Bao-Rong Lu, Ma. Elizabeth B. Naredo, Amita B. Juliano, and Michael 7: Jackson

Total Page:16

File Type:pdf, Size:1020Kb

Bao-Rong Lu, Ma. Elizabeth B. Naredo, Amita B. Juliano, and Michael 7: Jackson Grass!.: Systematicsand Evolution. (2000). Eds S.W.L. Jacobs and J. Everett. (CSIRO: Melbourne) PRELIMINARY STUDIES ON TAXONOMY AND BIOSYSTEMATICS OF THE AA GENOME ORYZA SPECIES (POACEAE) Bao-Rong Lu, Ma. Elizabeth B. Naredo, Amita B. Juliano, and Michael 7: Jackson GeneticResources Center, International Rice Research Institute, P.O. Box 933, 1099Manila, Philippines. Abstract The genus Oryza L (Oryzeae) include$ 22 wild species and two cultivated species-a. sativa L (Asian rice) and O. glaberrima Steud. (African rice). Asian rice is an economically important crop; it is the staple food for half of the world's population. Eight taxa, including the cultivated ones, are classified In the O. sativa complex on the basis of their morphological similarity and their common AA genome. Wild species in this complex are the most accessible and valuable genetic resources for rice breeding. Because of considerable variation in the mor- phology and habitat preferences of these rice species, taxonomy in this complex has long been a problem in terms of species delimitation and nomenclature. This paper summarizes recent biosystematic studies of the AA genome Oryza species through interspecific hybridization and meiotic analysis of F I hybrids and their P!ir'ental species. It concludes that most of the AA genome species in the O. sativa complex. such as O. rufipogon, O. bar- th;;, O. g/umaepatula, O. meridiana/is, and O. /ong;staminata, are distinct species with prominent reproductive bar- riers between them, although differentiation of the AA genome is limited between different species in the complex. A hypothetical biosystematic relationship of the AA genome Oryza species is proposed. Key words: Poaceae, Oryza, wild rice, taxonomy,. biosystematics, meiotic pairing. differentiation. INTRODUCTION bution of Dryza species,the taxonomy has long been a prob- lem, particularly in the D. sativa complex, in terms of species The genus Oryza L. is classified in the tribe Oryzeae,which delimitation and nomenclature. contains 12 genera (Table 1), and includes 22 specieswidely distributed throughout the tropics. Great diversity in morphol- There are two cultivated rice speciesthat originated independ- ogy and habitats has been observedfor the various Oryzaspe- ently from differentwild ancestralspecies in Asia and Africa. The cies. Following the taxonomic treatment of Vaughan (1989), Asian cultivated rice (Dryza sativa L.) is an economicallyimpor- speciesin this genusare classifiedin four complexes,with some tant world cerealcrop and is the staplefood for about half of the speciesnot yet placed in any (Table 2). Six basic genomes,AA, world's population. This speciesprobably originated acrossa BB, CC, EE, FF, and GG, as well as three genomic combina- broad areaextending over the foothills of the Himalayasand its tions, BBCC, CCDD, and HHJJ, have beendesignated respec- adjacent.mountain regions in Asia,and is now grownworldwide. tively in diploid and tetraploid Oryza species,although the The African cultivated rice (D. glaberrima Steud.)was domesti- origin of DD, HH, and JJ is still unknown. This reflects cated in West Africa and is still cultivated in some farming remarkablegenetic variation in the genus.Because of consider- systemstoday. Rapid expansion of human populations and able morphological variability, the frequent occurrence of decreasesin agricultural land require much higher rice produc- intermediate types betweensome species,and the wide distri- tion than that which is now achieved.Wild relatives of rice, 51 Baa-RangLu et at. Table I. Genera, number of species, distribution, and chromosome number in the tribe Oryzeae (adapted from Vaughan 1989). China, japan (t) a Chikusiochloo 3 24 Hygroryzo I Asia (t + T) 24 Leersia 17 worldwide (t + T) 48.60. 