System Study and CO2 Emissions Analysis of a Waste Energy Recovery System for Natural Gas Letdown Station Application
Total Page:16
File Type:pdf, Size:1020Kb
System Study and CO2 Emissions Analysis of a Waste Energy Recovery System for Natural Gas Letdown Station Application By Adegboyega Babasola A thesis submitted to the Department of Chemical Engineering in conformity with the requirements for the degree of Masters of Applied Science Queen’s University Kingston, Ontario, Canada August, 2010 Copyright © Adegboyega Babasola, 2010 Abstract A CO2 emission analysis and system investigation of a direct fuel cell waste energy recovery and power generation system (DFC-ERG) for pressure letdown stations was undertaken. The hybrid system developed by FuelCell Energy Inc. is an integrated turboexpander and a direct internal reforming molten carbonate fuel cell system in a combined circle. At pressure letdown stations, popularly called city gates, the pressure of natural gas transported on long pipelines is reduced by traditional pressure regulating systems. Energy is lost as a result of pressure reduction. Pressure reduction also results in severe cooling of the gas due to the Joule Thompson effect, thus, requiring preheating of the natural gas using traditional gas fired-burners. The thermal energy generated results in the emission of green house gases. The DFC-ERG system is a novel waste energy recovery and green house gas mitigation system that can replace traditional pressure regulating systems on city gates. A DFC-ERG system has been simulated using UniSimTM Design process simulation software. A case study using data from Utilities Kingston’s city gate at Glenburnie was analysed. The waste energy recovery system was modelled using the design specifications of the FuelCell Energy Inc’s DFC 300 system and turboexpander design characteristics of Cryostar TG120. The Fuel Cell system sizing was based on the required thermal output, electrical power output, available configuration and cost. The predicted performance of the fuel cell system was simulated at a current density of 140mA/cm2, steam to carbon ratio of 3, fuel utilization of 75% and oxygen utilization of 30%. The power output of the turboexpander was found to strongly depend on the high pressure natural gas flowrate, temperature and pressure. The simulated DFC-ERG system was found to reduce CO2 emissions when the electrical power generated by the DFC-ERG system replaced electrical power generated by a coal fired plant. ii Acknowledgements I will like to express my profound gratitude to my supervisor Dr. Brant Peppley. His patience, guidance and support for this research were invaluable. This research would not have been possible without the financial support of Ontario Fuel Cell Research and Innovation network (OFCRIN) and Queen’s Graduate Award. Many thanks also go to our industrial contacts, David Teichroeb and Stephen Pogorski of Enbridge Gas for providing the necessary information and access to their facility. A big thank you also goes to Chris Phippine of Utilities Kingston for providing the data for this research. I would also like to thank Dr. Kunal Karan, Dr John Pharoah and Dr. Chris Thurgood of the Royal Military College for their technical guidance. I wish to thank my colleagues and friends in the Fuel Cell Research Centre for their advice and support when I most needed it. Last but not the least I most express my heartfelt appreciation to my family; Oladunni, Favour and Flourish. Your love, patience, encouragement and moral support gave me the necessary motivation to complete this thesis. iii Table of Contents Abstract............................................................................................................................ ii Acknowledgements ........................................................................................................ iii Table of Contents ........................................................................................................... iv List of Figures ................................................................................................................ vi List of Tables ................................................................................................................ viii Nomenclature ................................................................................................................. ix Chapter 1 ......................................................................................................................... 1 Introduction ..................................................................................................................... 1 Problem Statement .................................................................................................................................................. 1 1.2Natural Gas Pipeline System ............................................................................................................................. 3 1.3 Direct Fuel Cell Hybrid System Background ................................................................................................... 7 1.3.1 Enbridge Direct Fuel Cell Energy Recovery Generation System (DFC-ERG) ................................... 10 1.4 Importance of Greenhouse Gas Mitigation Analysis and Objective of Thesis ............................................... 12 Chapter 2 ....................................................................................................................... 14 Literature Review ......................................................................................................... 14 2.1 Waste Energy Recovery Systems ................................................................................................................... 14 2.2 Design and Modeling of Molten Carbonate Fuel Cell .................................................................................... 19 2.3 System Analysis ............................................................................................................................................. 23 2.5 CO2 Emission Mitigation Initiative ................................................................................................................ 29 Chapter 3 ....................................................................................................................... 33 Methodology and Model Development of Direct Fuel Cell ...................................... 33 3.1 Methodology ................................................................................................................................................... 33 3.2 Fuel Cell Model Development ........................................................................................................................ 35 3.2.1 Material Balance .................................................................................................................................. 37 3.2.2 Energy Balance Model ........................................................................................................................ 40 3.2.3 Electrochemical model ........................................................................................................................ 43 3.5 Overall Efficiency ........................................................................................................................................... 45 3.5 Carbon Dioxide Emission Factors .................................................................................................................. 45 Chapter 4 ....................................................................................................................... 48 Simulation and System Analysis ................................................................................. 48 iv 4.1 Simulation of DFC-ERG system .................................................................................................................... 48 4.2 Utilities Kingston’s City Gate DFC-ERG System .......................................................................................... 54 Chapter 5 ....................................................................................................................... 64 Results and Discussions ................................................................................................ 64 5.1 Turboexpander Performance Analysis ........................................................................................................... 65 5.2 Molten Carbonate Fuel Cell Performance Analysis ....................................................................................... 71 5.3 CO2 Emissions Analysis ................................................................................................................................. 75 5.4 Financial Analysis .......................................................................................................................................... 82 Chapter 6 ....................................................................................................................... 84 Conclusions and Recommendations ........................................................................... 84 6.1 Conclusions .................................................................................................................................................... 84 6.2 Recommendations for Future Work ............................................................................................................... 86 References ...................................................................................................................... 88 Appendix A ...................................................................................................................