Clinostomus Elongatus)

Total Page:16

File Type:pdf, Size:1020Kb

Clinostomus Elongatus) University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 6-18-2021 Experimental Tests on Sperm and Seasonal Morphology Change in the Endangered Redside Dace (Clinostomus elongatus) Colby Brian Nolan University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Nolan, Colby Brian, "Experimental Tests on Sperm and Seasonal Morphology Change in the Endangered Redside Dace (Clinostomus elongatus)" (2021). Electronic Theses and Dissertations. 8610. https://scholar.uwindsor.ca/etd/8610 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. Experimental Tests on Sperm and Seasonal Morphology Change in the Endangered Redside Dace (Clinostomus elongatus) By Colby Brian Nolan A Thesis Submitted to the Faculty of Graduate Studies through the Department of Integrative Biology in Partial Fulfillment of the Requirements for the Degree of Master of Science at the University of Windsor Windsor, Ontario, Canada 2021 © 2021 Colby Brian Nolan Experimental Tests on Sperm and Seasonal Morphology Change in the Endangered Redside Dace (Clinostomus elongatus) By Colby Brian Nolan APPROVED BY: ______________________________________________ O. Love Great Lakes Institute for Environmental Research _________________________________________________ S. Doucet Department of Integrative Biology _______________________________________________ T. Pitcher, Advisor Department of Integrative Biology March 5th, 2021 DECLARATION OF CO-AUTHORSHIP I. Co-Authorship I hereby declare that this thesis incorporates material that is result of joint research, as follows: Chapter 2 of this thesis was co-authored with my supervisor Dr. Trevor Pitcher, and Chapter 3 of this thesis was co-authored with Dr. Andy Turko and Dr. Trevor Pitcher. In all cases, the key ideas, primary contributions, experimental designs, data analysis, interpretation, and writing were performed by the author. The contribution of Dr. Pitcher was primarily through attaining and providing funding for both projects, he also helped conceptualize designs of the projects, and provided valuable feedback. Dr. Turko’s contributions to chapter 3 were the following: help conceptualizing project design, help collecting field data, performing laboratory tasks for data collection, and providing valuable feedback. I am aware of the University of Windsor Senate Policy on Authorship and I certify that I have properly acknowledged the contribution of other researchers to my thesis and have obtained written permission from each of the co-author(s) to include the above material(s) in my thesis. I certify that, with the above qualification, this thesis, and the research to which it refers, is the product of my own work. II. General III I declare that, to the best of my knowledge, my thesis does not infringe upon anyone’s copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or any other material from the work of other people included in my thesis, published or otherwise, are fully acknowledged in accordance with the standard referencing practices. Furthermore, to the extent that I have included copyrighted material that surpasses the bounds of fair dealing within the meaning of the Canada Copyright Act, I certify that I have obtained a written permission from the copyright owner(s) to include such material(s) in my thesis. I declare that this is a true copy of my thesis, including any final revisions, as approved by my thesis committee and the Graduate Studies office, and that this thesis has not been submitted for a higher degree to any other University or Institution. IV ABSTRACT Freshwater fishes are in rapid decline and are one of the most at-risk vertebrate groups. Redside Dace (Clinsotomus elongatus) are in severe decline across much of their range, yet pockets of high abundance still exist; this, along with other factors, makes them an excellent species to study conservation biology questions. The comprehensive objective of this thesis was to test hypotheses that can contribute to two broad areas of research on sperm movement and organ morphology while also providing potentially useful information for Redside Dace conservation. Specifically, whether a temperature surge event affects Redside Dace sperm and how seasonal organ change indicates when Redside Dace are potentially susceptible to population decline. First, we experimentally tested whether an acute temperature surge event would negatively impact Redside Dace sperm movement. We found no evidence that either increased acclimation or activation temperature affected Redside Dace sperm movement. Second, we examined seasonal morphology changes in adult males, adult females, and juveniles as well as differences between these groups. We found significant seasonal changes to gonads, livers, guts, hearts, body condition, and red spot area in Redside Dace; as well as age and sex based morphological differences. Collectively, these results provide valuable information about sperm movement and seasonal organ change that is potentially useful in Redside Dace conservation and also contributes to two areas of ecology/physiology research. V ACKNOWLEDGEMENTS I would like to thank my committee members, Dr. Oliver Love, Dr. Stephanie Doucet, and Dr. Trevor Pitcher for providing advice during my degree. Thank you to Dr. Doucet and Dr. Pitcher for providing field equipment. Dr. Pitcher was integral in attaining funding for this research from the department of fisheries and oceans and NSERC. Huge thank you to Dr. Andy Turko and Madison Dugdale for help during field work. Chapter 3 would have never been possible without Andy as a field partner and chapter 2 would not have been possible without Madison as a research assistant. I can’t thank Andy enough as he was integral to all aspects of chapter 3 and provided support, advice, and leadership throughout my degree. Thank you to Brian Zimmerman and Ryland Corchis-Scott for help scouting research locations. Thank you to the staff at the Brown Family