Porting Ardupilot to Esp32: Towards a Universal Open-Source Architecture for Agile and Easily Replicable Multi-Domains Mapping Robots
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Signature Redacted
Long-range Outdoor Monocular Localization with Active Features for Ship Air Wake Measurement by Brandon J. Draper B.S., Aerospace Engineering, Univ. of Maryland, College Park (2016) Submitted to the Department of Aeronautics and Astronautics in partial fulfillment of the requirements for the degree of M•s-tttr BBJchdM of Science in Aerospace Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 2019 © Massachusetts Institute of Technology 2019. All rights reserved. Author..-Signature redacted . ................ Departme~t of Aeronautics and Astronautics October 1, 2019 Signature redacted Certified by .......... Jonathan P. How R. C. Maclaurin Professor of Aeronautics and Astronautics, MIT Thesis Supervisor --- . / Signature redacted Accepted by .... \..._..,/ Sertac Karaman Associate Professor of Aeronautics and Astronautics, MIT MASSACHUSETTSINSTITUTE Chair, Graduate Program Committee OF TECHNOLOGY MAR 12 2019 LIBRARIES ARCHIVES 2 Long-range Outdoor Monocular Localization with Active Features for Ship Air Wake Measurement by Brandon J. Draper Submitted to the Department of Aeronautics and Astronautics on October 1, 2019, in partial fulfillment of the requirements for the degree of Bachelor of Science in Aerospace Engineering Abstract Monocular pose estimation is a well-studied aspect of computer vision with a wide ar- ray of applications, including camera calibration, autonomous navigation, object pose tracking, augmented reality, and numerous other areas. However, some unexplored areas of camera pose estimation remain academically interesting. This thesis provides a detailed description of the system hardware and software that permits operation in one application area in particular: long-range, precise monocular pose estimation in feature-starved environments. The novel approach to pose extraction uses special hardware, including active LED features and a bandpass-interference optical filter, to significantly simplify the image processing step of the Perspective-n-Point (PnP) problem. -
Team Members: Pooja Bansal (Pbansal2) Suraj Shanbhag (Smshanbh)
ARDUROVER with BBBmini Project made for ECE 785 Advanced Computer Design Team Members: Pooja Bansal (pbansal2) Suraj Shanbhag (smshanbh) OVERVIEW: The aim of the project was to interface the beaglebone with the APM rover in order to impart autonomy to the vehicle. The idea was to make the beaglebone as the gateway between the remote control and the vehicle and also interface with the sensors and communicate with the Ground Control Station(GCS) to give the commands to the rover. The GCS software is called Mission Planner and it runs on Windows OS. This report contains the details about the hardware and software required and procedure to be followed to build and launch the system. HARDWARE: The basic hardware consists of a rover built to be compatible with the APM arduover software (we used the APM rover provided to us), Beagle Bone Black which forms the heart of the system, the BBB mini which is a cape on the BBB to interface with the other sensors and the Remote Control for providing the motion commands to the rover. The hardware of the BBBMini requires the following sensors: 1. MPU-9250 IMU 2. MS5611 barometer 3. 3Dr GPS 4. Wifi adapter 5. RC remote (Taranis capable of combined PWM output on one pin) When all these components are connected to the beaglebone, an external power supply is required. In this project a battery pack with usb output of 5V and 2A was used. The connections are as shown below. The output to servo and ESC has to be on RC2(servo) and RC4(throttle). -
Master's Thesis
Eindhoven University of Technology MASTER An MPSoC based Autonomous Unmanned Aerial Vehicle van Esch, G.F.J.E.A. Award date: 2020 Link to publication Disclaimer This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain Department of Electrical Engineering Electronics Systems Research Group An MPSoC based Autonomous Unmanned Aerial Vehicle Master esis Gijs van Esch Supervisors: Kees Goossens (TU/e) D. van den Heuvel (Topic Embedded Systems) Final version Eindhoven, ursday 6th February, 2020 Abstract Drones are being used more oen in various industries for various applications. Drones these days have the capabilities to e.g. perform image processing and object detection. Many of these industry applica- tions require increasingly more processing power. -
Dragon Bee University of Central Florida EEL 4915C Senior Design II Spring 2016 Group 34
