Effect of Frusemide on Bradykinin- and Capsaicin-Induced Contraction of the Guinea-Pig Trachea

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Frusemide on Bradykinin- and Capsaicin-Induced Contraction of the Guinea-Pig Trachea Copyright© ERS Journals Ltd 1993 Eur Respir J, 1993, 6, 434-439 European Respiratory Journal Printed in UK - all rights reserved ISSN 0903 - 1936 Effect of frusemide on bradykinin- and capsaicin-induced contraction of the guinea-pig trachea M. Molimard, C. Advenier Effect of frusemide on bradykinin- and capsaicin-induced contraction of the guinea-pig Laboratoire de Pharmacologie, Institut trachea. M. Molimard, C. Advenier. ©ERS Journals Ltd 1993. Biomedical des Cordeliers, Paris, France. ABSTRACT: Frusemide, a loop diuretic, inhibits the bronchial response to vari­ ous bronchoconstrictor stimuli in asthmatic subjects. The underlying mechanisms Correspondence: M. Molimard Laboratoire de Pharrnacologie remain unclear. Institut Biomedical des Cordeliers In order to determine whether frusemide inhibits pharmacologically induced 15, rue de l'Ecole de Medecine C-tibre stimulation, we investigated the effect of frusemide on bradykinin-, capsai­ F-75270 Paris Cedex 06 cin-, neurokinin A-, and substance P-induced contraction of the guinea-pig isolated France. trachea. Frusemide 10·5 and 10·4 M produced a significant inhibition of concentration­ Keywords: Airways smooth muscle response curves to bradykinin, which was markedly reduced by indomethacin 10"" asthma M. Frusemide significantly reduced capsaicin-induced contraction only in the bradykinin presence of indomethacin 10·6 M. Neurokinin A- and substance P-induced contrac­ capsaicin frusemide tions were not affected by frusemide and/or indomethacin. prostaglandin Our data suggest that a cyclo-oxygenase pathway is involved in the inhibition by frusemide of the bradykinin-induced contraction, but not in the inhibition of the Received: December 10 1991 capsaicin-induced contraction. accepted after revision December 9 1992. Eur Respir J., 1993, 6, 434-439. Inhalation of the loop diuretic frusemide has been Material and methods shown to inhibit bronchoconstrictor response to exercise [1], ultrasonically nebulized distilled water [2], antigen [3- 5], metabisulphite [6, 7] or adenosine [8]. The mecha­ Guinea-pig isolated trachea nism of this action remains uncertain. Frusemide is unlikely to inhibit smooth muscle contraction directly, Male guinea-pigs weighing 250-350 g were killed by since it does not influence the bronchoconstriction induced cervical dislocation. The trachea was removed and cut by histamine, KC!, and hypertonic NaCI in vitro [9]. The into rings. In some experiments, the epithelium was re­ effect of frusemide could be due to inhibition of the moved by gently rubbing the luminal surface with a cot­ Na+/CI- cotransport process, as suggested by BIANco et al. ton-tipped applicator soaked in Kreb's solution, according [ 1]. Frusemide might also act by releasing broncho­ to the method described by DEVILLIER et al. [18]. The di!atator prostaglandins from airway epithelium, as has preparations were mounted isometrically and subjected to been shown on vascular endothelium and kidney tubular an initial tension of 1.50 g, in a Kreb's solution at 37°C epithelium [10, 11]. Recently, frusemide has been shown bubbled with a 95% 0 2 and 5% C02 mixture. Kreb's so­ to inhibit, in the presence of indomethacin, the contrac­ lution was composed of (mM): NaCI 113; KC! 4.7; CaC12 tion induced by electrical field stimulation of guinea-pig 1.9; MgS04 1.2; KH2P04 1.2; NaHC03 25; glucose 11.5. bronchial smooth muscle [12]. Following equilibration for 1.25 h, the resting tension was Afferent vagal C-fibres are stimulated by bradykinin between 0.8-1.5 g. [13, 14], and capsaicin [15], and induce the release of Tensions were measured with Celaster UF-1 gauges multiple tachykinins, such as substance P (SP) and neu­ connected to Celaster AC-261 amplifiers. Analogical and rokinin