Environmental Centre of Kenyon College for their hospitality, providing lab space, and making my field work experience much more enjoyable. Thank you to Dr. Beren Robinson, Will Jarvis, Austin Roth, and fellow University of Windsor graduate students for advice and support during stressful times. Most of all, a very special thank you to Mia Jackson, my parents, and close friends. I would not have been able to persevere without the love, support, and encouragement they provided throughout my degree. VI TABLE OF CONTENTS DECLARATION OF CO-AUTHORSHIP .................................................................................. III ABSTRACT .................................................................................................................................. V ACKNOWLEDGEMENTS.......................................................................................................... VI LIST OF FIGURES ...................................................................................................................... X LIST OF TABLES ..................................................................................................................... XII LIST OF APPENDICES ........................................................................................................... XVI CHAPTER 1: GENERAL INTRODUCTION ………………………………………………….. 1 Animal Population Decline and Extinction ................................................................... 1 Trends in Animal Decline .................................................................................................. 1 North American Extinction of Freshwater Fishes ............................................................. 2 Human Intervention with Species at Risk ..................................................................... 2 Purpose Behind Conservation Practices ........................................................................... 2 Conservation Successes and Blind spots in Vertebrates .................................................... 4 Study System: Redside Dace ........................................................................................... 5 Thesis Overview ............................................................................................................... 9 Experimental Effects of Water Temperature on Sperm ..................................................... 9 Seasonal Morphology Change ........................................................................................... 9 References ....................................................................................................................... 11 CHAPTER 2: EXPERIMENTAL EFFECTS OF WATER TEMPERATURE
Recommended publications
  • Indiana Species April 2007
    Fishes of Indiana April 2007 The Wildlife Diversity Section (WDS) is responsible for the conservation and management of over 750 species of nongame and endangered wildlife. The list of Indiana's species was compiled by WDS biologists based on accepted taxonomic standards. The list will be periodically reviewed and updated. References used for scientific names are included at the bottom of this list. ORDER FAMILY GENUS SPECIES COMMON NAME STATUS* CLASS CEPHALASPIDOMORPHI Petromyzontiformes Petromyzontidae Ichthyomyzon bdellium Ohio lamprey lampreys Ichthyomyzon castaneus chestnut lamprey Ichthyomyzon fossor northern brook lamprey SE Ichthyomyzon unicuspis silver lamprey Lampetra aepyptera least brook lamprey Lampetra appendix American brook lamprey Petromyzon marinus sea lamprey X CLASS ACTINOPTERYGII Acipenseriformes Acipenseridae Acipenser fulvescens lake sturgeon SE sturgeons Scaphirhynchus platorynchus shovelnose sturgeon Polyodontidae Polyodon spathula paddlefish paddlefishes Lepisosteiformes Lepisosteidae Lepisosteus oculatus spotted gar gars Lepisosteus osseus longnose gar Lepisosteus platostomus shortnose gar Amiiformes Amiidae Amia calva bowfin bowfins Hiodonotiformes Hiodontidae Hiodon alosoides goldeye mooneyes Hiodon tergisus mooneye Anguilliformes Anguillidae Anguilla rostrata American eel freshwater eels Clupeiformes Clupeidae Alosa chrysochloris skipjack herring herrings Alosa pseudoharengus alewife X Dorosoma cepedianum gizzard shad Dorosoma petenense threadfin shad Cypriniformes Cyprinidae Campostoma anomalum central stoneroller
    [Show full text]
  • BIOLOGICAL FIELD STATION Cooperstown, New York
    BIOLOGICAL FIELD STATION Cooperstown, New York 49th ANNUAL REPORT 2016 STATE UNIVERSITY OF NEW YORK COLLEGE AT ONEONTA OCCASIONAL PAPERS PUBLISHED BY THE BIOLOGICAL FIELD STATION No. 1. The diet and feeding habits of the terrestrial stage of the common newt, Notophthalmus viridescens (Raf.). M.C. MacNamara, April 1976 No. 2. The relationship of age, growth and food habits to the relative success of the whitefish (Coregonus clupeaformis) and the cisco (C. artedi) in Otsego Lake, New York. A.J. Newell, April 1976. No. 3. A basic limnology of Otsego Lake (Summary of research 1968-75). W. N. Harman and L. P. Sohacki, June 1976. No. 4. An ecology of the Unionidae of Otsego Lake with special references to the immature stages. G. P. Weir, November 1977. No. 5. A history and description of the Biological Field Station (1966-1977). W. N. Harman, November 1977. No. 6. The distribution and ecology of the aquatic molluscan fauna of the Black River drainage basin in northern New York. D. E Buckley, April 1977. No. 7. The fishes of Otsego Lake. R. C. MacWatters, May 1980. No. 8. The ecology of the aquatic macrophytes of Rat Cove, Otsego Lake, N.Y. F. A Vertucci, W. N. Harman and J. H. Peverly, December 1981. No. 9. Pictorial keys to the aquatic mollusks of the upper Susquehanna. W. N. Harman, April 1982. No. 10. The dragonflies and damselflies (Odonata: Anisoptera and Zygoptera) of Otsego County, New York with illustrated keys to the genera and species. L.S. House III, September 1982. No. 11. Some aspects of predator recognition and anti-predator behavior in the Black-capped chickadee (Parus atricapillus).