96 Luziola II North and South America (t + T) 24 Maltebrunia 5 tropical and southern Africa (T) Unknown Oryza 24 pan-tropics (T) 24.48 Porteresia South Asia (T) 48 ProsPhytochloa southern Africa (t) Unknown Potamophila Australia (t + T) 24 Rhynchoryza South America (t) 24 Zizania 3 Europe, Asia, N. America (t + T) 30.34 Zizaniopsis 5 North and South America (t + T) 24 aT; tropical area.t ; temperate area. particularly thosehaving the AA genome,are extremelyvaluable speciesin this complex from different continents have been geneticresources that serveto broadenthe geneti~background of reported to have considerablemorphological similarities and cultivated tice becausethe two cultivated tice speciesalso have intermediatetypes arealso found betweenspecies occurring sym- the samegenome. They aretherefore the most accessiblegenetic patrically. This hasled to considerabletaxonomic and nomencla- resourcesin the tice genepool. ture changesin the wild speciesin this complex. Eight Oryza species,including the two cultigens,have the AA genome and are classified in the O. sativa complex (Table 2). NOMENCLATURE AND TAXONOMIC CHANGES IN AA Theseare O. rufipogon,O. nivara,and O. sativa,which arenative GENOME ORYZA SPECIES to Asia, although the Asian cultivated tice is now grown world- The two cultivated rice specieshave beengiven a large numberof wide; O. longistaminata,O. barthii, and O. glaberrima,which are namesand undergoneconsiderable nomenclature revision (see endemic to Africa; and O. meridionalisand O. glumaepatula, Sampath1962; Harlan and de Wet 1971; Vaughan 1989 for a which are only found in Australia and Latin America, respec- review), but Oryza sativa L. and O. glaberrima'Steud. have tively (Fig. I). Although geographicallyand geneticallyisolated, becomewell acceptedand widely adoptednames. ...". ~~~r.:£:F~;"""=~--'-~~~pQ CJ:.o"'"J\) ~ Q ~ ~ ~. ~ <:) .. '\") " _J ,c- -"" ~ L.I~ ( ~ """""""'."" I '0. ~ ~ -- " ~ ~ ~<::)J'~ '\ -:1 oryza sat,va . warId WI' d e O. barthii ~~~J_D -~ o. nivara 1111111111.O. glaberrima I'////J. o. glumaepatula (::::::::::::]O. rufipogon Q r---" I o. longistaminata o. meridiana/is Fig. I. Distribution of the AA genome Oryza species in different geographical regions. 52 TAXONOMY AND BIOSYSTEMATICS OF AA GENOME ORYZA Table 2. Chromosome number, genome content, and distribution of species in the genus Oryza (modified from Vaughan 1989) O. sativa complex O. barthi; A. Chev. 24 AA Africa O. glaberr;ma Steud. 24 AA West Africa O. glumaepatula Steud. 24 AA South & Central America O. lang;staminata Chev. et Roehr. 24 AA Africa O. meridiana/is Ng 24 AA tropical Australia O. n;vara Sharma et Shastry 24 AA tropical & subtropical Asia O. rufipogon Griff. 24 AA tropical & subtropical Asia. & tropical Australia O. sativa L. 24 AA worldwide O. officina/is complex O. alto Swallen 48 CCDD South & Central America O. australiensisDomin. 24 EECC. tropical Australia O. eichingeri Peter 24, 48 South Asia & East Africa O. grandig/umis (Doell) Prod. 48 CCDD South & Central America O. latifolia Desv. 48 CCDD South & Central America O. minuta J. S. Presl. et C. B Presl. 48 BBCCCC. Philippines & Papua New Guinea O. officina/isWall. ex Watt 24, 48 tropical & subtropical Asia, & tropical Australia O. punctata Kotechy ex Steud. 24, 48 BB & BBCC Africa O. rhizomatis Vaughan 24 CC Sri Lanka O. meyeriana complex O. granulata Nees et Arn. ex Watt 24 GG South & Southeast Asia O. meyeriana (Zoll. et Mor. ex Steud.) Baill. 24 GG Southeast Asia O. ridleyi complex O. longiglum;sJansen 48 HHJJ Irian Jaya, Indonesia. & Papua New Guinea O. ridley; Hook. f. 48 HHJJ South Asia Species not assigned to any complex O. brachyantha Chev. et Roehr. 