Team Members: Pooja Bansal (Pbansal2) Suraj Shanbhag (Smshanbh)

Total Page:16

File Type:pdf, Size:1020Kb

Team Members: Pooja Bansal (Pbansal2) Suraj Shanbhag (Smshanbh) ARDUROVER with BBBmini Project made for ECE 785 Advanced Computer Design Team Members: Pooja Bansal (pbansal2) Suraj Shanbhag (smshanbh) OVERVIEW: The aim of the project was to interface the beaglebone with the APM rover in order to impart autonomy to the vehicle. The idea was to make the beaglebone as the gateway between the remote control and the vehicle and also interface with the sensors and communicate with the Ground Control Station(GCS) to give the commands to the rover. The GCS software is called Mission Planner and it runs on Windows OS. This report contains the details about the hardware and software required and procedure to be followed to build and launch the system. HARDWARE: The basic hardware consists of a rover built to be compatible with the APM arduover software (we used the APM rover provided to us), Beagle Bone Black which forms the heart of the system, the BBB mini which is a cape on the BBB to interface with the other sensors and the Remote Control for providing the motion commands to the rover. The hardware of the BBBMini requires the following sensors: 1. MPU-9250 IMU 2. MS5611 barometer 3. 3Dr GPS 4. Wifi adapter 5. RC remote (Taranis capable of combined PWM output on one pin) When all these components are connected to the beaglebone, an external power supply is required. In this project a battery pack with usb output of 5V and 2A was used. The connections are as shown below. The output to servo and ESC has to be on RC2(servo) and RC4(throttle). You can map these on the mission planner software under full parameter list. The SOFTWARE: In order to run the entire system, we first need to flash the EEMC with the required version of Linux for BBB (in our case it is BBB debian 8.6 compiled RT-kernel) and then set up a network for it to wirelessly connect to the computer running the GCS and install the ardurover software. Note: Link for the Debian image compiled with RT https://rcn-ee.net/rootfs/bb.org/testing/2016-10-02/console/BBB-blank-debian-8.6-console-armhf- 2016-10-02-2gb.img.xz The steps are as follows: 1. Setup WIFI a) ADHOC Wifi on beaglebone First step is to create an adHoc network with ssid “myADHOC” and IP on beaglebone is 10.10.1.1 Run all commands as root or using sudo ● apt-get update ● apt-get install wireless-tools -y ● iwconfig ● Install vim if not installed : apt-get install vim -y ● Copy the name of the wireless interface : in this case “wlxc46e1f23f5fe” ● vi /etc/network/interfaces ● Add the following lines in the interfaces file auto wlxc46e1f23f5fe iface wlxc46e1f23f5fe inet static address 10.10.1.1 netmask 255.255.255.0 wireless-channel 1 wireless-essid myADHOC wireless-mode ad-hoc Description of the commands are as follows: auto wlxc46e1f23f5fe /// automatically load configuration iface wlxc46e1f23f5fe inet static /// configure statically address 10.10.1.1 // set ip as 10.10.1.1 (make sure this is not same as any in your network) netmask 255.255.255.0 // set appropriate netmask wireless-channel 1 // set channel 1-14 () wireless-essid myADHOC // name of the ADHOC network wireless-mode ad-hoc // set mode as ad-hoc (normally managed) ● ifup wlxc46e1f23f5fe ● iwconfig ● Shutdown and start beaglebone ( do not reboot ) ● Wait for the light on the adapter to turn on (wifi is up , if not login through wired and verify wireless properties) ● Wait for 1 minute after this to ensure wifi is up. ● Check in the wifi of laptop if the ssid is visible. If so the wifi is setup Troubleshooting : ● Wifi needs more power and hence if powered using laptop usb the wifi may not function as expected. Use 5V,2A source ● Ensure that the wifi interface settings in /etc/network/interfaces are indented as shown ● Ensure the interface name is correct ● Also if wifi doesn't switch on, shutdown beaglebone, disconnect and reconnect power source and reboot Useful Links https://wiki.debian.org/WiFi/AdHoc b) ADHOC wifi on Windows We will be connecting to adHoc network with ssid “myADHOC” and ip on windows should be set to 10.10.1.xxx. In our case we set the IP to 10.10.1.5 The following steps are to be followed: Go to "Network and Sharing Center" Click "Set up a new connection or network" Double click "Manually connect to a wireless network" Enter the SSID of the adhoc network (as shown by "netsh wlan show networks") into the "Network name" field In our case the ssid is “myADHOC” Configure security settings accordingly Our network is not encrypted, hence use “No authentication(open)” Uncheck "Start this connection automatically" (important) Click "Next", then "Close" Go to "Network and Sharing Center" Go to “change