    [Show full text]
  • Warmwater Streams and Their Headwaters (Accessible)
    Michigan’s Wildlife Action Plan Warmwater Streams and Their Headwaters Michigan’s Wildlife Action Plan 2015-2025 Today’s Priorities, Tomorrow’s Wildlife Contents What are Warmwater Streams and Their Headwaters? ........................................................................... 3 Plan Contributors .................................................................................................................................... 4 What Uses Warmwater Streams and Their Headwaters? ......................................................................... 4 Why Are Warmwater Streams & Their Headwaters Important? ............................................................... 6 What is the Health of Warmwater Streams & Their Headwaters? ............................................................ 6 Goals ................................................................................................................................................... 7 Call Out Box ............................................................................................................................................. 7 Call Out Box: Pipes in Streams ................................................................................................................. 7 What Are the Warmwater Streams & Their Headwaters Focal Species? ................................................... 7 Orangethroat Darter (Etheostoma spectabile) – .................................................................................. 7 Goals ..............................................................................................................................................
    [Show full text]
  • Endangered Species
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • Spatial Criteria Used in IUCN Assessment Overestimate Area of Occupancy for Freshwater Taxa
    Spatial Criteria Used in IUCN Assessment Overestimate Area of Occupancy for Freshwater Taxa By Jun Cheng A thesis submitted in conformity with the requirements for the degree of Masters of Science Ecology and Evolutionary Biology University of Toronto © Copyright Jun Cheng 2013 Spatial Criteria Used in IUCN Assessment Overestimate Area of Occupancy for Freshwater Taxa Jun Cheng Masters of Science Ecology and Evolutionary Biology University of Toronto 2013 Abstract Area of Occupancy (AO) is a frequently used indicator to assess and inform designation of conservation status to wildlife species by the International Union for Conservation of Nature (IUCN). The applicability of the current grid-based AO measurement on freshwater organisms has been questioned due to the restricted dimensionality of freshwater habitats. I investigated the extent to which AO influenced conservation status for freshwater taxa at a national level in Canada. I then used distribution data of 20 imperiled freshwater fish species of southwestern Ontario to (1) demonstrate biases produced by grid-based AO and (2) develop a biologically relevant AO index. My results showed grid-based AOs were sensitive to spatial scale, grid cell positioning, and number of records, and were subject to inconsistent decision making. Use of the biologically relevant AO changed conservation status for four freshwater fish species and may have important implications on the subsequent conservation practices. ii Acknowledgments I would like to thank many people who have supported and helped me with the production of this Master’s thesis. First is to my supervisor, Dr. Donald Jackson, who was the person that inspired me to study aquatic ecology and conservation biology in the first place, despite my background in environmental toxicology.