A (NKA) [14-17]. The aim of the present study digital signal acquisition, enabling treatment of pharma­ was to investigate the possible inhibitory effect of fruse­ cological data, was performed using the Moise 3 program mide on neurally evoked bronchoconstrictor pathways. (Dei Lierre, 77290 Mitry-Mory, France). We studied the effect of frusemide on bradykinin-, cap­ Tracheal rings were first contracted to maximal ten­ saicin-, SP- and NKA-induced bronchoconstriction in sion with acetylcholine 1 mM, then relaxed with theo­ guinea-pig. phylline 3 mM to sensitize and stabilize the preparations. FRUSEMIDE AND GUINEA-PIG TRACHEA 435 Experiments were separated by intervals of a least 1 h. a Experiments were conducted on parallel groups of 4-8 50 rings, one ring serving as control. Each of the other rings was incubated for I h with a given concentration of the reagents or substances tested (frusemide (L0·5 and 104 M) * and/or indomethacin (I Q-6 M)). Following this incubation, ::2 c:: E and in the absence (control) or presence of reagents or .Q ~ t:>..r:: substances tested, a range of one of the following con­ rou 25 10 6 -E< traction-inducing agents (bradykinin (I0- -10· M), cap­ 0 saicin (10-9-I0-6 M), SP (10·9-10·6 M), NKA u g? ~ (10·9-10·6 M)) was established. Thereafter, acetylcholine 0 l mM was added to the bath to obtain 100% maximal contraction. The effects of the contractile agents were expressed as 0 a percentage of the effects of acetylcholine I mM. -10 -9 -8 -7 -6 -5 Bradykinin log M b Statistical analysis of results 50 All values in the text and figures are mean±sEM. Sta­ tistical analysis was performed using variance analysis and Student's t-test for paired or unpaired data. ::2 c:: E .Q ,....- 't)..r::rou Drugs and chemicals -E<( 25 t 8g? ~ The substances used were: frusemide (Hoechst), ace­ 0 t tylcholine (Pharmacie centrale des hopitaux, Paris, France); indomethacin (Merck); substance P, neurokinin A, bradykinin, capsaicin (Sigma, St. Louis, USA); theo­ 0 +-~~~--rL~.-~-.--~.-~~ phylline sodium anisate (Bruneau, Paris, France). All -11 -10 -9 -8 -7 -6 -5 drugs were dissolved in distilled water and then diluted in saline for the in vivo studies, or in Kreb's solution for Bradykinin log M the in vitro studies, except for indomethacin which was c dissolved in ethanol, and then diluted in such a way that 50 the amounts of ethanol did not alter acetylcholine reac­ tivity. Results Effect of frusemide on concentration-response curves to bradykinin on the guinea-pig trachea Bradykinin induced a transient contraction within 5 min after injection, followed by a relaxation. We studied the 0 +-~--T-~--.-~-.--~-.--.-~ cumulative contractile effect of bradykinin by adding the -10 -9 -8 -7 -6 -5 next concentration of bradykinin when the induced con­ Bradykinin log M traction reached its maximum. Figure I a shows that epithelium removal significantly Fig. I. - a) Concentration response-curves to bradykinin on enhanced the concentration response curve to bradykinin intact (.A.) and denuded (0 guinea-pig isolated trachea. on guinea-pig trachea. On epithelium-denuded trachea b) Influence of frusemide (lO·' ( .) and 10·• (6) M) on bradykinin 5 4 concentration-response curves on guinea-pig isolated trachea (fig. Ib and c), frusemide IQ- and 10 M induced a sig­ without epithelium. 0: control. c) Influence of indomethacin to·• nificant decrease of bradykinin (BK) concentration­ M on bradykinin concentration-response curves on guinea-pig de­ response curves (fig. Ib); indomethacin IQ-6 M did not nuded trachea pretreated by frusemide IO·' M (.6.).0: control (no significantly influence bradykinin control concentration­ treatment); 6: frusemide 10·• M alone; 0: indomethacin 10·6 M response curves, but significantly inhibited the decrease alone. Values are mean±sEM (n=6). Significant differences with control are indicated by: *: p<0.05; * : p<0.02; t: p<O.Ol except of bradykinin concentration-response curves induced by for figure c where the comparison was made with indomethacin frusemide (fig. le) 10·6 M. ACh: acetylcholine. 