adapter settings” Go to the wireless card used to connect to the adhoc network and open properties by right clicking on the wifi network card. ● Double click in “Internet Protocol Version 4 (TCP/IPv4)” and set values as shown ○ Ip address: 10.10.1.5 ○ Subnet mask : 255.255.255.0 ● Click “ok” and close. ● Open cmd as administrator ● Run the following commands: netsh wlan set profileparameter myADHOC connectiontype=ibss connectionmode=manual netsh wlan connect name="myADHOC" ssid="myADHOC" interface="Wi-Fi 3" pause Here interface="Wi-Fi 3" should be set as the name of the wireless network. This is the name of the card as displayed in change adapter settings. “Wi-Fi 3” was an external adapter used during this example. In case you are using the default wi-fi adapter of your system, you need not add the interface property. ● Ping the bone to verify (IP of the BBB was set to 10.10.1.1) ● Make sure beaglebone wifi is up first ● Make sure you wait for a minute after beaglebone wifi is up before starting windows network. ● At this point you should be able to ssh into the beaglebone at ssh [email protected] Issues with wifi The image of debian flashed on the EEMC is compiled with Rt-kernel and might be missing a few packages. So when we connect the wifi adapter we can see that the adapter is not configured correctly. And connecting to a wpa-protected Wifi access point can fail. Hence ADHOC mode should be preferred with this adapter. In case one wishes to install the adapter follow the instructions below. Download all files starting with rtl8192cufw from this link https://git.kernel.org/cgit/linux/kernel/git/firmware/linux-firmware.git/tree/rtlwifi Copy them to /lib/firmware/rtlwifi/ (create the directory if required) This is automatically done in the setupbeaglebone_1.sh After this we were able to connect to a unprotected wifi network. When the network is encrypted connection is not established and we get an error which mentions that the interface is not found. Hence adhoc was chosen as it didn’t have any issue. 2. Setup software for ardupilot ● Create 3 files (setupbeaglebone_1.sh, setupbeaglebone_2.sh, setupbeaglebone_3.sh) with contents as shown in Appendix in /root ● Run the following commands: (https://github.com/surajshanbhag/arduPilot_Rover) ○ chmod +x setupbeaglebone* ○ ./setupbeaglebone_1.sh ○ Sudo shutdown -r now ○ ./setupbeaglebone_2.sh ○ Sudo shutdown -r now ○ ./setupbeaglebone_3.sh ○ Sudo shutdown -r now ● If all scripts run with no errors then the beaglebone is setup to run ardupilot. ● We have to now build the ardupilot for beaglebone. It can be done on beaglebone(very slow) or on laptop as follows ( requires Ubuntu) ● We used a laptop having ubuntu as it was faster. The following steps were followed: ○ git clone https://github.com/diydrones/ardupilot.git ○ cd ardupilot ○ ./Tools/scripts/install-prereqs-ubuntu.sh ○ git checkout Copter-3.4 for ArduCopter or git checkout ArduPlane-3.7.1 for ArduPlane ○ git submodule update --init --recursive ○ alias waf="$PWD/modules/waf/waf-light" ○ waf configure --board=bbbmini ○ waf ○ scp build/bbbmini/bin/* [email protected]:/home/debian/ ● Compile examples to test the hardware ○ cd ardupilot ○ git checkout master ○ git submodule update --init --recursive ○ alias waf="$PWD/modules/waf/waf-light" ○ waf configure --board=bbbmini ○ waf examples ○ scp build/bbbmini/examples/* [email protected]:/home/debian/ This completes the setup for Ardupilot Once this done, the next step is to test the hardware connected to the BBB mini i.e. MPU-9250 10DOF IMU, MS5611 Barometer, and 3DR GPS. The following executables are to be run Testing GPS: ● Run: sudo /home/debian/GPS_AUTO_test -B /dev/ttyO5 Testing IMU: ● Run: sudo /home/debian/INS_generic ● Hit enter once after about 30 seconds. Testing Compass: Run: sudo /home/debian/AP_Compass_test These outputs confirm that the beaglebone is able to communicate to the sensors. 3) Mission Planner The next step is to connect to Mission Planner. ● Install Mission Planner from this link: http://ardupilot.org/planner/docs/common-install-mission- planner.html on the laptop which will run the GCS ● Run : /home/debian/ardurover sudo /home/debian/arducopter-quad -C udp:10.10.1.5:14550 - B /dev/ttyO5 The highlighted IP is the IP of the laptop ● Run mission Planner ● Select UDP in Click on ‘Connect’ Once you are connected you see the rover with a GPS location shown as below. We notice that the left window says “Disarmed” which means that the throttle is disabled. For the purpose of this project, the Arming check is disabled by writing Arming_Require paramter as 0(disabled). Please note that the first channel (RC1) is configured for servo and hence will be running a PWM. If the throttle or ESC is connected to this, the vehicle will move.
