Blueberry Vaccinium Tissue Culture

Total Page:16

File Type:pdf, Size:1020Kb

Blueberry Vaccinium Tissue Culture Risk Management Proposal: Revision of the level of post entry quarantine (PEQ) for blueberry (Vaccinium spp. excluding V. macrocarpon) imported as tissue culture from non-accredited facilities under the Import Health Standard (IHS) 155.02.06: Importation of Nursery Stock 14 August 2017 Plant Imports Plants, Food & Environment Ministry for Primary Industries Pastoral House 25 The Terrace PO Box 2526 Wellington 6140 New Zealand Tel: +64 4 894 0100 Fax: +64 4 894 0662 Email: [email protected] Disclaimer This document does not constitute, and should not be regarded as, legal advice. While every effort has been made to ensure the information in this document is accurate, the Ministry for Primary Industries does not accept any responsibility or liability whatsoever for any error of fact, omission, interpretation or opinion that may be present, however it may have occurred. Requests for further copies should be directed to: Plant Imports Plants, Food & Environment Ministry for Primary Industries PO Box 2526 Wellington 6140 New Zealand Email: [email protected] © Crown Copyright – Ministry for Primary Industries. Page 3 of 53 Submissions The Ministry for Primary Industries (MPI) propose to amend the Vaccinium schedule of the import health standard 155.02.06: Importation of Nursery Stock (the IHS) to allow Vaccinium tissue cultures imported under option 3.2 of the IHS to undergo post entry quarantine (PEQ) in a lower level of physical and operational containment than is currently required. The proposed amendment is supported by this Risk Management Proposal (RMP). The purpose of an IHS is defined as follows in section 22(1) of the Biosecurity Act 1993 (the Act): “An import health standard specifies requirements that must be met to effectively manage risks associated with importing risk goods, including risks arising because importing the goods involves or might involve an incidentally imported new organism”. MPI must consult with interested parties in accordance with section 23 of the Act and MPI’s consultation policy before issuing or amending an import health standard under section 24A of the Act. MPI therefore seeks formal comment on the proposed change to the level of PEQ required for Vaccinium tissue cultures.1 MPI has developed this RMP based on the best available technical evidence and assessment of this evidence. If you disagree with the measures proposed to manage the risks, please provide either data or published references to support your comments. Similarly, if you support the proposed measures, or consider that additional measures are required to manage the risks, please provide appropriate evidence to support your comments. This will enable MPI to consider additional evidence that may change how it is proposed risks are to be managed. The following points may be of assistance in preparing comments: Wherever possible, comments should be specific to a particular section/requirement of the standard; Where possible, reasons, data and supporting published references to support comments are requested; The use of examples to illustrate particular points is encouraged. MPI encourages respondents to forward comments electronically. Please include the following in your submission: The title of the consultation document in the subject line of your email; Your name and title (if applicable); Your organisation’s name (if applicable); and Your address. Send submissions to: [email protected]. If you wish to forward submissions in writing, please send them to the following address: Plant Imports Plants, Food & Environment Ministry for Primary Industries PO Box 2526 Wellington 6140 New Zealand 1 The proposed amendment applies only to tissue cultures that are imported from non-accredited facilities under option 3.2 of the Vaccinium schedule of the IHS. The level of PEQ for Vaccinium tissue cultures imported from MPI-accredited facilities (option 3.1 of the IHS) has not been considered as part of this assessment. This is because these tissue cultures are already eligible for PEQ in a Level 2 greenhouse facility with a minimum period of six months in PEQ. There are not currently any MPI-accredited facilities that are approved for the export of Vaccinium nursery stock to New Zealand. Page 4 of 53 All submissions must arrive by close of business on 11 September 2017. Submissions received by the closure date will be considered during the development of the final standard. Submissions received after the closure date may be held on file for consideration when the issued standard is next revised/reviewed. Official Information Act 1982 Please note that your submission is public information and it is MPI policy to publish submissions and the review of submissions on the MPI website. Submissions may also be the subject of requests for information under the Official Information Act 1982 (OIA). The OIA specifies that information is to be made available to requesters unless there are sufficient grounds for withholding