436 M. MOLIMARD, C. ADVENIER a b 100 100 * :::2: 75 :::2: 75 c::: E c::: E o~ o~ U...c u~ -E<<U() 50 -E<<U() 50 8~ 8~ ~0 ~0 25 25 0 0 -9 -8 -7 -6 -5 -9 -8 -7 -6 -5 Capsaicin log M Capsaicin log M c d 100 100 75 :::2: 75 :::2: c::: c::: E E o~ o~ ·u ..c ·u ...c cuo Ec:t:<U() -E<t: 50 50 8~ 8~ ~0 ~0 25 - 25 0 o~~--~~--,-~r-,---~~ -9 -8 -7 -6 -5 -9 -8 -7 -6 -5 Capsaicin log M Capsaicin log M Fig. 2. - Effect of frusemide (I0-3 M) on capsaicin concentration-response curves without (a, c, e) or with indomethacin 10-• M pre­ treatment (b, d, 0) on intact (a, b) and denuded (c, d) guinea-pig isolated trachea. .1.: indomethacin I0-6 M alone. 0: control (no treat­ ment). Values are mean±sEM (n=6). Significant differences with capsaicin response curves in the presence of indomethacin (.1.) indicated by *: p<0.05. a b 100 100 75 75 c:::::::i: c:::::::i: 0 c::: 0 c::: u~ ·u~ ~0 50 ~0 50 §<t: §<t: ()~ ()~ 25 25 0 0 -10 -9 -8 -7 -6 -10 -9 -8 -7 -6 Substance P log M Neurokinin A log M Fig. 3. - a) Influence of frusemide 10-< M (A) on substance-P concentration-response curves on guinea-pig isolated trachea without epithelium pretreated by indomethacin. b) Influence of frusemide 10-' M (A) on neurokinin A concentration-response curves on guinea­ pig denuded isolated trachea pretreated by indomethacin_ Values are mean±sEM (n=6 and n=5, respectively). There was no significant difference with substance-P or neurokinin A control response curves (Q). FRUSEMIDE AND GUINEA-PIG TRACHEA 437 Effect of frusemide on concentration-response curves to important in the secondary relaxation induced by brady­ capsaicin on the guinea-pig trachea kinin on intact guinea-pig trachea, and considered PGI2 to be less important in the response to bradykinin. This Administration of capsaicin (1 o-s to I0-5 M) produced a is in agreement with MIZRAHI et al.
Recommended publications
  • Vasopressin Release from the Rat Hypothalamo-Neurohypophysial System: Effects of Tachykinin NK–1 and NK–2 Receptors Agonis
    Neuroendocrinology Letters No.4 August Vol.26, 2005 Copyright © 2005 Neuroendocrinology Letters ISSN 0172–780X www.nel.edu Vasopressin release from the rat hypothalamo-neurohy- pophysial system: Effects of tachykinin NK–1 and NK–2 receptors agonists and antagonists ARTICLE ORIGINAL Marlena Juszczak Department of Pathophysiology, Medical University of Lodz, Lodz, Poland. Correspondence to: Marlena Juszczak, Ph.D., D.Sc. Department of Pathophysiology Medical University of Lodz Narutowicza 60 90-136 Lodz, POLAND TEL/FAX: +48 42 6306187 [email protected] Submitted: July 7, 2004 Accepted: October 15, 2004 Key words: tachykinin receptors; substance P; neurokinin A; vasopressin Neuroendocrinol Lett 2005; 26(4):367–372 PMID: 16136007 NEL260405A13 © Neuroendocrinology Letters www.nel.edu Abstract OBJECTIVES: Present experiments were undertaken to study the influence of pep- tide NK–1 and NK–2 receptor agonists and antagonists as well as substance P and neurokinin A (the natural ligands for these tachykinin receptors) on vasopres- sin (AVP) secretion from the rat hypothalamo-neurohypophysial (HN) system in vitro. RESULTS: The results showed that both substance P and highly selective tachykinin 9 11 NK–1 receptor agonist, i.e., [Sar ,Met(O2) ]-Substance P, enhanced significantly AVP secretion, while the NK–1 receptor antagonist (Tyr6,D–Phe7,D–His9)-Sub- stance P (6–11) – sendide – was found to antagonize the substance P–induced hormone release from isolated rat HN system (all peptides at the concentration of 10–7 M/L). The NK–2 receptor selective agonist (β–Ala8)–Neurokinin A (4–10) was essentially inactive in modifying AVP release from the rat HN system in vitro, while neurokinin A (the natural ligand for this tachykinin receptor) was found to stimulate the AVP release; this effect of neurokinin A has been diminished by the 5 6,8,9 10 NK–2 receptor antagonist (Tyr ,D–Trp ,Lys–NH2 )–Neurokinin A (4–10).
