Dynamical Algebraic Combinatorics: Promotion, Rowmotion, and Resonance Jessica Striker Communicated by Benjamin Braun

Total Page:16

File Type:pdf, Size:1020Kb

Dynamical Algebraic Combinatorics: Promotion, Rowmotion, and Resonance Jessica Striker Communicated by Benjamin Braun Dynamical Algebraic Combinatorics: Promotion, Rowmotion, and Resonance Jessica Striker Communicated by Benjamin Braun is the cyclic sieving phenomenon [ReStWh04], which occurs when the evaluation of a generating function for 푋 at the primitive 푛th root of unity 휁푑 (where 휁 = 푒2휋푖/푛) counts the number of elements of 푋 fixed under 푔푑. For example, let 푋 be the set of binary words composed of two zeros and two ones. Let 푔 be the cyclic shift that acts by moving the first digit to the end of the word. Each word has four digits, so 푔 is of order four. Consider the inversion number statistic inv(푤) of 푤 ∈ 푋, which equals Dynamical Algebraic Combinatorics the number of pairs (푖, 푗) with 푖 < 푗 such that the 푖th digit Mathematical inquiry often begins with the study of ob- of 푤 is 1 and the 푗th digit is 0. See Figure 1 for the orbits jects (numbers, shapes, variables, matrices, ideals, metric of 푋 under 푔 and the inversion numbers of each binary spaces, …) and the question, “What are the objects like?” word. It then moves to the study of actions (functions, rotations, g reflections, multiplication, derivatives, shifts, …) and the 0 2 question, “How do the objects behave?” The study of 0011 0110 g actions in various mathematical contexts has been ex- tremely fruitful; consider the study of metric spaces g g 1 0101 1010 3 through the lens of dynamical systems or the study of g symmetries arising from group actions. For objects and 1001 1100 actions arising from algebraic combinatorics, we call this 2 4 study dynamical algebraic combinatorics. g Let 푔 be a bijective action on a finite set 푋. Such an Figure 1. The orbits of binary words of length four action breaks the space 푋 into orbits. Often, the study with two ones under a cyclic shift; the inversion of the orbits of 푔 provides insight into the structure numbers corresponding to the binary words are of the objects in 푋, revealing hidden symmetries and shown in red. connections. One typically first seeks to understand the order 푛 of the action and then finds interesting properties The inversion number statistic determines the gener- the action exhibits. One surprisingly ubiquitous property ating function Jessica Striker is assistant professor of mathematics at North (1) 푋(푞) = ∑ 푞inv(푤) = 1 + 푞 + 2푞2 + 푞3 + 푞4. Dakota State University. Her e-mail address is jessica.striker 푤∈푋 @ndsu.edu. 2휋푖/4 Her work is partially supported by National Security Agency Since 푔 is of order four, 휁 = 푒 = 푖. One may check 푑 Grant H98230-15-1-0041. using Figure 1 and (1) that 푋(푖 ) equals the number 푑 For permission to reprint this article, please contact: of elements of 푋 fixed by 푔 , thus this is an instance [email protected]. of the cyclic sieving phenomenon. For example, 푋(푖1) = DOI: http://dx.doi.org/10.1090/noti1539 1+푖+2푖2 +푖3 +푖4 = 1+푖+2(−1)+(−푖)+1 = 0, and zero June/July 2017 Notices of the AMS 543 Rowmotion / O O 1 0 0 1 1 0 1 0 1 1 0 1 1 0 Figure 2. An order ideal in the product of chains poset 3 × 4 and its image under rowmotion. The red paths are boundary paths that divide the order ideal from the rest of the poset; the binary words corresponding to these paths are shown beneath. elements of 푋 are fixed under 푔1. 푋(푖2) = 푋(−1) = 2, and two elements are fixed under 푔2. Another interesting property actions in dynamical algebraic combinatorics often exhibit is the homomesy → → phenomenon [PrRo15], in which the average value of a statistic on every 푔-orbit equals the global average value of that statistic. Each orbit in Figure 1 has an average inversion number of 2. Thus, the inversion number statistic on 푋 is homomesic with respect to 푔. Note that both cyclic sieving and homomesy still hold in the → → → more general case in which 푋 is the set of binary words of length 푛 with 푘 ones [ReStWh04], [PrRo15]. In Figure 1, our action was visibly cyclic, so its order was clear from the definition. In the coming sections, we discuss more complicated combinatorial actions whose orders are difficult to predict. We will see examples in which an action 푔 on a large combinatorial set 푋 has a → → relatively small order; this indicates the elements of 푋 have hidden cyclic symmetry such that 푔 is a rotation in disguise. We will also see