DNA Methylation Patterns from Peripheral Blood Separate Coronary Artery Disease Patients with and Without Heart Failure
ESC HEART FAILURE ORIGINAL RESEARCH ARTICLE ESC Heart Failure 2020; 7: 2468–2478 Published online 2 July 2020 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/ehf2.12810 DNA methylation patterns from peripheral blood separate coronary artery disease patients with and without heart failure Chris R. Bain1,2,3*†† , Mark Ziemann1,3,4,5††, Antony Kaspi1,3,4, Abdul Waheed Khan1, Rachael Taylor1, Hugh Trahair1, Ishant Khurana1,3,4, Harikrishnan Kaipananickal1,3,4,6, Sophie Wallace2,3, Assam El-Osta1,3,4,7,8, Paul S. Myles2,3 and Kiymet Bozaoglu1,9 1Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia; 2Department of Anaesthesiology and Perioperative Medicine, The Alfred Hospital and Monash University, The Alfred Centre, Level 6, 99 Commercial Road, Melbourne, VIC 3004, Australia; 3Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia; 4Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia; 5School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Melbourne, VIC, Australia; 6Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia; 7Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Shatin, Hong Kong SAR; 8Faculty of Health, Department of Technology, Biomedical Laboratory Science, University College Copenhagen, Copenhagen, Denmark; 9Murdoch Children’s Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia Abstract Aims Natriuretic peptides are useful for diagnosis and prognostication of heart failure of any cause. Now, research aims to discover novel biomarkers that will more specifically define the heart failure phenotype.
[Show full text]