    [Show full text]
  • Europium-Labeled Ligands for Receptor Binding Studies
    Europium-labeled Ligands for Receptor Binding Studies Katja Sippola, Maija-Liisa Mäkinen, Sanna Rönnmark, Joni Helenius, Riitta Heilimö, Anu Koivikko, Pertti Hurskainen and Christel Gripenberg-Lerche PerkinElmer Life and Analytical Sciences, Wallac Oy 1 Introduction 2 Methods Time-resolved fluorescence enhancement technique DELFIA® enables development of highly sensitive assays for screening. We have developed a family of Europium-labeled peptides and proteins designed for ligand receptor binding assays that can be easily automated The DELFIA® ligand receptor binding assay is based on dissociation-enhanced time-resolved fluorescence. DELFIA® Eu-labeled ligand and and optimized either for 96 or 384 well format. These Eu-labeled ligands provide an excellent non-radioactive alternative that is both receptor membrane preparate are incubated on an filter plate (PALL AcroWell or AcroPrep) after which unbound labeled ligand is removed by stabile and sensitive. filtration. Eu is dissociated from the bound ligand by using DELFIA® Enhancement Solution. Dissociated Eu creates highly fluorescent complexes, ® The new tachycinin members of the DELFIA ligand family are Substance P and Neurokinin A. These peptide ligands have many which are measured in a multilabel counter with TRF option, e.g. EnVision™. physiological roles, e.g. they stimulate smooth muscle contraction and glandular secretion and are involved in immune responses and neurotransmission. 3 DELFIA® Neurokinin A assays on 96 well filtration plates 4 DELFIA® Substance P assays on 96 well
    [Show full text]
  • Role of Tachykinin Receptors and Melatonin in Oxytocin
    JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY 2004, 55, 4, 739749 www.jpp.krakow.pl M. JUSZCZAK, K. FURYKIEWICZ-NYKI, B. STEMPNIAK ROLE OF TACHYKININ RECEPTORS AND MELATONIN IN OXYTOCIN SECRETION FROM ISOLATED RAT HYPOTHALMO- NEUROHYPOPHYSIAL SYSTEM Department of Pathophysiology, Medical University of £ód, £ód, Poland Present investigations were undertaken to study the influence of peptide NK-1 and NK-2 receptor agonists and antagonists as well as substance P and neurokinin A (the natural ligands for these tachykinin receptors) on oxytocin (OT) release from isolated rat hypothalamo-neurohypophysial (H-N) system as well as to determine whether the tachykinin NK-1 and/or NK-2 receptors contribute to the response of oxytocinergic neurons to melatonin. The results show, for the first time, that highly selective NK- 9 11 1 receptor agonist, i.e., [Sar ,Met(O2) ]-Substance P, enhances while the NK-1 6 7 9 receptor antagonist (Tyr ,D-Phe ,D-His )-Substance P (6-11) - sendide - diminishes significantly OT secretion; the latter peptide was also found to antagonize the substance P-induced hormone release from isolated rat H-N system, when used at the -7 concentration of 10 M/L. Melatonin significantly inhibited basal and substance P- stimulated OT secretion. Neurokinin A and the NK-2 receptor selective agonist (ß- 8 5 6,8,9 Ala )-Neurokinin A (4-10) as well as the NK-2 receptor antagonist (Tyr ,D-Trp , 10 Lys-NH2 )-Neurokinin A (4-10) were essentially inactive in modifying OT release from the rat H-N system in vitro. The present data indicate a distinct role for tachykinin NK-1 (rather than NK-2) receptor in tachykinin-mediated regulation of OT secretion from the rat H-N system.