examples in which 푔 is not of small order, but rather exhibits resonance, meaning that 푔 maps to an underlying cyclic action with small order. We discuss examples of such actions on order ideals and tableaux and then give a surprising relation between them, → → which we found via this study of dynamics. Rowmotion on Order Ideals Figure 3. Rowmotion from Figure 2 computed by As our first example, let our set 푋 be the order ideals of toggling rows from top to bottom. The elements that a poset. are being toggled at each step are shown in red, and Definition 1. A poset is a partially ordered set. The set at any step in which the toggles act nontrivially, the of order ideals 퐽(푃) of a poset 푃 is the set of all subsets order ideal resulting from those toggles is shown. 퐼 ⊆ 푃 such that if 푦 ∈ 퐼 and 푧 ≤ 푦, then 푧 ∈ 퐼. Specifically, we will take 푋 to be the set of order ideals 퐽(푃) for 푃 the product of chains poset a × b. That is, counting argument shows the number of order ideals in 푎+푏 for a natural number 푎, a = {1, 2, … , 푎} and the product 퐽(a × b) is given by the binomial coefficient ( 푎 ), since partial order on a × b is (푥, 푦) ≤ (푥′, 푦′) if and only if these order ideals are in bijection with binary words with 푥 ≤ 푥′ and 푦 ≤ 푦′. See Figure 2 for an example. An easy 푎 zeros and 푏 ones via the boundary path that separates 544 Notices of the AMS Volume 64, Number 6 Promotion / O O Cyclic shift / 1 0 0 1 1 0 1 0 0 1 1 0 1 1 Figure 4. An order ideal in 퐽(3 × 4) and its image under promotion. Promotion acts as a cyclic shift on the binary word corresponding to the boundary path. the order ideal from the rest of the poset (where a one showed rowmotion and promotion are conjugate actions indicates an up-step and a zero indicates a down-step); in the toggle group of any ranked poset; this implies they see Figure 2. are equivariant, or have the same orbit structure. Our action 푔 will be the following; see Figure 2. Theorem 6 ([StWi12]). In any ranked poset, there is an Definition 2. Let 푃 be a poset, and let 퐼 ∈ 퐽(푃). Then row- equivariant bijection between the order ideals under row- motion on 퐼 is the order ideal generated by the minimal motion (toggle top to bottom by rows) and promotion (tog- elements of 푃\퐼. gle left to right by columns). The order of rowmotion on general posets is neither By the bijection to binary words, promotion on 퐽(a×b) well behaved nor predictable. But on 퐽(a × b) its order is, is a cyclic shift of a binary word of length 푎 + 푏; each 푎+푏 surprisingly, much smaller than ( 푎 ). toggle swaps adjacent letters, resulting in the first letter Theorem 3 ([BrSc74]). The order of rowmotion on 퐽(a×b) swapping all the way through the word to the end; see is 푎 + 푏. Figure 4. Therefore, by the above theorem, the cyclic nature of promotion on 퐽(a × b) gives a satisfying explanation To see why the order of a global action such as for the order of rowmotion on 퐽(a × b). Furthermore, rowmotion is surprisingly small, it often helps to interpret since binary words under a cyclic shift exhibit the cyclic the action as a composition of local involutions and work sieving phenomenon (as discussed in Section 1), so does within the group generated by those involutions. In the rowmotion on 퐽(a × b). case of rowmotion, we call this group the toggle group. Corollary 7 ([StWi12]). There is an equivariant bijection Definition 4. For each element 푒 ∈ 푃 define its toggle between the order ideals of a × b under rowmotion and 푡푒 ∶ 퐽(푃) → 퐽(푃) as follows. binary words of length 푎 + 푏 with 푏 ones under rotation. ⎪⎧퐼 ∪ {푒} if 푒 ∉ 퐼 and 퐼 ∪ {푒} ∈ 퐽(푃) The cyclic sieving phenomenon follows. 푡푒(퐼) = 퐼\{푒} if 푒 ∈ 퐼 and 퐼\{푒} ∈ 퐽(푃) Rowmotion on these order ideals also exhibits the ⎪⎨ ⎩퐼 otherwise homomesy phenomenon. The toggle group 푇(퐽(푃)) is the subgroup of the symmet- Theorem 8 ([PrRo15]). The order ideal cardinality statis- ric group 푆퐽(푃) generated by {푡푒}푒∈푃. tic in 퐽(a × b) exhibits homomesy (orbit-average = global- Theorem 5 ([CaFo95]). Given any poset 푃, rowmotion is average) with respect to rowmotion or promotion. the toggle group element that toggles the elements of 푃 It is natural to ask whether similar results hold on from top to bottom (in the reverse order of any linear ex- posets constructed as products of more than two chains. tension). Theorem 9 ([CaFo95]). The order of rowmotion on 퐽(a × For example, in Figure 3, we recompute rowmotion on b × 2) is 푎 + 푏 + 1. the order ideal from Figure 2 by toggling from top to bottom by rows.