Dragon Bee University of Central Florida EEL 4915C Senior Design II Spring 2016 Group 34 Group Members Ayoub Soud(CpE) Younes Enouiti (EE) Akash Patel(CpE) Nishit Dave(EE) Table of Content 1 Executive Summary…………………………………………………………..……1 2 Project Description ………………………………………………………..………2 2.1 Project Motivation……………………………………………….…………2 2.2 Goals and Objectives…………………………………………..………….3 2.3 Specifications………………………………………………………….……4 2.4 Design Constraints and Standards……………….…………………….. 5 2.4.1 Battery/Power Consumption……………………………...…….11 2.4.2 Video Streaming………………………………………………....12 2.4.3 Budget Allocation………………………………..……………….13 3 Research……………………………………………………………………….……..14 3.1 Quad Rotor Frame…………………………………………………………14 3.1.1 Quad Rotor Frame……………………………………………….14 3.1.2 Motors………………………………………………………..……16 3.1.3 Propellers……………………………………………….…….......20 3.1.4 Electric Speed Controllers (ESC)……………………………... 21 3.1.5 Flight Controller/ArduPilot……………………………………….22 3.2 Microcontroller………………………………………………..…………….24 3.2.1 PCB………………………………………………………………..26 3.3 Communication Technologies…………………..……………………….. 28 3.3.1 Wi-Fi Module for MSP430……………………………………….30 3.3.2 Ardupilot/MSP430 Communication………………..……………31 3.4 Position Detection Sensors………………………..………………………35 3.4.1 Ultrasonic Sensors………………………..………………………35 3.5 Wi-Fi Camera………………………………………….……………………..36 3.6 GPS…………………………………………………….……………………. 38 3.7 Power Consumption Management…………………………………………41 3.7.1 Batteries…………………………………………………………….43 3.7.2 Power Module ……………………………..………………………46 3.7.3 Power Distribution Board …………………………….…………..47 -
Downloaded Model to the Curved Shape of the IRIS+ Belly
Abstract This project involves the design of a vision-based navigation and guidance system for a quadrotor unmanned aerial vehicle (UAV), to enable the UAV to follow a planned route specified by navigational markers, such as brightly colored squares, on the ground. A commercially available UAV is modified by attaching a camera and an embedded computer called Raspberry Pi. An image processing algorithm is designed using the open-source software library OpenCV to capture streaming video data from the camera and recognize the navigational markers. A guidance algorithm, also executed by the Raspberry Pi, is designed to command with the UAV autopilot to move from the currently recognized marker to the next marker. Laboratory bench tests and flight tests are performed to validate the designs. Fair Use Disclaimer: This document may contain copyrighted material, such as photographs and diagrams, the use of which may not always have been specifically authorized by the copyright owner. The use of copyrighted material in this document is in accordance with the “fair use doctrine”, as incorporated in Title 17 USC S107 of the United States Copyright Act of 1976. I Acknowledgments We would like to thank the following individuals for their help and support throughout the entirety of this project. Project Advisor: Professor Raghvendra Cowlagi II Table of Authorship Section Author Project Work Background Real World Applications AH N/A Research AH N/A Navigation, Guidance, and Control JB N/A GPS AH N/A Python and OpenCV JB, KB N/A System Design Image Processing -
Embedded Control System for Multi-Rotors Considering Motor Dynamics
INSTITUTO TECNOLÓGICO Y DE ESTUDIOS SUPERIORES DE OCCIDENTE Reconocimiento de validez oficial de estudios de nivel superior según acuerdo secretarial 15018, publicado en el Diario Oficial de la Federación el 29 de noviembre de 1976. Departamento de Electrónica, Sistemas e Informática DOCTORADO EN CIENCIAS DE LA INGENIERÍA SISTEMA DE CONTROL EMBEBIDO PARA MULTI-ROTORES CONSIDERANDO DINÁMICA DE MOTORES Tesis que para obtener el grado de DOCTOR EN CIENCIAS DE LA INGENIERÍA presenta: Walter Alejandro Mayorga Macías Director de tesis: Dr. Luis Enrique González Jiménez Co-director de tesis: Dr. Luis Fernando Luque Vega Tlaquepaque, Jalisco. Diciembre de 2020 DOCTOR EN CIENCIAS DE LA INGENIERÍA (2020) ITESO, Tlaquepaque, Jal., México TÍTULO: Sistema de Control Embebido para Multi-Rotores Considerando Dinámica de Motores AUTOR: Walter Alejandro Mayorga Macías Ingeniero en Mecatrónica (ITESM, México) Maestro en Ciencias en Ingeniería Electrónica y Computación (Universidad de Guadalajara, México) DIRECTOR DE TESIS: Luis Enrique González Jiménez Departamento de Electrónica, Sistemas e Informática, ITESO Ingeniero en Electrónica (ITSON, México) Maestro en Ingeniería Eléctrica (CINVESTAV Guadalajara, México) Doctor en Ingeniería Eléctrica (CINVESTAV Guadalajara, México) NÚMERO DE PÁGINAS: xxvii, 184 ITESO – The Jesuit University of Guadalajara Department of Electronics, Systems, and Informatics DOCTORAL PROGRAM IN ENGINEERING SCIENCES EMBEDDED CONTROL SYSTEM FOR A MULTI-ROTOR CONSIDERING MOTOR DYNAMICS Thesis to obtain the degree of DOCTOR IN ENGINEERING -
A Step-By-Step Guidance to Build a Drone from Scratch Using Ardupilot APM Navio2 Flight Controller