    [Show full text]
  • Substance P and Antagonists of the Neurokinin-1 Receptor In
    Martinez AN and Philipp MT, J Neurol Neuromed (2016) 1(2): 29-36 Neuromedicine www.jneurology.com www.jneurology.com Journal of Neurology & Neuromedicine Mini Review Article Open Access Substance P and Antagonists of the Neurokinin-1 Receptor in Neuroinflammation Associated with Infectious and Neurodegenerative Diseases of the Central Nervous System Alejandra N. Martinez1 and Mario T. Philipp1,2* 1Division of Bacteriology & Parasitology, Tulane National Primate Research Center, Covington, LA, USA 2Department of Microbiology and Immunology, Tulane University Medical School, New Orleans, LA, USA Article Info ABSTRACT Article Notes This review addresses the role that substance P (SP) and its preferred receptor Received: May 03, 2016 neurokinin-1 (NK1R) play in neuroinflammation associated with select bacterial, Accepted: May 18, 2016 viral, parasitic, and neurodegenerative diseases of the central nervous system. *Correspondence: The SP/NK1R complex is a key player in the interaction between the immune Division of Bacteriology and Parasitology and nervous systems. A common effect of this interaction is inflammation. For Tulane National Primate Research Center this reason and because of the predominance in the human brain of the NK1R, Covington, LA, USA its antagonists are attractive potential therapeutic agents. Preventing the Email: [email protected] deleterious effects of SP through the use of NK1R antagonists has been shown © 2016 Philipp MT. This article is distributed under the terms of to be a promising therapeutic strategy, as these antagonists are selective, the Creative Commons Attribution 4.0 International License potent, and safe. Here we evaluate their utility in the treatment of different neuroinfectious and neuroinflammatory diseases, as a novel approach to Keywords clinical management of CNS inflammation.
    [Show full text]
  • Distribution of Neurokinin 2 and 3 Receptor Mrna in the Normal
    Distribution of Neurokinin 2 and 3 Receptor mRNA in the Normal Equine Gastrointestinal Tract and Effect of Inflammation on Expression of Neurokinin 1, 2 and 3 Receptor mRNA in the Jejunum by Dr. Christina Martin A Thesis presented to The University of Guelph In partial fulfillment of requirements for the degree of Masters of Science in Clinical Studies Guelph, Ontario, Canada Dr. Christina Martin, April, 2014 ABSTRACT DISTRIBUTION OF NEUROKININ 2 AND 3 RECEPTOR mRNA IN THE NORMAL EQUINE GASTROINTESTINAL TRACT AND EFFECT OF INFLAMMATION ON EXPRESSION OF NEUROKININ 1, 2 AND 3 RECEPTOR mRNA IN THE JEJUNUM Dr. Christina E. W. Martin Advisor: University of Guelph, 2014 Dr. Judith B. Koenig This study is an investigation of the distribution of neurokinin receptors in the equine gastrointestinal tract. The objectives of this research were to determine the relative distribution of neurokinin 2 (NK2) and 3 (NK3) receptor mRNA in the normal equine gastrointestinal tract, and also to determine changes in neurokinin 1 (NK1), NK2 and NK3 receptor mRNA expression after ischemia/reperfusion injury or intraluminal distension in the jejunum. Samples from 9 regions in the gastrointestinal tract (duodenum, jejunum, ileum, caecum, right ventral colon, left ventral colon, pelvic flexure, right dorsal colon and left dorsal colon) were harvested from 5 mature healthy horses, euthanized for reasons unrelated to the gastrointestinal tract, for the study of NK2 and NK3 mRNA distribution in the normal intestinal tract. To evaluate the effect of inflammation on NK1, NK2 and NK3 receptor mRNA distribution, samples were taken from 6 horses whose jejunum underwent one of three treatments: control (sham-operated), intraluminal distension (ILD) or ischemic strangulation obstruction and subsequent reperfusion injury (ISO).