Recommended publications
  • Algebraic Combinatorics and Finite Geometry
    An Introduction to Algebraic Graph Theory Erdos-Ko-Rado˝ results Cameron-Liebler sets in PG(3; q) Cameron-Liebler k-sets in PG(n; q) Algebraic Combinatorics and Finite Geometry Leo Storme Ghent University Department of Mathematics: Analysis, Logic and Discrete Mathematics Krijgslaan 281 - Building S8 9000 Ghent Belgium Francqui Foundation, May 5, 2021 Leo Storme Algebraic Combinatorics and Finite Geometry An Introduction to Algebraic Graph Theory Erdos-Ko-Rado˝ results Cameron-Liebler sets in PG(3; q) Cameron-Liebler k-sets in PG(n; q) ACKNOWLEDGEMENT Acknowledgement: A big thank you to Ferdinand Ihringer for allowing me to use drawings and latex code of his slide presentations of his lectures for Capita Selecta in Geometry (Ghent University). Leo Storme Algebraic Combinatorics and Finite Geometry An Introduction to Algebraic Graph Theory Erdos-Ko-Rado˝ results Cameron-Liebler sets in PG(3; q) Cameron-Liebler k-sets in PG(n; q) OUTLINE 1 AN INTRODUCTION TO ALGEBRAIC GRAPH THEORY 2 ERDOS˝ -KO-RADO RESULTS 3 CAMERON-LIEBLER SETS IN PG(3; q) 4 CAMERON-LIEBLER k-SETS IN PG(n; q) Leo Storme Algebraic Combinatorics and Finite Geometry An Introduction to Algebraic Graph Theory Erdos-Ko-Rado˝ results Cameron-Liebler sets in PG(3; q) Cameron-Liebler k-sets in PG(n; q) OUTLINE 1 AN INTRODUCTION TO ALGEBRAIC GRAPH THEORY 2 ERDOS˝ -KO-RADO RESULTS 3 CAMERON-LIEBLER SETS IN PG(3; q) 4 CAMERON-LIEBLER k-SETS IN PG(n; q) Leo Storme Algebraic Combinatorics and Finite Geometry An Introduction to Algebraic Graph Theory Erdos-Ko-Rado˝ results Cameron-Liebler sets in PG(3; q) Cameron-Liebler k-sets in PG(n; q) DEFINITION A graph Γ = (X; ∼) consists of a set of vertices X and an anti-reflexive, symmetric adjacency relation ∼ ⊆ X × X.