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • Redside Dace Precision Biomonitoring Inc
    Case Study: Redside Dace Precision Biomonitoring Inc. precisionbiomonitoring.com [email protected] Detecting redside dace on-site using our point-of-need environmental DNA (eDNA) detection platform Background How can Precision Biomonitoring help? The redside dace (Clinostomus elongatus) is a species of Precision Biomonitoring has developed a sensitive assay for minnow-like fish that is found in small streams in a few the detection of redside dace DNA from water samples. isolated watersheds in Ontario. Its appearance is Using our point-of-need eDNA tool, we can provide real- characterized by a half-body length lateral red stripe below time confirmation of the presence of DNA from this species a full length yellow streak (Fig 1). Approximately 80% of the within two hours including water sampling. Our point-of- Canadian populations are located in the ‘golden horseshoe need platform will expedite efforts to delimit redside dace region’ of southwestern Ontario (Fig 2; MNRF). The species distributions, as the species can be detected quickly, is in serious decline with extirpations recorded in historic accurately and in real-time by taking only water samples. locations. As such, the species is listed as Endangered Our triple-lockTM molecular assays, designed for qPCR, have (Species At Risk Act, SARA). The redside dace is especially many advantages: a) high specificity to discriminate vulnerable to changes in habitat. Its current distribution is at between redside dace and other, closely-related and co- risk of further diminishment due to the continuing occurring species and b) extreme sensitivity to detect fewer urbanization and development in the ‘golden horseshoe’.
    [Show full text]
  • Donegal Creek Restoration Project Written by Mark A. Metzler the Donegal
    Donegal Creek Restoration Project Written by Mark A. Metzler The Donegal Donegal Creek is located in bouts of thermal pollution and the northwest corner of Lancaster sedimentation. In its pristine state, County,D Pennsylvania. This limestone one can only conclude the east stream has a 17.2 square mile branch had been a cold water fishery, watershed and flows through some similar to its western twin, but now of Lancaster County’s most fertile would best be described as a warm farmland. Approximately 91% of the water fishery masquerading as a Donegal’s watershed is in agricultural cold water fishery outside the production, while the balance is summer months. comprised of urban landuse and The main stem, as logic should sporadic woodlots. dictate, is a combination of the LANCASTER COUNTY Donegal Creek is commonly two branches. Water temperatures divided and referred to by one of its remain cool enough through the CONSERVATION DISTRICT three distinct sections; those being summer months to support a the main stem (Donegal Creek), the year-round cold water fishery. east branch (Charles Run) and the Sedimentation problems have west branch (Donegal Springs). The been greatly reduced due to recent west branch is by far the best for restoration efforts. The upper half of general water quality. Large springs the main stem maintains the typical located in the headwaters provide a limestone stream appearance, while dependable flow of cold, crystal-clear the lower half begins to take on water producing an optimum cold characteristics more common of water fishery. freestone streams. In contrast, the east branch, The Donegal flows into Chickies although originating from similar Creek near Marietta, Pennsylvania, spring sources, is influenced to a which in turn flows into the mighty greater degree by surrounding Susquehanna River and ultimately 2 agricultural and urban landuse.
    [Show full text]
  • Kyfishid[1].Pdf
    Kentucky Fishes Kentucky Department of Fish and Wildlife Resources Kentucky Fish & Wildlife’s Mission To conserve, protect and enhance Kentucky’s fish and wildlife resources and provide outstanding opportunities for hunting, fishing, trapping, boating, shooting sports, wildlife viewing, and related activities. Federal Aid Project funded by your purchase of fishing equipment and motor boat fuels Kentucky Department of Fish & Wildlife Resources #1 Sportsman’s Lane, Frankfort, KY 40601 1-800-858-1549 • fw.ky.gov Kentucky Fish & Wildlife’s Mission Kentucky Fishes by Matthew R. Thomas Fisheries Program Coordinator 2011 (Third edition, 2021) Kentucky Department of Fish & Wildlife Resources Division of Fisheries Cover paintings by Rick Hill • Publication design by Adrienne Yancy Preface entucky is home to a total of 245 native fish species with an additional 24 that have been introduced either intentionally (i.e., for sport) or accidentally. Within Kthe United States, Kentucky’s native freshwater fish diversity is exceeded only by Alabama and Tennessee. This high diversity of native fishes corresponds to an abun- dance of water bodies and wide variety of aquatic habitats across the state – from swift upland streams to large sluggish rivers, oxbow lakes, and wetlands. Approximately 25 species are most frequently caught by anglers either for sport or food. Many of these species occur in streams and rivers statewide, while several are routinely stocked in public and private water bodies across the state, especially ponds and reservoirs. The largest proportion of Kentucky’s fish fauna (80%) includes darters, minnows, suckers, madtoms, smaller sunfishes, and other groups (e.g., lam- preys) that are rarely seen by most people.