it, as set out in the OIA. Submitters may wish to indicate grounds for withholding specific information contained in their submission, such as the information is commercially sensitive or they wish personal information to be withheld. Any decision to withhold information requested under the OIA is reviewable by the Ombudsman. Page 5 of 53 Contents Purpose 7 Scope 7 Background 8 Summary 10 Part 1: Context 12 Domestic 12 International 13 Strength of measures 13 Part 2: Risk management of regulated organisms on the Vaccinium tissue culture pathway 15 Insects and Mites 15 Fungi (including Oomycota) 16 Bacteria 27 Viruses 28 Diseases of unknown aetiology 29 Phytoplasmas 29 Organisms on the MPI emerging risk register 30 Feasibility and practicality of measures 31 Part 3 Draft IHS schedule for Vaccinium 33 Part 4: References 42 Appendix 1 47 Appendix 2 51 Appendix 3 52 Page 6 of 53 Purpose (1) The draft IHS schedule for Vaccinium is the subject of consultation under section 23(3) of the Biosecurity Act (1993). The consultation is restricted to the following changes that are proposed for the Vaccinium schedule: a) the addition of a new part (part 3.3) to the IHS schedule that will identify specific post entry quarantine (PEQ) requirements for Vaccinium tissue cultures from non- accredited facilities; b) a requirement to introduce testing for the fungal pathogen Diaporthe vaccinii. This testing will apply to all plant material imported under the Vaccinium schedule; c) the addition of the fungal pathogen Exobasidium maculosum to the pest list in the Vaccinium schedule. (2) The purpose of this RMP is to: a) Summarise the known biosecurity risk associated with tissue cultures imported from non-accredited offshore facilities under option 3.2 of the Vaccinium schedule of the import health standard (IHS) 155.02.06: Importation of Nursery Stock. The summary of risk is limited to disease organisms that are currently listed in the Vaccinium schedule, or that have been recorded in the MPI emerging risk database; b) Evaluate whether the biosecurity risk can be effectively managed using a lower level of physical and operational containment than is currently required; c) Show how the measures proposed in the draft IHS schedule (provided in Part 3 of this RMP) will effectively manage known biosecurity risks and are consistent with New Zealand’s domestic legislation and international obligations. (3) The RMP assesses the risk management measures required to manage biosecurity risks associated with Vaccinium tissue cultures. (4) The RMP provides information to support the consultation on the draft IHS, but is not itself the subject of consultation. However, MPI will accept comments and suggestions on the RMP in order to improve future IHS consultations. Scope (5) The RMP provides the rationale for a proposed reduction in the level of quarantine containment required for deflasked tissue cultures imported under part 3.2 of the Vaccinium schedule in the nursery stock IHS. (6) The RMP applies to all plant species with an import specification of ‘L2, L3 see 155.02.06 under Vaccinium” in the Ministry for Primary Industries (MPI) Plants Biosecurity Index (PBI). This includes all members of the Vaccinium genus that are eligible for import into New Zealand except V. macrocarpon, which has a separate IHS schedule and is not considered here. (7) The RMP includes: A summary of disease organisms potentially associated with Vaccinium nursery stock from all countries (taken from the current Vaccinium schedule in the nursery stock IHS). Page 7 of 53 A summary of organisms that are not included in the IHS, but that are recorded as being associated with Vaccinium spp. in MPI’s register of emerging risks. An assessment of how the risks associated with these disease organisms will be managed in a Level 3A PEQ greenhouse. (8) The RMP excludes: A comprehensive review of potential risk organisms that have been recorded as being associated or potentially associated with Vaccinium nursery stock from all countries since the current schedule was adopted (i.e. since 1999). Dormant cuttings (from MPI accredited and non-accredited facilities). Tissue cultures of Vaccinium imported from accredited facilities. Nursery stock (including tissue culture material) of Vaccinium macrocarpon. Background (9) In March 2016 MPI reissued the Transitional Facility Standard: Post Entry Quarantine for Plants. The reissued standard includes a new level of quarantine greenhouse facility, known as Level 3A. This type of greenhouse provides an intermediate level of physical and operational containment relative to Level 2 and Level 32 greenhouse facilities that were included in the previous version of the standard. The reason for including a new level of quarantine greenhouse was to enable plants to be held in a level of quarantine more commensurate with the level of biosecurity risk. (10) MPI intends to assess selected genera of high value nursery stock which require Level 3B PEQ to identify whether the biosecurity risk can be effectively managed in a Level 3A PEQ greenhouse.
