiaङ Dan A. Simovici घUniversity of Massachusetts at Boston, Department of Mathematics and Computer Science, Boston, Massachusetts 02125 e-mail: [email protected]ङ Abstract: Data restructuring is often an integral but non-trivial part of informa- tion pro cessing, esp ecially when the data structures are fairly complicated. This pap er describ es the underpinnings of a program, called the Restructurer, that relieves the user of the \thinking and co ding" pro cess normally asso ciated with writing pro cedural programs for data restructuring. The pro cess is accomplished by the Restructurer in two stages. In the rst, the di erences in the input and output data structures are recognized and the applicabilityofvarious transformation rules analyzed. The result is a plan for mapping the sp eci ed input to the desired output. In the second stage, the plan is executed using emb edded knowledge ab out b oth the target language and run-time eciency considerations. The emphasis of this pap er is on the planning stage. The restructuring op erations and the mapping strategies are informally describ ed and explained with mathematical formalism. The notion of solution of a set of instantiated forms with resp ect to an output form is then intro duced.
    [Show full text]