Recommended publications
  • Signature Redacted
    Long-range Outdoor Monocular Localization with Active Features for Ship Air Wake Measurement by Brandon J. Draper B.S., Aerospace Engineering, Univ. of Maryland, College Park (2016) Submitted to the Department of Aeronautics and Astronautics in partial fulfillment of the requirements for the degree of M•s-tttr BBJchdM of Science in Aerospace Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 2019 © Massachusetts Institute of Technology 2019. All rights reserved. Author..-Signature redacted . ................ Departme~t of Aeronautics and Astronautics October 1, 2019 Signature redacted Certified by .......... Jonathan P. How R. C. Maclaurin Professor of Aeronautics and Astronautics, MIT Thesis Supervisor --- . / Signature redacted Accepted by .... \..._..,/ Sertac Karaman Associate Professor of Aeronautics and Astronautics, MIT MASSACHUSETTSINSTITUTE Chair, Graduate Program Committee OF TECHNOLOGY MAR 12 2019 LIBRARIES ARCHIVES 2 Long-range Outdoor Monocular Localization with Active Features for Ship Air Wake Measurement by Brandon J. Draper Submitted to the Department of Aeronautics and Astronautics on October 1, 2019, in partial fulfillment of the requirements for the degree of Bachelor of Science in Aerospace Engineering Abstract Monocular pose estimation is a well-studied aspect of computer vision with a wide ar- ray of applications, including camera calibration, autonomous navigation, object pose tracking, augmented reality, and numerous other areas. However, some unexplored areas of camera pose estimation remain academically interesting. This thesis provides a detailed description of the system hardware and software that permits operation in one application area in particular: long-range, precise monocular pose estimation in feature-starved environments. The novel approach to pose extraction uses special hardware, including active LED features and a bandpass-interference optical filter, to significantly simplify the image processing step of the Perspective-n-Point (PnP) problem.