Recommended publications
  • Methods and Work Profile
    REVIEW OF THE KNOWN AND POTENTIAL BIODIVERSITY IMPACTS OF PHYTOPHTHORA AND THE LIKELY IMPACT ON ECOSYSTEM SERVICES JANUARY 2011 Simon Conyers Kate Somerwill Carmel Ramwell John Hughes Ruth Laybourn Naomi Jones Food and Environment Research Agency Sand Hutton, York, YO41 1LZ 2 CONTENTS Executive Summary .......................................................................................................................... 8 1. Introduction ............................................................................................................ 13 1.1 Background ........................................................................................................................ 13 1.2 Objectives .......................................................................................................................... 15 2. Review of the potential impacts on species of higher trophic groups .................... 16 2.1 Introduction ........................................................................................................................ 16 2.2 Methods ............................................................................................................................. 16 2.3 Results ............................................................................................................................... 17 2.4 Discussion .......................................................................................................................... 44 3. Review of the potential impacts on ecosystem services .......................................
    [Show full text]
  • Draft Assessment Report on Vaccinium Macrocarpon Aiton, Fructus
    05 May 2021 EMA/HMPC/517879/2016 Committee on Herbal Medicinal Products (HMPC) Assessment report on Vaccinium macrocarpon Aiton, fructus Draft Based on Article 16d(1), Article 16f and Article 16h of Directive 2001/83/EC as amended (traditional use) Herbal substance(s) (binomial scientific name of Vaccinii macrocarpi fructus the plant, including plant part) Herbal preparation(s) Expressed juice from the fresh fruit (DER 1:0.6- 0.9) Pharmaceutical form(s) Herbal preparations in liquid dosage forms for oral use Rapporteur(s) Z. Biróné Dr Sándor Assessor(s) O. Roza, E. Widy-Tyszkiewicz Peer-reviewer B. Kroes This draft assessment report is published to support the public consultation of the draft European Union herbal monograph public statement on Vaccinium macrocarpon Aiton, fructus. It is a working document, not yet edited, and shall be further developed after the release for consultation of the monograph. Interested parties are welcome to submit comments to the HMPC secretariat, which will be taken into consideration but no ‘overview of comments received during the public consultation’ will be prepared on comments that will be received on this assessment report. The publication of this draft assessment report has been agreed to facilitate the understanding by Interested Parties of the assessment that has been carried out so far and led to the preparation of the draft monograph. Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2021.
    [Show full text]
  • Vaccinium Macrocarpon Ait. Family: Ericaceae
    Cultivation Notes No. 54 THE RHODE ISLAND WILD PLANT SOCIETY Winter 2011 Cranberry – Vaccinium macrocarpon Ait. Family: Ericaceae Cranberry: a Native Jewel By Linda Lapin Cranberries are indispensable for the winter holidays. Tradition brings them to our holiday turkey dinners, and who doesn't have a linen table cloth with at least a little red stain on it from a wayward serving of cranberry sauce? This Rhode Island native berry may be a little smaller than the commercially grown cranberry varieties but is just as tasty when used in sauces, jellies, sweet breads, pies and stuffings. Cranberry, Vaccinium macrocarpon, grows wild in Rhode Island. Its native range extends from the East Coast to the Central U. S. and Canada, and from Southern Canada in the north to the Appalachians in the south. It is usually found in acid bogs growing in sphagnum along with other ericaceae such as highbush blueberry and black huckleberry. It grows in company with sheep laurel, leatherleaf, pitcher plants, sundews, and saplings of white cedar and red maple. Look for it in the Great Swamp or Diamond Bog. Cranberry was once called crane berry, because the flower resembles the look of a crane’s head and neck with a long sharp beak. Cranes were also observed wading the bogs gobbling up the berries. Other common names are black cranberry, low cranberry, trailing swamp cranberry, bear berry, and bounce berry. (Cranberries really are the best bouncing fruit I know.) A related species is small cranberry (Vaccinium oxycoccus), which is even smaller and cuter. The plant is a low-growing, evergreen perennial with trailing, wiry stems.