    [Show full text]
  • The Significance of NK1 Receptor Ligands and Their Application In
    pharmaceutics Review The Significance of NK1 Receptor Ligands and Their Application in Targeted Radionuclide Tumour Therapy Agnieszka Majkowska-Pilip * , Paweł Krzysztof Halik and Ewa Gniazdowska Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland * Correspondence: [email protected]; Tel.: +48-22-504-10-11 Received: 7 June 2019; Accepted: 16 August 2019; Published: 1 September 2019 Abstract: To date, our understanding of the Substance P (SP) and neurokinin 1 receptor (NK1R) system shows intricate relations between human physiology and disease occurrence or progression. Within the oncological field, overexpression of NK1R and this SP/NK1R system have been implicated in cancer cell progression and poor overall prognosis. This review focuses on providing an update on the current state of knowledge around the wide spectrum of NK1R ligands and applications of radioligands as radiopharmaceuticals. In this review, data concerning both the chemical and biological aspects of peptide and nonpeptide ligands as agonists or antagonists in classical and nuclear medicine, are presented and discussed. However, the research presented here is primarily focused on NK1R nonpeptide antagonistic ligands and the potential application of SP/NK1R system in targeted radionuclide tumour therapy. Keywords: neurokinin 1 receptor; Substance P; SP analogues; NK1R antagonists; targeted therapy; radioligands; tumour therapy; PET imaging 1. Introduction Neurokinin 1 receptor (NK1R), also known as tachykinin receptor 1 (TACR1), belongs to the tachykinin receptor subfamily of G protein-coupled receptors (GPCRs), also called seven-transmembrane domain receptors (Figure1)[ 1–3]. The human NK1 receptor structure [4] is available in Protein Data Bank (6E59).
    [Show full text]
  • Tachykinins in Endocrine Tumors and the Carcinoid Syndrome
    European Journal of Endocrinology (2008) 159 275–282 ISSN 0804-4643 CLINICAL STUDY Tachykinins in endocrine tumors and the carcinoid syndrome Janet L Cunningham1, Eva T Janson1, Smriti Agarwal1, Lars Grimelius2 and Mats Stridsberg1 Departments of 1Medical Sciences and 2Genetics and Pathology, University Hospital, SE 751 85 Uppsala, Sweden (Correspondence should be addressed to J Cunningham who is now at Section of Endocrine Oncology, Department of Medical Sciences, Lab 14, Research Department 2, Uppsala University Hospital, Uppsala University, SE 751 85 Uppsala, Sweden; Email: [email protected]) Abstract Objective: A new antibody, active against the common tachykinin (TK) C-terminal, was used to study TK expression in patients with endocrine tumors and a possible association between plasma-TK levels and symptoms of diarrhea and flush in patients with metastasizing ileocecal serotonin-producing carcinoid tumors (MSPCs). Method: TK, serotonin and chromogranin A (CgA) immunoreactivity (IR) was studied by immunohistochemistry in tissue samples from 33 midgut carcinoids and 72 other endocrine tumors. Circulating TK (P-TK) and urinary-5 hydroxyindoleacetic acid (U-5HIAA) concentrations were measured in 42 patients with MSPCs before treatment and related to symptoms in patients with the carcinoid syndrome. Circulating CgA concentrations were also measured in 39 out of the 42 patients. Results: All MSPCs displayed serotonin and strong TK expression. TK-IR was also seen in all serotonin- producing lung and appendix carcinoids. None of the other tumors examined contained TK-IR cells. Concentrations of P-TK, P-CgA, and U-5HIAA were elevated in patients experiencing daily episodes of either flush or diarrhea, when compared with patients experiencing occasional or none of these symptoms.