    [Show full text]
  • Dragon Bee University of Central Florida EEL 4915C Senior Design II Spring 2016 Group 34
    Dragon Bee University of Central Florida EEL 4915C Senior Design II Spring 2016 Group 34 Group Members Ayoub Soud(CpE) Younes Enouiti (EE) Akash Patel(CpE) Nishit Dave(EE) Table of Content 1 Executive Summary…………………………………………………………..……1 2 Project Description ………………………………………………………..………2 2.1 Project Motivation……………………………………………….…………2 2.2 Goals and Objectives…………………………………………..………….3 2.3 Specifications………………………………………………………….……4 2.4 Design Constraints and Standards……………….…………………….. 5 2.4.1 Battery/Power Consumption……………………………...…….11 2.4.2 Video Streaming………………………………………………....12 2.4.3 Budget Allocation………………………………..……………….13 3 Research……………………………………………………………………….……..14 3.1 Quad Rotor Frame…………………………………………………………14 3.1.1 Quad Rotor Frame……………………………………………….14 3.1.2 Motors………………………………………………………..……16 3.1.3 Propellers……………………………………………….…….......20 3.1.4 Electric Speed Controllers (ESC)……………………………... 21 3.1.5 Flight Controller/ArduPilot……………………………………….22 3.2 Microcontroller………………………………………………..…………….24 3.2.1 PCB………………………………………………………………..26 3.3 Communication Technologies…………………..……………………….. 28 3.3.1 Wi-Fi Module for MSP430……………………………………….30 3.3.2 Ardupilot/MSP430 Communication………………..……………31 3.4 Position Detection Sensors………………………..………………………35 3.4.1 Ultrasonic Sensors………………………..………………………35 3.5 Wi-Fi Camera………………………………………….……………………..36 3.6 GPS…………………………………………………….……………………. 38 3.7 Power Consumption Management…………………………………………41 3.7.1 Batteries…………………………………………………………….43 3.7.2 Power Module ……………………………..………………………46 3.7.3 Power Distribution Board …………………………….…………..47
    [Show full text]
  • Downloaded Model to the Curved Shape of the IRIS+ Belly
    Abstract This project involves the design of a vision-based navigation and guidance system for a quadrotor unmanned aerial vehicle (UAV), to enable the UAV to follow a planned route specified by navigational markers, such as brightly colored squares, on the ground. A commercially available UAV is modified by attaching a camera and an embedded computer called Raspberry Pi. An image processing algorithm is designed using the open-source software library OpenCV to capture streaming video data from the camera and recognize the navigational markers. A guidance algorithm, also executed by the Raspberry Pi, is designed to command with the UAV autopilot to move from the currently recognized marker to the next marker. Laboratory bench tests and flight tests are performed to validate the designs. Fair Use Disclaimer: This document may contain copyrighted material, such as photographs and diagrams, the use of which may not always have been specifically authorized by the copyright owner. The use of copyrighted material in this document is in accordance with the “fair use doctrine”, as incorporated in Title 17 USC S107 of the United States Copyright Act of 1976. I Acknowledgments We would like to thank the following individuals for their help and support throughout the entirety of this project. Project Advisor: Professor Raghvendra Cowlagi II Table of Authorship Section Author Project Work Background Real World Applications AH N/A Research AH N/A Navigation, Guidance, and Control JB N/A GPS AH N/A Python and OpenCV JB, KB N/A System Design Image Processing
    [Show full text]
  • A Step-By-Step Guidance to Build a Drone from Scratch Using Ardupilot APM Navio2 Flight Controller
    A step-by-step guidance to build a drone from scratch using Ardupilot APM Navio2 Flight controller Prepared by Sim Kai Sheng Yew Chang Chern 1 Table of Contents Full Component List ............................................................................................................................... 1 Navio2 Emlid Flight Controller ................................................................................................ 2 Raspberry Pi3 Model B ............................................................................................................ 2 Airframe .................................................................................................................................. 3 Motors 2216/950KV ................................................................................................................ 4 Electronic Speed Controller (ESC) ........................................................................................... 5 Propellers ................................................................................................................................ 6 GNSS receiver with antenna ................................................................................................... 7 Transmitter ............................................................................................................................. 8 Receiver ................................................................................................................................... 8 MicroSD card ..........................................................................................................................
    [Show full text]
  • Implementation of a Trusted I/O Processor on a Nascent Soc-FPGA Based Flight Controller for Unmanned Aerial Systems
    Implementation of a Trusted I/O Processor on a Nascent SoC-FPGA Based Flight Controller for Unmanned Aerial Systems Akshatha J Kini Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science in Computer Engineering Cameron D. Patterson, Chair Paul E. Plassmann Lynn A. Abbott February 21, 2018 Blacksburg, Virginia Keywords: SoC, UAV, FPGA, ZYNQ, MicroBlaze, autopilot, ArduPilot, ArduPlane, GPS, Mission Planner, Sensor, Vulnerabilities, Mailbox Copyright 2018, Akshatha J Kini Implementation of a Trusted I/O Processor on a Nascent SoC-FPGA Based Flight Controller for Unmanned Aerial Systems Akshatha J Kini (ABSTRACT) Unmanned Aerial Systems (UAS) are aircraft without a human pilot on board. They are comprised of a ground-based autonomous or human operated control system, an unmanned aerial vehicle (UAV) and a communication, command and control (C3) link be- tween the two systems. UAS are widely used in military warfare, wildfire mapping, aerial photography, etc primarily to collect and process large amounts of data. While they are highly efficient in data collection and processing, they are susceptible to software espionage and data manipulation. This research aims to provide a novel solution to enhance the secu- rity of the flight controller thereby contributing to a secure and robust UAS. The proposed solution begins by introducing a new technology in the domain of flight controllers and how it can be leveraged to overcome the limitations of current flight controllers. The idea is to decouple the applications running on the flight controller from the task of data validation.