24 FF Africa O. neoca!edon;caMorat 24 Unknown New Caledonia O. schlechter; Pilger 48 Unknown Papua New Guinea a A tetraploid fonT1 with 48 chromosomes has also been found in the species The closerelatives of O. sativahave beennamed differently over (Morishima etat. 1961)and intermediateperennial-annual pop- time. The speciesname O. perennisMoech was widely used for ulations havealso beenfound in nature (Morishima 1986). Our wild speciesin the O. sativa complex (Sampath1962; Oka and morphologicalanalysis also demonstrated a greatdegree of over- Morishima 1967; Morishima 1969). The perennialO. rufipogon lapping betweenthese two speciesQuliano et at. 1998). was referred to asAsian O. perennis,in line with other wild spe- ciesof the complex from different continents,which were called There has also been considerabletaxonomic and nomenclature Mrican, American,and OceanianO. perennis.This influencehas confusionwith the African wild rice species,although morpholog- been so significant that many scientistsstill use O. perennisin ical differencesbetween these species are significant. The annual their recent publications (Pental and Barnes 1985; Oka 1988; O. barthii, which has beenwidely acceptedas the ancestorof the Morishima et al. 1992; Ishii et al. 1996). The annual specieswas Mrican cultivatedrice O. glaberrima(Chang 1976),was referred called O. fatua Koenig ex A. Chev. or O. sativa f. spontanea to as O. brevitigulataChev. et Roehr. (Sampath1962; aka and Roshev.,and was describedas O. nivara by Sharmaand Shastry Morishima 1967; Second1982; Ishii etaL 1996)or asAfrican O. (1965) to distinguish it from O. rUfipogon.But the name O. perennisby someauthors (Pental and Barnes1985). The perennial nivara has been interpreted differently. Some scientists have speciesO. longistarninatawas called O. barthii (Sampath1962; acceptedO. nivara as an independentspecies (Chatterjee 1951; Clayton 1968) or O. perennissubsp. barthii (aka and Morishima Chang 1976; Vaughan 1989, 1994) and considered it as the 1967; Clayton 1968). It was alsocommon to namethis perennial ancestorof the Asian cultivated rice. Others,
Recommended publications
  • CATALOGUE of the GRASSES of CUBA by A. S. Hitchcock
    CATALOGUE OF THE GRASSES OF CUBA By A. S. Hitchcock. INTRODUCTION. The following list of Cuban grasses is based primarily upon the collections at the Estaci6n Central Agron6mica de Cuba, situated at Santiago de las Vegas, a suburb of Habana. The herbarium includes the collections made by the members of the staff, particularly Mr. C. F. Baker, formerly head of the department of botany, and also the Sauvalle Herbarium deposited by the Habana Academy of Sciences, These specimens were examined by the writer during a short stay upon the island in the spring of 1906, and were later kindly loaned by the station authorities for a more critical study at Washington. The Sauvalle Herbarium contains a fairly complete set of the grasses col- lected by Charles Wright, the most important collection thus far obtained from Cuba. In addition to the collections at the Cuba Experiment Station, the National Herbarium furnished important material for study, including collections made by A. H. Curtiss, W. Palmer and J. H. Riley, A. Taylor (from the Isle of Pines), S. M. Tracy, Brother Leon (De la Salle College, Habana), and the writer. The earlier collections of Wright were sent to Grisebach for study. These were reported upon by Grisebach in his work entitled "Cata- logus Plant arum Cubensium," published in 1866, though preliminary reports appeared earlier in the two parts of Plantae Wrightianae. * During the spring of 1907 I had the opportunity of examining the grasses in the herbarium of Grisebach in Gottingen.6 In the present article I have, with few exceptions, accounted for the grasses listed by Grisebach in his catalogue of Cuban plants, and have appended a list of these with references to the pages in the body of this article upon which the species are considered.