    [Show full text]
  • The Ohio Journal of Science — Index 1951-1970
    THE OHIO JOURNAL OF SCIENCE — INDEX 1951-1970 JANE L. FORSYTH AND CHRISTINE M. GORTA Department of Geology, Bowling Green State University, Bowling Green, Ohio 43403 INTRODUCTION It is almost 20 years since the first General Index to The Ohio Journal of Science, which covered the issues from the beginning (1900) through 1950, was published (Miller, E. M., 1953, published by The Ohio State University and The Ohio Academy of Science). It is time, therefore, for another general index, dealing with issues appearing since 1950. This is that index. Unlike the first index, there is no separate listing of full references by author; rather, this is simply a combining of all the entries from all the yearly indexes from 1951 through 1972. Basically these original entries remain unchanged here, though mistakes found in a few were corrected, and some have been slightly reworded in order to fit better into this multiple listing. Entries relating to book reviews occur only for the years of 1963 through 1970, because book reviews were not included in the earlier indexes. It should also be noted that, though a few of these books represent merely a reprinting of older, out-of-date books, these books are not so identified in the entries in this index. Preparation of this index has been mostly handled by Miss Christine M. Gorta, under the direction of Dr. Jane L. Forsyth, Editor of The Ohio Journal of Science from 1964 to 1973, but others have also contributed to this work—mainly Misses Lauran Boyles and Laura Witkowski—contributers whose efforts are gratefully acknowledged.
    [Show full text]
  • Proceedings Template
    Canadian Science Advisory Secretariat (CSAS) Research Document 2019/033 Central and Arctic Region Information in support of a Recovery Potential Assessment of Redside Dace (Clinostomus elongatus) in Canada Dominique E. Lebrun, Lynn D. Bouvier, Monica Choy, David W. Andrews, and D. Andrew R. Drake Fisheries and Oceans Canada Great Lakes Laboratory for Fisheries and Aquatic Sciences 867 Lakeshore Road Burlington, ON, L7S 1A1 September 2020 Foreword This series documents the scientific basis for the evaluation of aquatic resources and ecosystems in Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations. Published by: Fisheries and Oceans Canada Canadian Science Advisory Secretariat 200 Kent Street Ottawa ON K1A 0E6 http://www.dfo-mpo.gc.ca/csas-sccs/ [email protected] © Her Majesty the Queen in Right of Canada, 2020 ISSN 1919-5044 Correct citation for this publication: Lebrun, D.E., Bouvier, L.D., Choy, M., Andrews, D.W., and Drake, D. Andrew R. 2020. Information in support of a Recovery Potential Assessment of Redside Dace (Clinostomus elongatus) in Canada. DFO Can. Sci. Advis. Sec. Res. Doc. 2019/033. v + 49 p. Aussi disponible en français : Lebrun, D.E., Bouvier, L.D., Choy, M., Andrews, D.W., and Drake, D. Andrew R. 2020. Information à l’appui d’une évaluation du potentiel de rétablissement du méné long (Clinostomus elongatus) au Canada. Secr. can. de consult. sci. du MPO. Doc. de rech.
    [Show full text]
  • Rosyside Dace Clinostomus Funduloides
    Supplemental Volume: Species of Conservation Concern SC SWAP 2015 Rosyside Dace Clinostomus funduloides Contributors (2013): Kevin Kubach and Mark Scott [SCDNR] DESCRIPTION Taxonomy and Basic Description The Rosyside Dace belongs to the minnow family (Cyprinidae) and the genus Clinostomus, which includes 5 recognized taxa (Warren et al. 2000). It is the only member of the Clinostomus in South Carolina (Rohde et al. 2009). Adult Rosyside Dace reach a total length of 56 to 109 mm (2.2 to 4.3 in.) (Rohde et al. 2009). Overall coloration is olive with a diffuse, dark lateral stripe and usually a red bar or slash behind the opercle. The lower sides of breeding males are bright red. The body is laterally compressed and covered with small scales. The snout is pointed and features a large, oblique mouth (Rohde et al. 2009). Status The Rosyside Dace is considered secure (G5) on a global scale and is not currently ranked in South Carolina (SNR) (NatureServe 2013). It is currently stable according to Warren et al. (2000). POPULATION SIZE AND DISTRIBUTION The Rosyside Dace occurs on the Atlantic Slope from the Delaware River drainage, Pennsylvania to the Savannah River drainage, South Carolina and in portions of the upper Tennessee River drainage as well as the upper Ohio River drainage (Rohde et al. 2009). It is found in all of South Carolina’s river basins primarily in the Piedmont and Blue Ridge, with some records from the Inner Coastal Plain. Based on South Carolina Stream Assessment data (2006-2011), the mean statewide density estimate for Rosyside Dace in wadeable streams was 0.12 per 100 m² (95% confidence interval: 0.08 – 0.16).
    [Show full text]