    [Show full text]
  • Calcitonin Gene-Related Peptide and Other Peptides
    P1: KWW/KKL P2: KWW/HCN QC: KWW/FLX T1: KWW GRBT050-16 Olesen- 2057G GRBT050-Olesen-v6.cls July 9, 2005 4:30 ••Chapter 16 ◗ Calcitonin Gene-Related Peptide and Other Peptides Susan Brain and Lars Edvinsson Vasoactive peptides can be either stored or synthesized de THE CGRP FAMILY OF PEPTIDES novo before release from a range of tissues in the brain or from the walls of intracranial vasculature. In this chapter, The expression of mRNA from the calcitonin gene is tissue we concentrate on neuropeptides that are released from specific in that CGRP mRNA is predominantly expressed perivascular nerves. These include calcitonin gene-related in nerves and calcitonin mRNA in the thyroid (5). The 37 peptide (CGRP), substance P, neurokinin A, nociceptin, amino acid peptide CGRP belongs to a family that include somatostatin, and opioids (Table 16-1). The endothelium the more recently discovered peptides adrenomedullin produces the potent vasoconstrictors endothelin and an- that is primarily produced by non-neuronal tissues, espe- giotensin, and dilators such as nitric oxide, prostacyclin, cially vascular tissues and amylin that is mainly produced and endothelium-derived hyperpolarizing factors. In ad- in the pancreas. They share some structural homology (ap- dition there are circulating agents; among these the most proximately 25–40%) and also some, but not total, similar- potent is 5-hydroxytryptamine. The neuronal messengers ities in biological activities (see Brain and Grant [11] for stored in the intracranial vessels have been reviewed recent review). CGRP is abundant in the body and has a (32) and it was revealed that sympathetic nerves store wide distribution throughout the central and peripheral noradrenaline, neuropeptide Y, and ATP, the parasympa- nervous systems.
    [Show full text]
  • Calcitonin Gene-Related Peptide Regulates Expression of Neurokinin1 Receptors by Rat Spinal Neurons
    1816 • The Journal of Neuroscience, March 1, 2003 • 23(5):1816–1824 Calcitonin Gene-Related Peptide Regulates Expression of Neurokinin1 Receptors by Rat Spinal Neurons Virginia S. Seybold,1 Kenneth E. McCarson,2 Paul G. Mermelstein,1 Rachel D. Groth,1 and Lia G. Abrahams1 1Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, and 2Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160 Although neurokinin 1 (NK1) receptors contribute to hyperalgesia, and their expression is increased in the spinal cord during peripheral inflammation, little is known regarding the signaling molecules and the second messenger pathways that they activate in regulating the expression of the NK1 receptor gene. Because the promoter region of the NK1 receptor contains a cAMP response element (CRE), we tested the hypothesis that calcitonin gene-related peptide (CGRP) regulates the expression of NK1 receptors via a pathway involving activation of the transcription factor cAMP response element binding protein (CREB). Experiments were conducted on primary cultures of neonatal rat spinal neurons. Treatment of cultures with CGRP for 8–24 hr increased 125I-substance P binding on spinal neurons; the increase in binding was preceded by an elevation in NK1 receptor mRNA. The CGRP-induced change in 125I-substance P binding was concentration-dependent and was inhibited by the antagonist CGRP8–37. CGRP increased phosphorylated CREB immunoreactivity and CRE-dependent transcription in neurons, indicating the involvement of the transcription factor CREB. Evidence that CGRP increased cAMP levels in spinal neurons and that the protein kinase A inhibitor H89 attenuated CGRP-induced CRE-dependent transcription suggests that the intracellular pathway stimulated by CGRP leads to activation of protein kinase A.
    [Show full text]
  • Presence of Substance P Positive Terminals on Hypothalamic
    Brain Structure and Function (2020) 225:241–248 https://doi.org/10.1007/s00429-019-01990-x ORIGINAL ARTICLE Presence of substance P positive terminals on hypothalamic somatostatinergic neurons in humans: the possible morphological substrate of the substance P‑modulated growth hormone secretion Andrew Luu1 · Zachary Oberdoerster1 · George Grignol1 · Istvan Merchenthaler2 · Bertalan Dudas1 Received: 10 June 2019 / Accepted: 19 November 2019 / Published online: 5 December 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Substance P is an undecapeptide afecting the gastrointestinal, cardiovascular, and urinary systems. In the central nervous system, substance P participates in the regulation of pain, learning, memory, and sexual homeostasis. In addition to these efects, previous papers provided solid evidence that substance P exhibits regulatory efects on growth. Indeed, our previous study revealed that growth hormone-releasing hormone (GHRH) neurons appear to be densely innervated by substance P fbers in humans. Since growth hormone secretion is regulated by the antagonistic actions of both GHRH and somatostatin, in the present paper we have examined the possibility that SP may also afect growth via the somatostatinergic system. Therefore, we have studied the putative presence of juxtapositions between the substance P-immunoreactive (IR) and soma- tostatinergic systems utilizing double label immunohistochemistry combined with high magnifcation light microscopy with oil immersion objective. In the present study, we have revealed a dense network of substance P-IR axonal varicosities contacting the majority of somatostatin-IR neurons in the human hypothalamus. Somatostatinergic perikarya are often covered by these fber varicosities that frequently form basket-like encasements with multiple en passant type contacts, particularly in the infundibular nucleus/median eminence and in the basal periventricular area of the tuberal region.