    [Show full text]
  • Geographic Origins, Genetic Diversity and the Molecular Clock Hypothesis in the Oryzeae
    Geographic Origins, Genetic Diversity and the Molecular Clock Hypothesis in the Oryzeae G. SECQMD Biologie des Populations et des Peuplements, Centre Louis Emberger, C.N.R. S,, B.P. 5051 ., F-34033 Montpellier Cedex (France). And Institut Français de Recherche Scientifique pour le Développement en Coopération (ORSTOM), 24 rue Bayard. 75008 Paris. ABSTRACT The two species groups,Sativa and Latifolia of the genus Oryza seem to be genetically independant in their variation. They have both a pan-tropical distribution. A study using isozyme electrophoresis of strains representing most of the area of distribution at 16 to 40 loci, shows a genetic structure in disagreement with that previously established on a morphological basis (Morishima 1969 and others). The isozyme structure shows, fn both groups, a maximum divergence between Australian and other taxa, while American taxa are closely related to theis Asian counterparts. The application of the calibration of the electrophoretic clock by Sapich (1977) to the distances found points to a tlme of divergence for the Australian taxa compatible with geological data of a collision between Australasia and South-East Asia some 15 millions $years ago. The same calibration gives estimates compatible with OUT knowledge on the palaeoenvironment in particular with regards to : 1)- The possibilities of migration between Eurasia and Africa (interrupted earlier for species of rice adapted to forest or inundated plain than for those species adapted to temporary pools in arid savannas) 2)- The emergence of the Himalayan barrier between China and South Asia. The evolutionary picture which emerges ia that of an Eurasian Y Fonds i-i-ieíTL3i RSTO 1 DoGu 6 M c NATO AS1Series, Vol.
    [Show full text]
  • Phylogeny and Subfamilial Classification of the Grasses (Poaceae) Author(S): Grass Phylogeny Working Group, Nigel P
    Phylogeny and Subfamilial Classification of the Grasses (Poaceae) Author(s): Grass Phylogeny Working Group, Nigel P. Barker, Lynn G. Clark, Jerrold I. Davis, Melvin R. Duvall, Gerald F. Guala, Catherine Hsiao, Elizabeth A. Kellogg, H. Peter Linder Source: Annals of the Missouri Botanical Garden, Vol. 88, No. 3 (Summer, 2001), pp. 373-457 Published by: Missouri Botanical Garden Press Stable URL: http://www.jstor.org/stable/3298585 Accessed: 06/10/2008 11:05 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=mobot. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact [email protected].
    [Show full text]
  • Applications of an Ecophysiological Model for Irrigated Rice (Oryza Sativa)- Echinochloa Competition
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Agronomy & Horticulture -- Faculty Publications Agronomy and Horticulture Department 1996 Applications of an Ecophysiological Model for Irrigated Rice (Oryza sativa)- Echinochloa Competition John L. Lindquist University of Nebraska-Lincoln, [email protected] Martin Kropff University of Minnesota Follow this and additional works at: https://digitalcommons.unl.edu/agronomyfacpub Part of the Plant Sciences Commons Lindquist, John L. and Kropff, Martin, "Applications of an Ecophysiological Model for Irrigated Rice (Oryza sativa)- Echinochloa Competition" (1996). Agronomy & Horticulture -- Faculty Publications. 617. https://digitalcommons.unl.edu/agronomyfacpub/617 This Article is brought to you for free and open access by the Agronomy and Horticulture Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Agronomy & Horticulture -- Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Weed Science Society of America Applications of an Ecophysiological Model for Irrigated Rice (Oryza sativa)-Echinochloa Competition Author(s): John L. Lindquist and Martin J. Kropff Reviewed work(s): Source: Weed Science, Vol. 44, No. 1 (Jan. - Mar., 1996), pp. 52-56 Published by: Weed Science Society of America and Allen Press Stable URL: http://www.jstor.org/stable/4045782 . Accessed: 14/09/2012 10:47 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship.