    [Show full text]
  • Conceptual Design Document
    Aerospace Senior Projects ASEN 4018 2017 University of Colorado Department of Aerospace Engineering Sciences Senior Projects – ASEN 4018 SHAMU Search and Help Aquatic Mammals UAS Conceptual Design Document 2 October 2017 1.0 Information Project Customers Jean Koster James Nestor 872 Welsh Ct. Louisville, CO 80027 San Francisco, CA Phone: 303-579-0741 Phone: Email: [email protected] Email: [email protected] Team Members Severyn V. Polakiewicz Samuel N. Kelly [email protected] [email protected] 818-358-5785 678-437-6309 Michael R. Shannon Ian B. Barrett [email protected] [email protected] 720-509-9549 815-815-5439 Jesse R. Holton Grant T. Dunbar [email protected] [email protected] 720-563-9777 720-237-6294 George Duong Brandon Sundahl [email protected] [email protected] 720-385-5828 303-330-8634 Benjamin Mellinkoff Justin Norman [email protected] [email protected] 310-562-3928 303-570-5605 Lauren Mcintire [email protected] 267-664-0889 Conceptual Design Assignment Conceptual Design Document 2017 Aerospace Senior Projects ASEN 4018 1.1 List of Acronyms AP Autopilot API Application Programming Interface ARM Advanced RISC Machine A(M)SL Above (Mean) Sea Level CETI Cetacean Echolocation Translation Initiative CLI Command Line Interface CPU Central Processing Unit CONOPS Concept of Operations COTS Commercial Off The Shelf EPS Expanded Polystyrene FBD Functional Block Diagram GCS Ground Control Station GPS Global Positioning System GPU Graphics Processing
    [Show full text]
  • Reef Rover: a Low-Cost Small Autonomous Unmanned Surface Vehicle (USV) for Mapping and Monitoring Coral Reefs
    Article Reef Rover: A Low-Cost Small Autonomous Unmanned Surface Vehicle (USV) for Mapping and Monitoring Coral Reefs George T. Raber 1,* and Steven R. Schill 2,* 1 The University of Southern Mississippi, School of Biological, Environmental, and Earth Sciences, Hattiesburg, MS 39406, USA 2 The Nature Conservancy, Caribbean Division, Coral Gables, FL 33134, USA * Correspondence: [email protected] (G.T.R.); [email protected] (S.R.S.); Tel.: +1-1601-434-9489 (G.T.R.); +1-1435-881-7838 (S.R.S.) Received: 8 March 2019; Accepted: 15 April 2019; Published: 17 April 2019 Abstract: In the effort to design a more repeatable and consistent platform to collect data for Structure from Motion (SfM) monitoring of coral reefs and other benthic habitats, we explore the use of recent advances in open source Global Positioning System (GPS)-guided drone technology to design and test a low-cost and transportable small unmanned surface vehicle (sUSV). The vehicle operates using Ardupilot open source software and can be used by local scientists and marine managers to map and monitor marine environments in shallow areas (<20 m) with commensurate visibility. The imaging system uses two Sony a6300 mirrorless cameras to collect stereo photos that can be later processed using photogrammetry software to create underwater high-resolution orthophoto mosaics and digital surface models. The propulsion system consists of two small brushless motors powered by lithium batteries that follow pre-programmed survey transects and are operated by a GPS-guided autopilot control board. Results from our project suggest the sUSV provides a repeatable, viable, and low-cost (<$3000 USD) solution for acquiring images of benthic environments on a frequent basis from directly below the water surface.