    [Show full text]
  • LINEAR ALGEBRA METHODS in COMBINATORICS László Babai
    LINEAR ALGEBRA METHODS IN COMBINATORICS L´aszl´oBabai and P´eterFrankl Version 2.1∗ March 2020 ||||| ∗ Slight update of Version 2, 1992. ||||||||||||||||||||||| 1 c L´aszl´oBabai and P´eterFrankl. 1988, 1992, 2020. Preface Due perhaps to a recognition of the wide applicability of their elementary concepts and techniques, both combinatorics and linear algebra have gained increased representation in college mathematics curricula in recent decades. The combinatorial nature of the determinant expansion (and the related difficulty in teaching it) may hint at the plausibility of some link between the two areas. A more profound connection, the use of determinants in combinatorial enumeration goes back at least to the work of Kirchhoff in the middle of the 19th century on counting spanning trees in an electrical network. It is much less known, however, that quite apart from the theory of determinants, the elements of the theory of linear spaces has found striking applications to the theory of families of finite sets. With a mere knowledge of the concept of linear independence, unexpected connections can be made between algebra and combinatorics, thus greatly enhancing the impact of each subject on the student's perception of beauty and sense of coherence in mathematics. If these adjectives seem inflated, the reader is kindly invited to open the first chapter of the book, read the first page to the point where the first result is stated (\No more than 32 clubs can be formed in Oddtown"), and try to prove it before reading on. (The effect would, of course, be magnified if the title of this volume did not give away where to look for clues.) What we have said so far may suggest that the best place to present this material is a mathematics enhancement program for motivated high school students.
    [Show full text]
  • GL(N, Q)-Analogues of Factorization Problems in the Symmetric Group Joel Brewster Lewis, Alejandro H
    GL(n, q)-analogues of factorization problems in the symmetric group Joel Brewster Lewis, Alejandro H. Morales To cite this version: Joel Brewster Lewis, Alejandro H. Morales. GL(n, q)-analogues of factorization problems in the sym- metric group. 28-th International Conference on Formal Power Series and Algebraic Combinatorics, Simon Fraser University, Jul 2016, Vancouver, Canada. hal-02168127 HAL Id: hal-02168127 https://hal.archives-ouvertes.fr/hal-02168127 Submitted on 28 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. FPSAC 2016 Vancouver, Canada DMTCS proc. BC, 2016, 755–766 GLn(Fq)-analogues of factorization problems in Sn Joel Brewster Lewis1y and Alejandro H. Morales2z 1 School of Mathematics, University of Minnesota, Twin Cities 2 Department of Mathematics, University of California, Los Angeles Abstract. We consider GLn(Fq)-analogues of certain factorization problems in the symmetric group Sn: rather than counting factorizations of the long cycle (1; 2; : : : ; n) given the number of cycles of each factor, we count factorizations of a regular elliptic element given the fixed space dimension of each factor. We show that, as in Sn, the generating function counting these factorizations has attractive coefficients after an appropriate change of basis.
    [Show full text]
  • Algebraic Combinatorics
    ALGEBRAIC COMBINATORICS c C D Go dsil To Gillian Preface There are p eople who feel that a combinatorial result should b e given a purely combinatorial pro of but I am not one of them For me the most interesting parts of combinatorics have always b een those overlapping other areas of mathematics This b o ok is an intro duction to some of the interac tions b etween algebra and combinatorics The rst half is devoted to the characteristic and matchings p olynomials of a graph and the second to p olynomial spaces However anyone who lo oks at the table of contents will realise that many other topics have found their way in and so I expand on this summary The characteristic p olynomial of a graph is the characteristic p olyno matrix The matchings p olynomial of a graph G with mial of its adjacency n vertices is b n2c X k n2k G k x p k =0 where pG k is the numb er of k matchings in G ie the numb er of sub graphs of G formed from k vertexdisjoint edges These denitions suggest that the characteristic p olynomial is an algebraic ob ject and the matchings p olynomial a combinatorial one Despite this these two p olynomials are closely related and therefore they have b een treated together In devel oping their theory we obtain as a bypro duct a numb er of results ab out orthogonal p olynomials The numb er of p erfect matchings in the comple ment of a graph can b e expressed as an integral involving the matchings by which we p olynomial This motivates the study of moment sequences mean sequences of combinatorial interest which can b e represented
    [Show full text]
  • Introduction to Algebraic Combinatorics: (Incomplete) Notes from a Course Taught by Jennifer Morse
    INTRODUCTION TO ALGEBRAIC COMBINATORICS: (INCOMPLETE) NOTES FROM A COURSE TAUGHT BY JENNIFER MORSE GEORGE H. SEELINGER These are a set of incomplete notes from an introductory class on algebraic combinatorics I took with Dr. Jennifer Morse in Spring 2018. Especially early on in these notes, I have taken the liberty of skipping a lot of details, since I was mainly focused on understanding symmetric functions when writ- ing. Throughout I have assumed basic knowledge of the group theory of the symmetric group, ring theory of polynomial rings, and familiarity with set theoretic constructions, such as posets. A reader with a strong grasp on introductory enumerative combinatorics would probably have few problems skipping ahead to symmetric functions and referring back to the earlier sec- tions as necessary. I want to thank Matthew Lancellotti, Mojdeh Tarighat, and Per Alexan- dersson for helpful discussions, comments, and suggestions about these notes. Also, a special thank you to Jennifer Morse for teaching the class on which these notes are based and for many fruitful and enlightening conversations. In these notes, we use French notation for Ferrers diagrams and Young tableaux, so the Ferrers diagram of (5; 3; 3; 1) is We also frequently use one-line notation for permutations, so the permuta- tion σ = (4; 3; 5; 2; 1) 2 S5 has σ(1) = 4; σ(2) = 3; σ(3) = 5; σ(4) = 2; σ(5) = 1 0. Prelimaries This section is an introduction to some notions on permutations and par- titions. Most of the arguments are given in brief or not at all. A familiar reader can skip this section and refer back to it as necessary.