    [Show full text]
  • Micromorphology and Anatomy of the Leaf Blade: a Contribution to the Taxonomy of Luziola (Poaceae, Oryzoideae) from the Pantanal, Brazil
    Plant Syst Evol (2016) 302:265–273 DOI 10.1007/s00606-015-1260-8 ORIGINAL ARTICLE Micromorphology and anatomy of the leaf blade: a contribution to the taxonomy of Luziola (Poaceae, Oryzoideae) from the Pantanal, Brazil 1 2 2 Thales D. Leandro • Edna Scremin-Dias • Rosani do Carmo de Oliveira Arruda Received: 5 January 2015 / Accepted: 19 October 2015 / Published online: 12 November 2015 Ó Springer-Verlag Wien 2015 Abstract Luziola comprises nine monoecious, aquatic A key for the identification of the studied species is pre- species and has its center of diversity in South America. sented based on the leaf blade features. Due to the morphological similarities among Luziola spe- cies in the vegetative stage, the micromorphology and Keywords Aquatic grasses Á Leaf anatomy Á Luziolinae Á anatomy of the leaf blade of five Luziola species were Oryzeae Á Poales Á Zizaniinae studied to survey potentially useful features for taxon identification. Oryzoid silica bodies; silicified unicellular trichomes with a rounded apex; stomata in furrows on the Introduction adaxial surface; a complex midrib consisting of at least two vascular bundles; superposed vascular bundles in the The subfamily Oryzoideae (syn. Ehrhartoideae) is mono- mesophyll; and fusoid cells are features shared by some of phyletic and a member of the BOP clade [Bambu- these species. Conversely, features unique to a single soideae ? Oryzoideae ? Pooideae] of grasses (Grass species include: vertically elongated epidermal cells sur- Phylogeny Working Group (GPWG) II 2012; Soreng et al. rounding pointed unicellular trichomes, flat midrib and leaf 2015). Oryzoideae (excluding Streptogyneae) share a margin dimorphism (L. fragilis), and an obtuse leaf blade combination of characters including spikelets with two margin (L.
    [Show full text]
  • A Review on Presence of Oleanolic Acid in Natural Products
    Natura Proda Medica, (2), April 2009 64 A review on presence of Oleanolic acid in Natural Products A review on presence of Oleanolic acid in Natural Products YEUNG Ming Fai Abstract Oleanolic acid (OA), a common phytochemical, is chosen as an example for elucidation of its presence in natural products by searching scientific databases. 146 families, 698 genera and 1620 species of natural products were found to have OA up to Sep 2007. Keywords Oleanolic acid, natural products, plants, Chinese medicine, Linnaeus system of plant classification Introduction and/or its saponins in natural products was carried out for Oleanolic acid (OA), a common phytochemical, is chosen elucidating its pressence. The classification was based on as an example for elucidation of its presence in natural Linnaeus system of plant classification from the databases of products by searching scientific databases. SciFinder and China Yearbook Full-text Database (CJFD). Methodology of Review Result of Review Literature search for isolation and characterization of OA Search results were tabulated (Table 1). Table 1 Literature review of natural products containing OA and/or its saponins. The classification is based on Angiosperm Phylogeny Group APG II system of plant classification from the databases of SciFinder and China Yearbook Full-text Database (CJFD). Family of plants Plant scientific names Position of plant to be Form of OA References isolated isolated Acanthaceae Juss. Acanthus illicifolius L. Leaves OA [1-2] Acanthaceae Avicennia officinalis Linn. Leaves OA [3] Acanthaceae Blepharis sindica Stocks ex T. Anders Seeds OA [4] Acanthaceae Dicliptera chinensis (Linn.) Juss. Whole plant OA [5] Acanthaceae Justicia simplex Whole plant OA saponins [6] Actinidiaceae Gilg.