A step-by-step guidance to build a drone from scratch using Ardupilot APM Navio2 Flight controller Prepared by Sim Kai Sheng Yew Chang Chern 1 Table of Contents Full Component List ............................................................................................................................... 1 Navio2 Emlid Flight Controller ................................................................................................ 2 Raspberry Pi3 Model B ............................................................................................................ 2 Airframe .................................................................................................................................. 3 Motors 2216/950KV ................................................................................................................ 4 Electronic Speed Controller (ESC) ........................................................................................... 5 Propellers ................................................................................................................................ 6 GNSS receiver with antenna ................................................................................................... 7 Transmitter ............................................................................................................................. 8 Receiver ................................................................................................................................... 8 MicroSD card .......................................................................................................................... -
Implementation of a Trusted I/O Processor on a Nascent Soc-FPGA Based Flight Controller for Unmanned Aerial Systems
Implementation of a Trusted I/O Processor on a Nascent SoC-FPGA Based Flight Controller for Unmanned Aerial Systems Akshatha J Kini Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science in Computer Engineering Cameron D. Patterson, Chair Paul E. Plassmann Lynn A. Abbott February 21, 2018 Blacksburg, Virginia Keywords: SoC, UAV, FPGA, ZYNQ, MicroBlaze, autopilot, ArduPilot, ArduPlane, GPS, Mission Planner, Sensor, Vulnerabilities, Mailbox Copyright 2018, Akshatha J Kini Implementation of a Trusted I/O Processor on a Nascent SoC-FPGA Based Flight Controller for Unmanned Aerial Systems Akshatha J Kini (ABSTRACT) Unmanned Aerial Systems (UAS) are aircraft without a human pilot on board. They are comprised of a ground-based autonomous or human operated control system, an unmanned aerial vehicle (UAV) and a communication, command and control (C3) link be- tween the two systems. UAS are widely used in military warfare, wildfire mapping, aerial photography, etc primarily to collect and process large amounts of data. While they are highly efficient in data collection and processing, they are susceptible to software espionage and data manipulation. This research aims to provide a novel solution to enhance the secu- rity of the flight controller thereby contributing to a secure and robust UAS. The proposed solution begins by introducing a new technology in the domain of flight controllers and how it can be leveraged to overcome the limitations of current flight controllers. The idea is to decouple the applications running on the flight controller from the task of data validation. -
(BVLOS) Operation of Unmanned Aerial Vehicles (Uavs) for Antarctic Sea Ice Data Collection
Beyond Visual Line of Sight (BVLOS) Operation of Unmanned Aerial Vehicles (UAVs) for Antarctic Sea Ice Data Collection Supervisors Dr. Graeme Woodward (Wireless Research Centre) Prof. Philippa Martin (Electrical and Computer Engineering) Assoc. Prof. Wolfgang Rack (Gateway Antarctica) Campbell Stefan McDiarmid August 31, 2020 Abstract The snow radar has recently been developed to non-intrusively measure Antarctic snow depth from an unmanned aerial vehicle (UAV), a vast practical improvement on traditional methods. Improvements in sensing methods is a critical step towards an automated and more effective collection of snow depth measurements, and therefore ice volume by inference. The research focus is to realise the potential of the snow radar by providing an autonomous, reliable and rapid means of surveying an expansive area. UAVs must operate at low-altitudes (5 m - 15 m) to gather accurate snow depth readings. Operational ranges of data collection UAVs are to extended past 10 km, far beyond the visual line of sight (BVLOS). Implementation of a proof-of- concept (PoC) communications architecture was explored for enabling BVLOS data collection missions. A mesh networking protocol called DigiMesh was implemented as a replacement for point-to-point (PtP) telemetry links. This protocol uses IEEE 802.15.4 based media access control layer (MAC) specifications, and a proprietary physical layer (PHY) implementation. Python middleware was written to utilise DigiMesh compatible radios, as they are not directly supported by the open-source UAV ecosystem. Network bottle-necking between ground control station (GCS) and relay UAV was found to be a constraint of the original design. Higher bandwidth radios using IEEE 802.11n PHY/MAC specifications were implemented for this link, with DigiMesh remaining for the inter-UAV network. -
Conceptual Design Document