    [Show full text]
  • Open Problems in Algebraic Combinatorics Blog Submissions
    Open Problems in Algebraic Combinatorics blog submissions Problem title Submitter Date Pages The rank and cranks Dennis Stanton Sept. 2019 2-5 Sorting via chip-firing James Propp Sept. 2019 6-7 On the cohomology of the Grassmannian Victor Reiner Sept. 2019 8-11 The Schur cone and the cone of log concavity Dennis White Sept. 2019 12-13 Matrix counting over finite fields Joel Brewster Lewis Sept. 2019 14-16 Descents and cyclic descents Ron M. Adin and Yuval Roichman Oct. 2019 17-20 Root polytope projections Sam Hopkins Oct. 2019 21-22 The restriction problem Mike Zabrocki Nov. 2019 23-25 A localized version of Greene's theorem Joel Brewster Lewis Nov. 2019 26-28 Descent sets for tensor powers Bruce W. Westbury Dec. 2019 29-30 From Schensted to P´olya Dennis White Dec. 2019 31-33 On the multiplication table of Jack polynomials Per Alexandersson and Valentin F´eray Dec. 2019 34-37 Two q,t-symmetry problems in symmetric function theory Maria Monks Gillespie Jan. 2020 38-41 Coinvariants and harmonics Mike Zabrocki Jan. 2020 42-45 Isomorphisms of zonotopal algebras Gleb Nenashev Mar. 2020 46-49 1 The rank and cranks Submitted by Dennis Stanton The Ramanujan congruences for the integer partition function (see [1]) are Dyson’s rank [6] of an integer partition (so that the rank is the largest part minus the number of parts) proves the Ramanujan congruences by considering the rank modulo 5 and 7. OPAC-001. Find a 5-cycle which provides an explicit bijection for the rank classes modulo 5, and find a 7-cycle for the rank classes modulo 7.
    [Show full text]
  • Dynamical Algebraic Combinatorics and the Homomesy Phenomenon
    Dynamical Algebraic Combinatorics and the Homomesy Phenomenon Tom Roby Abstract We survey recent work within the area of algebraic combinatorics that has the flavor of discrete dynamical systems, with a particular focus on the homomesy phenomenon codified in 2013 by James Propp and the author. Inthese situations, a group action on a set of combinatorial objects partitions them into orbits, and we search for statistics that are homomesic, i.e., have the same average value over each orbit. We give a number of examples, many very explicit, to illustrate the wide range of the phenomenon and its connections to other parts of combinatorics. In particular, we look at several actions that can be defined as a product of toggles, involutions on the set that make only local changes. This allows us to lift the well-known poset maps of rowmotion and promotion to the piecewise-linear and birational settings, where periodicity becomes much harder to prove, and homomesy continues to hold. Some of the examples have strong connections with the representation theory of semisimple Lie algebras, and others to cluster algebras via Y-systems. Key words: antichains, cluster algebras, homomesy, minuscule heaps, non-crossing partitions, orbits, order ideals, Panyushev complementation, permutations, poset, product of chains, promotion, root systems, rowmotion, Suter’s symmetry, toggle groups, tropicalization, Y-systems, Young’s Lattice, Young tableaux, Zamolodchikov periodicity. Mathematics Subject Classifications: 05E18, 06A11. 1 Introduction The term Dynamical Algebraic Combinatorics is meant to convey a range of phenomena involving actions on sets of discrete combinatorial objects, many of which can be built up by small local changes.