    [Show full text]
  • Poaceae: Pooideae) Based on Plastid and Nuclear DNA Sequences
    d i v e r s i t y , p h y l o g e n y , a n d e v o l u t i o n i n t h e monocotyledons e d i t e d b y s e b e r g , p e t e r s e n , b a r f o d & d a v i s a a r h u s u n i v e r s i t y p r e s s , d e n m a r k , 2 0 1 0 Phylogenetics of Stipeae (Poaceae: Pooideae) Based on Plastid and Nuclear DNA Sequences Konstantin Romaschenko,1 Paul M. Peterson,2 Robert J. Soreng,2 Núria Garcia-Jacas,3 and Alfonso Susanna3 1M. G. Kholodny Institute of Botany, Tereshchenkovska 2, 01601 Kiev, Ukraine 2Smithsonian Institution, Department of Botany MRC-166, National Museum of Natural History, P.O. Box 37012, Washington, District of Columbia 20013-7012 USA. 3Laboratory of Molecular Systematics, Botanic Institute of Barcelona (CSIC-ICUB), Pg. del Migdia, s.n., E08038 Barcelona, Spain Author for correspondence ([email protected]) Abstract—The Stipeae tribe is a group of 400−600 grass species of worldwide distribution that are currently placed in 21 genera. The ‘needlegrasses’ are char- acterized by having single-flowered spikelets and stout, terminally-awned lem- mas. We conducted a molecular phylogenetic study of the Stipeae (including all genera except Anemanthele) using a total of 94 species (nine species were used as outgroups) based on five plastid DNA regions (trnK-5’matK, matK, trnHGUG-psbA, trnL5’-trnF, and ndhF) and a single nuclear DNA region (ITS).
    [Show full text]
  • Ethnobotany of the Miskitu of Eastern Nicaragua
    Journal of Ethnobiology 17(2):171-214 Winter 1997 ETHNOBOTANY OF THE MISKITU OF EASTERN NICARAGUA FELIXG.COE Department of Biology Tennessee Technological University P.O. Box5063, Cookeville, TN 38505 GREGORY J. ANDERSON Department of Ecology and Evolutionary Biology University of Connecticut, Box U-43, Storrs, CT 06269-3043 ABSTRACT.-The Miskitu are one of the three indigenous groups of eastern Nicaragua. Their uses of 353 species of plants in 262 genera and 89 families were documented in two years of fieldwork. Included are 310 species of medicinals, 95 species of food plants, and 127 species used for construction and crafts, dyes and tannins, firewood, and forage. Only 14 of 50 domesticated food species are native to the New World tropics, and only three to Mesoamerica. A majority of plant species used for purposes other than food or medicine are wild species native to eastern Nicaragua. Miskitu medicinal plants are used to treat more than 50 human ailments. Most (80%) of the medicinal plants are native to eastern Nicaragua, and two thirds have some bioactive principle. Many medicinal plants are herbs (40%) or trees (30%), and leaves are the most frequently used plant part. Herbal remedies are most often prepared as decoctions that are administered orally. The Miskitu people are undergoing rapid acculturation caused by immigration of outsiders. This study is important not only for documenting uses of plants for science in general, but also because it provides a written record in particular of the oral tradition of medicinal uses of plants of and for the Miskitu. RESUMEN.-Los Miskitus son uno de los tres grupos indigenas del oriente de Nicaragua.