    [Show full text]
  • Vaccinium Macrocarpon
    Published online in http://ijam.co.in ISSN No: 0976-5921 International Journal of Ayurvedic Medicine, Vol 11 (1), 30-34 Unrevealing the Magic of Wonder Fruit: Vaccinium Macrocarpon Research Article Himanshu Deswal1*, Amit Bhardwaj2, Vidushi Sheokand3, Jasleen Kaur4, 1. Dental Officer, ECHS Polyclinic, Ropar, Punjab. 2. Professor and Head, Department of Periodontology, Faculty of Dental Sciences, SGT University, Gurgaon. 3. Reader, Department of Periodontology, Faculty of Dental Sciences, SGT University, Gurgaon. 4. Private practitioner. Abstract Vaccinium macrocarpon (cranberry) is a native fruit of northern America. It is a small evergreen shrub which grown in cooler climate of different parts of world. It is an abundant source of Vitamin and Minerals. It has potent health benefits which include its anti adhering property, anti oxidant property, UTI, gastrointestinal system, anti tumor effect as well as in oral diseases. It is more biocompatible and less noxious which makes it more potent therapeutic agent. This review is formed for displaying cranberry as a natural weapon against the medical and oral disease. Key Words: Cranberry, Vaccinium macrocarpon, Urinary Tract Infection, Periodontal disease, Oral infection, Cancer. Introduction Types Vaccinium macrocarpon is the Latin name of 1. Vaccinium macrocarpon (large cranberry, American the Crain berry plant.(1) The name cranberry is procure cranberry), from craneberry, as it resembles to head neck and bill of 2. Vaccinium microcarpom (small cranberry), crane.(2) 3. Vaccinium oxycoccus (common cranberry or northern cranberry), Habitat 4. Vaccinium erythrocarpum (southern mountain It is extensively cultivated in cooler climes of cranberry)(3) the north Europe, north America, north asia and canada. Among these types of cranberry Vaccinium In United States, New Jersey, Oregon, Wisconsin, macrocarpon has most beneficial effects which has been British Columbia, Washington, Prince Edward Island proven since ancient times.
    [Show full text]
  • Lepidoptera of North America 5
    Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains,
    [Show full text]
  • Insect Survey of Four Longleaf Pine Preserves
    A SURVEY OF THE MOTHS, BUTTERFLIES, AND GRASSHOPPERS OF FOUR NATURE CONSERVANCY PRESERVES IN SOUTHEASTERN NORTH CAROLINA Stephen P. Hall and Dale F. Schweitzer November 15, 1993 ABSTRACT Moths, butterflies, and grasshoppers were surveyed within four longleaf pine preserves owned by the North Carolina Nature Conservancy during the growing season of 1991 and 1992. Over 7,000 specimens (either collected or seen in the field) were identified, representing 512 different species and 28 families. Forty-one of these we consider to be distinctive of the two fire- maintained communities principally under investigation, the longleaf pine savannas and flatwoods. An additional 14 species we consider distinctive of the pocosins that occur in close association with the savannas and flatwoods. Twenty nine species appear to be rare enough to be included on the list of elements monitored by the North Carolina Natural Heritage Program (eight others in this category have been reported from one of these sites, the Green Swamp, but were not observed in this study). Two of the moths collected, Spartiniphaga carterae and Agrotis buchholzi, are currently candidates for federal listing as Threatened or Endangered species. Another species, Hemipachnobia s. subporphyrea, appears to be endemic to North Carolina and should also be considered for federal candidate status. With few exceptions, even the species that seem to be most closely associated with savannas and flatwoods show few direct defenses against fire, the primary force responsible for maintaining these communities. Instead, the majority of these insects probably survive within this region due to their ability to rapidly re-colonize recently burned areas from small, well-dispersed refugia.
    [Show full text]
  • Hawk Moths of North America Is Richly Illustrated with Larval Images and Contains an Abundance of Life History Information
    08 caterpillars EUSA/pp244-273 3/9/05 6:37 PM Page 244 244 TULIP-TREE MOTH CECROPIA MOTH 245 Callosamia angulifera Hyalophora cecropia RECOGNITION Frosted green with shiny yellow, orange, and blue knobs over top and sides of body. RECOGNITION Much like preceding but paler or Dorsal knobs on T2, T3, and A1 somewhat globular and waxier in color with pale stripe running below set with black spinules. Paired knobs on A2–A7 more spiracles on A1–A10 and black dots on abdomen cylindrical, yellow; knob over A8 unpaired and rounded. lacking contrasting pale rings. Yellow abdominal Larva to 10cm. Caterpillars of larch-feeding Columbia tubercle over A8 short, less than twice as high as broad. Silkmoth (Hyalophora columbia) have yellow-white to Larva to 6cm. Sweetbay Silkmoth (Callosamia securifera) yellow-pink instead of bright yellow knobs over dorsum similar in appearance but a specialist on sweet bay. Its of abdomen and knobs along sides tend to be more white than blue (as in Cecropia) and are yellow abdominal tubercle over A8 is nearly three times as set in black bases (see page 246). long as wide and the red knobs over thorax are cylindrical (see page 246). OCCURRENCE Urban and suburban yards and lots, orchards, fencerows, woodlands, OCCURRENCE Woodlands and forests from Michigan, southern Ontario, and and forests from Canada south to Florida and central Texas. One generation with mature Massachusetts to northern Florida and Mississippi. One principal generation northward; caterpillars from late June through August over most of range. two broods in South with mature caterpillars from early June onward.