    [Show full text]
  • The Impact of the Neuropeptide Substance P (SP) Fragment SP1-7 on Chronic Neuropathic Pain
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy 198 The Impact of the Neuropeptide Substance P (SP) Fragment SP1-7 on Chronic Neuropathic Pain ANNA JONSSON ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6192 ISBN 978-91-554-9206-9 UPPSALA urn:nbn:se:uu:diva-241637 2015 Dissertation presented at Uppsala University to be publicly examined in B21, BMC, Husargatan 3, Uppsala, Friday, 8 May 2015 at 09:15 for the degree of Doctor of Philosophy (Faculty of Pharmacy). The examination will be conducted in English. Faculty examiner: Professor of Medicine James Zadina (Tulane University School of Medicine, New Orleans, USA). Abstract Jonsson, A. 2015. The Impact of the Neuropeptide Substance P (SP) Fragment SP1-7 on Chronic Neuropathic Pain. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy 198. 64 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9206-9. There is an unmet medical need for the efficient treatment of neuropathic pain, a condition that affects approximately 10% of the population worldwide. Current therapies need to be improved due to the associated side effects and lack of response in many patients. Moreover, neuropathic pain causes great suffering to patients and puts an economical burden on society. The work presented in this thesis addresses SP1-7, (Arg-Pro-Lys-Pro-Gln-Gln-Phe-OH), a major metabolite of the pronociceptive neuropeptide Substance P (SP). SP is released in the spinal cord following a noxious stimulus and binds to the NK1 receptor. In contrast to SP, the degradation fragment SP1-7 is antinociceptive through binding to specific binding sites distinct from the NK1 receptor.
    [Show full text]
  • Interaction Between Substance P and TRH in the Control of Prolactin Release
    373 Interaction between substance P and TRH in the control of prolactin release B H Duvilanski, D Pisera, A Seilicovich, M del Carmen Díaz, M Lasaga, E Isovich and M O Velardez Centro de Investigaciones en Reproducción, Facultad de Medicina, Universidad de Buenos Aires, Argentina (Requests for offprints should be addressed to B H Duvilanski, Centro de Investigaciones en Reproducción, Facultad de Medicina, Piso 10, Universidad de Buenos Aires, Paraguay 2155 (1121) Buenos Aires, Argentina; Email: [email protected]) Abstract Substance P (SP) may participate as a paracrine and/or release. In order to study the interaction between TRH autocrine factor in the regulation of anterior pituitary and SP on prolactin release, anterior pituitaries were function. This project studied the effect of TRH on SP incubated with either TRH (107 M) or SP, or with both content and release from anterior pituitary and the role of peptides. SP (107 and 106 M) by itself stimulated SP in TRH-induced prolactin release. TRH (107 M), prolactin release. While 107 M SP did not modify the but not vasoactive intestinal polypeptide (VIP), increased TRH effect, 106 M SP reduced TRH-stimulated pro- immunoreactive-SP (ir-SP) content and release from male lactin release. SP (105 M) alone failed to stimulate rat anterior pituitary in vitro. An anti-prolactin serum also prolactin release and markedly decreased TRH-induced increased ir-SP release and content. In order to determine prolactin release. The present study shows that TRH whether intrapituitary SP participates in TRH-induced stimulates ir-SP release and increases ir-SP content in the prolactin release, anterior pituitaries were incubated with anterior pituitary.
    [Show full text]