    [Show full text]
  • Autonomous Landing of a Multicopter Using Computer Vision
    Autonomous Landing of a Multicopter Using Computer Vision Thesis of 30 ECTS submitted to the Department of Computer Science in partial fulfillment of the requirements for the degree of Master of Science in Computer Science Joshua Springer Reykjavík University; Department of Computer Science Mälardalen University; School of Innovation, Design, and Engineering June 12, 2020 Acknowledgements I would like to thank my family for their undying love, support, and encouragement which have gotten me this far. My thanks go to Mälardalen University, Reykjavík University, and the Nordic Council, without whose generosity in the MDH Scholarship and the Nordic Master Programme, I would not have had the opportunity to study my passion in two wonderful countries. 2 Abstract Takeoff, normal flight, and even specialized tasks such as taking pictures, are essentially solved problems in autonomous drone flight. This notably excludes landing, which typically requires a pilot because of its inherently risky nature. This project attempts to solve the problem of autonomous drone landing using computer vision and fiducial markers - and specifically does not use GPS as a primary means of navigation during landing. The system described in this thesis extends the functionality of the widely-used, open-source ArduPilot software which runs on many drones today, and which has only primitive functionality for autonomous landing. This system is implemented as a set of ROS modules which interact with ArduPilot for control. It is designed to be easily integrated into existing ArduPilot drone systems through the addition of a companion board and gimbal-mounted camera. Results are presented to evaluate the system’s performance with regard to pose estimation and landing capabilities within Gazebo 9 simulator.
    [Show full text]
  • Using Beagle As a Flight Controller
    Using Beagle as a Flight Controller Open-source hardware Linux computers Proven platform with professional community Integration for real-time control Jason Kridner February 5, 2018 Co-Founder BeagleBoard.org Agenda • Introduction to Beagle • Choosing flight controller hardware • Flight control software options • ArduPilot - MAVLink - APM planner • Building out a quadcopter • Installing ArduPilot • Calibration • Buying parts • Mistakes and questions BeagleBoard.org Roadmap Fanless open computer BeagleBoard $250 Robotics-focused BeagleBone Blue 2016: Extreme power BeagleBoard-X15 2010: Extra MHz/memory $80 BeagleBoard-xM 2008: Personally affordable BeagleBoard 2017: Complete robotics controller BeagleBone Blue $25 2016: BeagleBone Black Wireless uses $50 EAGLE, Wilink8 and Octavo SIP 2017: PocketBeagle breaks out even 2013: Wildly popular smaller Octavo SIP BeagleBone Black Mint tin sized 2011: Bare-bones BeagleBone Smalls mint tin sized BeagleBone PocketBeagle 3 BeagleBone used in many applications • Simple Mobile Robots • Industrial Robots • Network Security • Medical • Citizen Science • Home Automation • Localizing Information • Assistive Technology • LEGO Robotics Robotics Cape • Designed at UCSD by James Strawson • Used in hundreds of student projects • On fourth revision • Supported by ‘libroboticscape’ software – C library – Examples for all major functions • Features – 2-cell LiPo support with balancing and LED power gauge – 9-18V charger input – 4 DC motor & 8 servo outputs, 4 quadrature encoder inputs – 9 axis IMU, barometer –
    [Show full text]
  • Master's Thesis
    MASTER'S THESIS Autonomous Takeoff and Landing for Quadcopters Robert Lindberg 2015 Master of Science in Engineering Technology Space Engineering Luleå University of Technology Department of Computer Science, Electrical and Space Engineering Abstract In this project an automated takeoff and landing system for quadcopters was devised. This will make unmanned aerial vehicles (UAVs) less dependent of human supervision which could improve for example swarms of quadcopters where humans cannot control all in detail. Quadcopters are used due to their mobility and ability to hover over a specific location, useful for surveillance and search missions. The system is self-contained and real time processing is done on board. To make the project possible, software for an onboard computer had to be developed and put on the quadcopter. The onboard computer is controlled from a ground station which can give high level commands such as takeoff, land and change altitude. Experiments were conducted in a laboratory environment to measure the effectiveness of the takeoff, hovering, and landing commands. The parameter used to control the sensor fusion, the time constant in z direction, was found to have an optimal value of 3.0 s. When tracking the desired altitude the root mean square error is in the order of a few centimetres. ii Acknowledgements I would like to thank my supervisor Dr. Jan Carlo Barca at Swarm Robotics Laboratory and Monash University for giving me the opportunity to doing an interesting research project while also experiencing a new country. Dr. Hoam Chung for the expertise and help you have given me throughout the project.