Aerospace Senior Projects ASEN 4018 2017 University of Colorado Department of Aerospace Engineering Sciences Senior Projects – ASEN 4018 SHAMU Search and Help Aquatic Mammals UAS Conceptual Design Document 2 October 2017 1.0 Information Project Customers Jean Koster James Nestor 872 Welsh Ct. Louisville, CO 80027 San Francisco, CA Phone: 303-579-0741 Phone: Email: [email protected] Email: [email protected] Team Members Severyn V. Polakiewicz Samuel N. Kelly [email protected] [email protected] 818-358-5785 678-437-6309 Michael R. Shannon Ian B. Barrett [email protected] [email protected] 720-509-9549 815-815-5439 Jesse R. Holton Grant T. Dunbar [email protected] [email protected] 720-563-9777 720-237-6294 George Duong Brandon Sundahl [email protected] [email protected] 720-385-5828 303-330-8634 Benjamin Mellinkoff Justin Norman [email protected] [email protected] 310-562-3928 303-570-5605 Lauren Mcintire [email protected] 267-664-0889 Conceptual Design Assignment Conceptual Design Document 2017 Aerospace Senior Projects ASEN 4018 1.1 List of Acronyms AP Autopilot API Application Programming Interface ARM Advanced RISC Machine A(M)SL Above (Mean) Sea Level CETI Cetacean Echolocation Translation Initiative CLI Command Line Interface CPU Central Processing Unit CONOPS Concept of Operations COTS Commercial Off The Shelf EPS Expanded Polystyrene FBD Functional Block Diagram GCS Ground Control Station GPS Global Positioning System GPU Graphics Processing -
Reef Rover: a Low-Cost Small Autonomous Unmanned Surface Vehicle (USV) for Mapping and Monitoring Coral Reefs
Article Reef Rover: A Low-Cost Small Autonomous Unmanned Surface Vehicle (USV) for Mapping and Monitoring Coral Reefs George T. Raber 1,* and Steven R. Schill 2,* 1 The University of Southern Mississippi, School of Biological, Environmental, and Earth Sciences, Hattiesburg, MS 39406, USA 2 The Nature Conservancy, Caribbean Division, Coral Gables, FL 33134, USA * Correspondence: [email protected] (G.T.R.); [email protected] (S.R.S.); Tel.: +1-1601-434-9489 (G.T.R.); +1-1435-881-7838 (S.R.S.) Received: 8 March 2019; Accepted: 15 April 2019; Published: 17 April 2019 Abstract: In the effort to design a more repeatable and consistent platform to collect data for Structure from Motion (SfM) monitoring of coral reefs and other benthic habitats, we explore the use of recent advances in open source Global Positioning System (GPS)-guided drone technology to design and test a low-cost and transportable small unmanned surface vehicle (sUSV). The vehicle operates using Ardupilot open source software and can be used by local scientists and marine managers to map and monitor marine environments in shallow areas (<20 m) with commensurate visibility. The imaging system uses two Sony a6300 mirrorless cameras to collect stereo photos that can be later processed using photogrammetry software to create underwater high-resolution orthophoto mosaics and digital surface models. The propulsion system consists of two small brushless motors powered by lithium batteries that follow pre-programmed survey transects and are operated by a GPS-guided autopilot control board. Results from our project suggest the sUSV provides a repeatable, viable, and low-cost (<$3000 USD) solution for acquiring images of benthic environments on a frequent basis from directly below the water surface. -
Sistema Programable Micro Controlado Para El Control De Una Aeronave De Despegue Vertical Y Vuelo Horizontal
SISTEMA PROGRAMABLE MICRO CONTROLADO PARA EL CONTROL DE UNA AERONAVE DE DESPEGUE VERTICAL Y VUELO HORIZONTAL Santiago Miranda Franco Luis Gabriel Martínez Ordóñez Universidad tecnológica de Pereira Programa de Ingeniería Mecatrónica Facultad de Tecnologías Noviembre de 2020 SISTEMA PROGRAMABLE MICRO CONTROLADO PARA EL CONTROL DE UNA AERONAVE DE DESPEGUE VERTICAL Y VUELO HORIZONTAL Santiago Miranda Franco. C.C 1088351870 Luis Gabriel Martínez Ordóñez. C.C 87062834 Director. Adonaí Zapata Gordon Proyecto de Grado. Tecnólogo Mecatrónico Universidad Tecnológica de Pereira Programa de Ingeniería Mecatrónica Facultad de Tecnologías Noviembre de 2020 ÍNDICE GENERAL DEFINICIÓN DE LA PROPUESTA .................................................................................................................... 7 1.1 INTRODUCCIÓN ................................................................................................................. 7 1.2 PROBLEMA DE INVESTIGACIÓN ......................................................................................... 8 1.3 DELIMITACIÓN .................................................................................................................. 8 1.4 OBJETIVOS ......................................................................................................................... 9 1.4.1 Objetivo General ........................................................................................................ 9 1.4.2 Objetivos específicos .................................................................................................