    [Show full text]
  • Nature Research Centre
    N a t u r e Research Centre VILNIUS 2015 UDK 502:001.891(474.5) Na251 Akademijos Str. 2, LT-08412 Vilnius Telephone: +370 5 272 92 57 Fax: +370 5 272 93 52 e-maill: [email protected] http://www.gamtostyrimai.lt/en ISBN 978-9986-443-84-1 © Gamtos tyrimų centras, 2015 The State Scientific Research Institute Nature Research Centre WELCOME, The State Scientific Research Institute Nature Research Centre (NRC) was es- and biomedicine sci- tablished on 31 December 2009 under the Resolution of the Government of the ences and cooperation- Republic of Lithuania (Official Gazette, No. 158-7186, 2009) by merging the In- based solutions to stitute of Botany, the Institute of Ecology of Vilnius University and the Institute scientific tasks are the of Geology and Geography. The research potential and the experimental basis fundamental principles of the three institutes were integrated to create an up-to-date scientific research underlying the activities infrastructure for investigations into present-day and past ecosystems, as well of the NRC. In twenty as studies and development of environmental protection technologies. Uphold- five laboratories of the ing 70-year-old traditions and experience, the newly established NRC not only NRC, scientists carry pursues and co-ordinates long-term scientific research in various fields of biotic out investigations into and abiotic nature and ensures the competence of Lithuania on the interna- environmental state tional stage, but also takes an active role in the development and implementa- quality, natural ecosys- tion of a conceptual framework for the protection of the living environment tems, habitats, species, structure of communi- and its sustainable development, as well as disseminating scientific knowledge ties and populations, regularities and mechanisms of functioning, sensitiv- of biotic and abiotic environment, thus contributing to the development of the ity, vulnerability, genetic diversity, adaptations, microevolution under con- knowledge economy and education of society.
    [Show full text]
  • 57. Accident Prevention Plan INTRODUCTION Like Everything Else in a Farm Enterprise, Health and Security Must Be Managed
    Wild Blueberry in a Context of Production Guide... Sustainable Development 57. Accident Prevention Plan INTRODUCTION Like everything else in a farm enterprise, health and security must be managed. This means dedicating a certain amount of time to these concerns, and emphasizing teamwork. The employer must show that he cares about accident prevention, and employees must be involved in fi nding causes and solutions. BILL C-21 AND EMPLOYER OBLIGATIONS In force since March 31, 2004, the Act to amend the Criminal Code of Canada (Bill C-21) included substantial changes with regard to health and safety in the workplace. Employers are now subject to criminal proceedings after a serious accident if measures were not in place to protect the health and safety of workers. In fact, anyone who manages or supervises one or more workers must show that health and safety obligations are respected, taking all reasonable precautions to prevent bodily injury due to accident. Bill C-21 reinforces the Québec Act respecting Occupational health and safety (see References), which stipulates that every worker has a right to working conditions that have proper regard for his health, safety and physical well-being (section 9). The employer thus has an obligation to take whatever measures are necessary to protect the health and safety of workers (section 51). He must ensure that risks are eliminated at the source by organizing the workplace in a safe manner and by training workers on safe techniques and procedures. He is also obligated to provide individual protection equipment, free of charge, and to require workers to use it.