    [Show full text]
  • Problems in Algebraic Combinatorics
    PROBLEMS IN ALGEBRAIC COMBINATORICS C. D. Godsil 1 Combinatorics and Optimization University of Waterloo Waterloo, Ontario Canada N2L 3G1 [email protected] Submitted: July 10, 1994; Accepted: January 20, 1995. Abstract: This is a list of open problems, mainly in graph theory and all with an algebraic flavour. Except for 6.1, 7.1 and 12.2 they are either folklore, or are stolen from other people. AMS Classification Number: 05E99 1. Moore Graphs We define a Moore Graph to be a graph with diameter d and girth 2d +1. Somewhat surprisingly, any such graph must necessarily be regular (see [42]) and, given this, it is not hard to show that any Moore graph is distance regular. The complete graphs and odd cycles are trivial examples of Moore graphs. The Petersen and Hoffman-Singleton graphs are non-trivial examples. These examples were found by Hoffman and Singleton [23], where they showed that if X is a k-regular Moore graph with diameter two then k ∈{2, 3, 7, 57}. This immediately raises the following question: 1 Support from grant OGP0093041 of the National Sciences and Engineering Council of Canada is gratefully acknowledged. the electronic journal of combinatorics 2 (1995), #F1 2 1.1 Problem. Is there a regular graph with valency 57, diameter two and girth five? We summarise what is known. Bannai and Ito [4] and, independently, Damerell [12] showed that a Moore graph has diameter at most two. (For an exposition of this, see Chapter 23 in Biggs [7].) Aschbacher [2] proved that a Moore graph with valency 57 could not be distance transitive and G.
    [Show full text]
  • 18.212 S19 Algebraic Combinatorics, Lecture 39: Plane Partitions and More
    18.212: Algebraic Combinatorics Andrew Lin Spring 2019 This class is being taught by Professor Postnikov. May 15, 2019 We’ll talk some more about plane partitions today! Remember that we take an m × n rectangle, where we have m columns and n rows. We fill the grid with weakly decreasing numbers from 0 to k, inclusive. Then the number of possible plane partitions, by the Lindstrom lemma, is the determinant of the k × k matrix C where entries are m + n c = : ij m + i − j MacMahon also gave us the formula m n k Y Y Y i + j + ` − 1 = : i + j + ` − 2 i=1 j=1 `=1 There are several geometric ways to think about this: plane partitions correspond to rhombus tilings of hexagons with side lengths m; n; k; m; n; k, as well as perfect matchings in a honeycomb graph. In fact, there’s another way to think about these plane partitions: we can also treat them as pseudo-line arrangements. Basically, pseudo-lines are like lines, but they don’t have to be straight. We can convert any rhombus tiling into a pseudo-line diagram! Here’s the process: start on one side of the region. For each pair of opposite sides of our hexagon, draw pseudo-lines by following the common edges of rhombi! For example, if we’re drawing pseudo-lines from top to bottom, start with a rhombus that has a horizontal edge along the top edge of the hexagon, and then connect this rhombus to the rhombus that shares the bottom horizontal edge.
    [Show full text]
  • Recent Developments in Algebraic Combinatorics
    Recent Developments in Algebraic Combinatorics Richard P. Stanley1 Department of Mathematics Massachusetts Institute of Technology Cambridge, MA 02139 e-mail: [email protected] version of 5 February 2004 Abstract We survey three recent developments in algebraic combinatorics. The first is the theory of cluster algebras and the Laurent phe- nomenon of Sergey Fomin and Andrei Zelevinsky. The second is the construction of toric Schur functions and their application to comput- ing three-point Gromov-Witten invariants, by Alexander Postnikov. The third development is the construction of intersection cohomol- ogy for nonrational fans by Paul Bressler and Valery Lunts and their application by Kalle Karu to the toric h-vector of a nonrational poly- tope. We also briefly discuss the “half hard Lefschetz theorem” of Ed Swartz and its application to matroid complexes. 1 Introduction. In a previous paper [32] we discussed three recent developments in algebraic combinatorics. In the present paper we consider three ad- ditional topics, namely, the Laurent phenomenon and its connection with Somos sequences and related sequences, the theory of toric Schur functions and its connection with the quantum cohomology of the Grassmannian and 3-point Gromov-Witten invariants, and the toric h-vector of a convex polytope. Note. The notation C, R, and Z, denotes the sets of complex numbers, real numbers, and integers, respectively. 1Partially supported by NSF grant #DMS-9988459. 1 2 The Laurent phenomenon. Consider the recurrence 2 n an−1an+1 = an +(−1) , n ≥ 1, (1) with the initial conditions a0 = 0, a1 = 1. A priori it isn’t evident that an is an integer for all n.