    [Show full text]
  • Circuit Cellar | Issue 358 | May 2020
    SOLUTIONS FOR SMART AGRICULTURE MAY 2020 circuitcellar.com ISSUE 358 CIRCUIT CELLAR | ISSUE 358 | MAY 2020 358 | MAY CELLAR | ISSUE CIRCUIT Inspiring the Evolution of Embedded Design IOT TECHNOLOGIES FEED SMART AGRICULTURE w Datasheet: Mini-ITX and Pico-ITX SBCs w Embedded Software Tool Security | circuitcellar.com Food Delivery Notifier Uses Bluetooth | Intro to Ardupilot and PX4 (Part 2) | Creative Mechanical Ideas for Embedded | Modernizing Antique Clocks | Pest Control System w Broad Market Secure MCUs | Weather Tree Upgrade | Build a SoundFont MIDI Synthesizer (Part 1) w The Future of Linux Security $29 value PCB ASSEMBLY DESIGN-FOR-ASSEMBLY FUNDAMENTALS for getting your PCBs back fast NEW! eBOOK eBOOK bit.ly/fastPCBs | (800) 838-5650 2 CIRCUIT CELLAR • MAY 2020 #358 Issue 358 May 2020 | ISSN 1528-0608 OUR NETWORK CIRCUIT CELLAR® (ISSN 1528-0608) is published monthly by: KCK Media Corp. PO Box 417, Chase City, VA 23924 Periodical rates paid at Chase City, VA, and additional offices. One-year (12 issues) subscription rate US and possessions $50, Canada $65, Foreign/ ROW $75. All subscription orders payable in US funds only via Visa, MasterCard, international postal money order, or check drawn on US bank. SUBSCRIPTION MANAGEMENT Online Account Management: circuitcellar.com/account Renew | Change Address/E-mail | Check Status SUPPORTING COMPANIES CUSTOMER SERVICE E-mail: [email protected] Advanced Assembly 1 Phone: 434.533.0246 Mail: Circuit Cellar, PO Box 417, Chase City, VA 23924 All Electronics Corp. 77 Postmaster: Send address changes to Circuit Cellar, PO Box 417, Chase City, VA 23924 CCS, Inc. 77 NEW SUBSCRIPTIONS easyOEM 49 circuitcellar.com/subscription HuMANDATA, Ltd.
    [Show full text]
  • Integration of a Flight Management System and an Unmanned Aerial Vehicle Resulting in Improved Safety and Efficiency During Autonomous Flight
    Integration of a Flight Management System and an Unmanned Aerial Vehicle Resulting in Improved Safety and Efficiency During Autonomous Flight Joseph DeRose | Keenan Kimmick | Arun Kumar | Niko Pagones | Marcus Stears | Justin White Table of Contents Abstract 3 State of the Industry 3 Motivation 4 Problem Statement 4 Solution 5 Basic Drone Configuration 5 Flight Scenarios 7 Weather Variables and Sensors 8 Data Collection and Analysis 9 Component Placement 10 Conclusion 13 Appendix 14 Flight Scenario Tree 14 References 15 2 Abstract Within aviation, safety is always priority number one. It is the first requirement when any part, assembly, or aircraft is designed. The emerging unmanned aerial vehicle (UAV) industry leaves itself vulnerable to the effects weather conditions can have on flight. While most UAVs are but a fraction of the size of a 737, they are just as prone to turbulence and weather conditions. This vulnerability poses a substantial problem to guaranteeing safe UAV flight. This project proposes a solution to strategically mount sensors on-board a UAV to avoid bias in measurement of wind speed, ambient temperature, pressure, humidity, and the presence of lightning. The data collected from sensors is then gathered onto an on-board Raspberry Pi where a Python script confirms that safe operating conditions have not been violated. If safe operating conditions have been exceeded, a command will be sent to the UAV’s flight controller, the Pixhawk 4, changing the flight plan. The suite of sensors and Raspberry Pi make up the key components of the flight management system (FMS) that will increase safety of autonomous UAV flight and provide a way to boost efficiency and performance of UAV flight.
    [Show full text]