    [Show full text]
  • Multi-Species Mating Disruption in Cranberries (Ericales: Ericaceae): Early Evidence Using a Flowable Emulsion
    Journal of Insect Science (2017) 17(2): 54; 1–6 doi: 10.1093/jisesa/iex025 Research article Multi-Species Mating Disruption in Cranberries (Ericales: Ericaceae): Early Evidence Using a Flowable Emulsion Shawn A. Steffan,1,2,3 Elissa M. Chasen,1,2 Annie E. Deutsch,2,4 and Agenor Mafra-Neto5 1USDA-ARS Vegetable Crops Research Unit, 1630 Linden Drive, Madison, WI 53706 ([email protected]; elissa.chasen@ ars.usda.gov), 2Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706 (steffan@entomology. wisc.edu; [email protected]; [email protected]), 3Corresponding author, e-mail: ([email protected]), 4Door County University of Wisconsin-Extension, 421 Nebraska St., Sturgeon Bay, WI 54235 ([email protected]), and 5ISCA Technologies, Incorporated, 1230 W. Spring St., Riverside, CA 92507 ([email protected]) Subject Editor: Cesar Rodriguez-Saona Received 11 October 2016; Editorial decision 11 March 2017 Abstract Pheromone-based mating disruption has proven to be a powerful pest management tactic in many cropping systems. However, in the cranberry system, a viable mating disruption program does not yet exist. There are commercially available pheromones for several of the major pests of cranberries, including the cranberry fruit- worm, Acrobasis vaccinii Riley (Lepidoptera: Pyralidae) and blackheaded fireworm, Rhopobota naevana (Hu¨ bner) (Lepidoptera: Tortricidae). Previous studies have shown that mating disruption represents a promising approach for R. naevana management although carrier and delivery technologies have remained unresolved. The present study examined the suitability of Specialized Pheromone & Lure Application Technology (SPLAT; ISCA Technologies, Inc., Riverside, CA), a proprietary wax and oil blend, to serve as a pheromone carrier in the cranberry system.
    [Show full text]
  • Highbush Blueberry: Cultivation, Protection, Breeding and Biotechnology
    The European Journal of Plant Science and Biotechnology ©2007 Global Science Books Highbush Blueberry: Cultivation, Protection, Breeding and Biotechnology Daniele Prodorutti1* • Ilaria Pertot2 • Lara Giongo3 • Cesare Gessler2 1 Plant Protection Department, IASMA Research Centre, Via E. Mach 1, 38010 San Michele all’Adige (TN), Italy 2 Safecrop Centre, IASMA Research Centre, Via E. Mach 1, 38010 San Michele all’Adige (TN), Italy 3 Agrifood Quality Department, IASMA Research Centre, Via E. Mach 1, 38010 San Michele all’Adige (TN), Italy Corresponding author : * [email protected] ABSTRACT Highbush blueberry is one of the most commercially significant berry crops. It is mainly cultivated in the United States and Canada, but also in Europe, Australia, Chile and New Zealand. Production of this crop is likely to increase in response to increased consumer demand for healthy foods, including the antioxidant-rich blueberry. This review describes several issues and developments in sustainable blueberry farming, including agronomical and cultural techniques (mulching, irrigation, the beneficial effects of mycorrhizae and fertilization), disease management (biology and control of common and emerging diseases), pest management, pollinators (effects on fruit set and production), conventional breeding and molecular techniques for examining and engineering blueberry germplasm. This paper describes past problems and current challenges associated with the commercial production of highbush blueberry, as well as new approaches and techniques for
    [Show full text]
  • Zoogeography of the Holarctic Species of the Noctuidae (Lepidoptera): Importance of the Bering Ian Refuge
    © Entomologica Fennica. 8.XI.l991 Zoogeography of the Holarctic species of the Noctuidae (Lepidoptera): importance of the Bering ian refuge Kauri Mikkola, J, D. Lafontaine & V. S. Kononenko Mikkola, K., Lafontaine, J.D. & Kononenko, V. S. 1991 : Zoogeography of the Holarctic species of the Noctuidae (Lepidoptera): importance of the Beringian refuge. - En to mol. Fennica 2: 157- 173. As a result of published and unpublished revisionary work, literature compi­ lation and expeditions to the Beringian area, 98 species of the Noctuidae are listed as Holarctic and grouped according to their taxonomic and distributional history. Of the 44 species considered to be "naturall y" Holarctic before this study, 27 (61 %) are confirmed as Holarctic; 16 species are added on account of range extensions and 29 because of changes in their taxonomic status; 17 taxa are deleted from the Holarctic list. This brings the total of the group to 72 species. Thirteen species are considered to be introduced by man from Europe, a further eight to have been transported by man in the subtropical areas, and five migrant species, three of them of Neotropical origin, may have been assisted by man. The m~jority of the "naturally" Holarctic species are associated with tundra habitats. The species of dry tundra are frequently endemic to Beringia. In the taiga zone, most Holarctic connections consist of Palaearctic/ Nearctic species pairs. The proportion ofHolarctic species decreases from 100 % in the High Arctic to between 40 and 75 % in Beringia and the northern taiga zone, and from between 10 and 20 % in Newfoundland and Finland to between 2 and 4 % in southern Ontario, Central Europe, Spain and Primorye.
    [Show full text]