    [Show full text]
  • Algebraic Combinatorics, 2007
    1 Juriˇsi´c Aleksandar 8162982 930 2 1 20 45 51 7 9 0 51 1 6 8 4 2 8 13 5 8 55 7 3 1 7 6 2 9 9 0 0 4 7 8 4 5693 6 8 3 6 8 3 9 2 9 8 9 8 2 99 9 15 1 1 1 9 3 54 4 7 6 5 8 4 9 6 2 0 9 4 0 62 4 5 3 1 6 71 47 6 2 7 1 2 2 1 2 1 5 9 4 9 3 9 5 5 7 5 5 8 0 8 2 9 8162982 930 2 1 20 45 51 7 9 0 51 1 6 8 4 2 8 13 5 8 55 7 3 1 7 6 2 9 9 0 0 4 7 8 4 5693 6 8 3 6 8 3 9 2 9 8 9 8 2 99 9 15 1 1 1 9 3 54 4 7 6 5 8 4 9 6 2 0 9 4 0 62 4 5 3 1 6 71 47 6 2 7 1 2 2 1 2 1 5 9 4 9 3 9 5 5 7 5 5 8 0 8 2 9 8162982 930 2 1 20 45 51 7 9 0 51 1 6 8 4 2 8 13 5 8 55 7 3 1 7 6 2 9 9 0 0 4 7 8 4 5693 6 8 3 6 8 3 9 2 9 8 9 8 2 99 9 15 1 1 1 9 3 54 4 7 6 5 8 4 9 6 2 0 9 4 0 62 4 5 3 1 6 71 47 6 2 7 1 2 2 1 2 1 5 9 4 9 3 9 5 5 7 5 5 8 0 8 2 9 ∼ http://valjhun.fmf.uni-lj.si/ ajurisic aut fCmue n nomto Science Information and Computer of Faculty aoaoyfrCytgah n optrSecurity Computer and Cryptography for Laboratory lkadrJuriˇsi´c Aleksandar COMBINATORICS ALGEBRAIC leri obntrc,2007 Combinatorics, Algebraic Algebraic Combinatorics, 2007 Introduction .............
    [Show full text]
  • Topics in Geometric Combinatorics
    Topics in Geometric Combinatorics Francis Edward Su August 13, 2004 Chapter 1 Introduction 1.1 What is geometric combinatorics? Geometric combinatorics refers to a growing body of mathematics concerned with counting properties of geometric objects described by a finite set of building blocks. Primary examples include polytopes (which are bounded polyhedra and the convex hulls of finite sets of points) and complexes built up from them. Other examples include arrangements and intersections of convex sets and other geometric objects. As we’ll see there are interesting connections to linear algebra, discrete mathematics, analysis, and topology, and there are many exciting applications to economics, game theory, and biology. There are many topics that could be discussed in a course on geometric combi- natorics; but in these lectures I have chosen what I consider to be my favorite topics for inclusion in such a course. Mostly the lectures reflect what I like in the subject. Some of the topics are of relatively recent development and reflect either my current interests (e.g., combinatorial fixed point theorems) or material I assimilated in the “Discrete and Computational Geometry” program at MSRI in Fall 2003. Along the way, I will provide some exercises to allow the reader to play with the concepts, and some pointers to problems in the field. 1 Chapter 2 Combinatorial convexity and Helly’s theorem Convexity is a geometric notion with some interesting combinatorial consequences. 2.1 Application: Centerpoints We all know what a median of a data set of real numbers is— it is a number for which half the data lies above it, and half the data lies below.
    [Show full text]