    [Show full text]
  • Oryza Glaberrima Steud)
    plants Review Advances in Molecular Genetics and Genomics of African Rice (Oryza glaberrima Steud) Peterson W. Wambugu 1, Marie-Noelle Ndjiondjop 2 and Robert Henry 3,* 1 Kenya Agricultural and Livestock Research Organization, Genetic Resources Research Institute, P.O. Box 30148 – 00100, Nairobi, Kenya; [email protected] 2 M’bé Research Station, Africa Rice Center (AfricaRice), 01 B.P. 2551, Bouaké 01, Ivory Coast; [email protected] 3 Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072, Australia * Correspondence: [email protected]; +61-7-661733460551 Received: 23 August 2019; Accepted: 25 September 2019; Published: 26 September 2019 Abstract: African rice (Oryza glaberrima) has a pool of genes for resistance to diverse biotic and abiotic stresses, making it an important genetic resource for rice improvement. African rice has potential for breeding for climate resilience and adapting rice cultivation to climate change. Over the last decade, there have been tremendous technological and analytical advances in genomics that have dramatically altered the landscape of rice research. Here we review the remarkable advances in knowledge that have been witnessed in the last few years in the area of genetics and genomics of African rice. Advances in cheap DNA sequencing technologies have fuelled development of numerous genomic and transcriptomic resources. Genomics has been pivotal in elucidating the genetic architecture of important traits thereby providing a basis for unlocking important trait variation. Whole genome re-sequencing studies have provided great insights on the domestication process, though key studies continue giving conflicting conclusions and theories. However, the genomic resources of African rice appear to be under-utilized as there seems to be little evidence that these vast resources are being productively exploited for example in practical rice improvement programmes.
    [Show full text]
  • Shedding Light on the Evolution of Grasses and Grasslands Through Automated, Quantitative Imaging Analyses of Plant Silica Microfossils Caroline A.E
    Shedding light on the evolution of grasses and grasslands through automated, quantitative imaging analyses of plant silica microfossils Caroline A.E. Strömberg Department of Biology & Burke Museum University of Washington Seattle, WA Grasslands are ecologically vital •Grassy biomes make up >40% of Earth’s land surface Color = grass-dominated habitats Lehmann et al. (in prep.) When and how did grassland ecosystems come to be? • When did the grass family first originate and diversify? • When did grasses become ecologically dominant, forming grasslands? Direct evidence for past grasslands •Grass mesofossils and pollen are rare until the late Miocene—and often hard to interpret taxonomically Pollen Fruit Leaves Strömberg (2002, 2011) Phytoliths (plant silica) Grass epidermis: Grass phytolith in sediment: 10 µm epidermal cell stomata Phytoliths (plant silica) • Taxonomically (Gallaher et al. 2019) useful variation within Poaceae (grass family) PACMAD: Panicoideae Arundinoideae Chloridoideae PACMAD Micrairoideae Aristidoideae Danthonioideae BOP: Bambusoideae Oryzoideae Pooideae BOP Early-diverging grasses Phytoliths (plant silica) • Taxonomically (Gallaher et al. 2019) useful variation within Poaceae (grass family): OPEN habitat o Diversification (tropical) of ancient PACMAD grass lineages o Ecology of past grass OPEN communities habitat (temperate) BOP CLOSED habitat Radiation of open-habitat grasses (Gallaher et al. 2019) • Fossil phytolith morphotypes (Americas, 40 Ma Eurasia): à Open-habitat PACMAD grasses 19 Ma diversified by 40 Ma 40 Ma BOP 35 Ma (Strömberg 2004, 2005, Strömberg et al. 2007, 2013, Miller et al. 2012) Grassland evolution in North America • Earliest (early Miocene) grasslands were dominated by cool-temperate stipoid pooids • Tropical, dry- adapted (C4) chloridoids spread during the latest Miocene (Strömberg 2004, 2005, 2011, Strömberg et al.
    [Show full text]
  • ITCHGRASS (Rottboellia Cochinchinensis) from COSTA RICA1
    Molecular basis for resistance to fluazifop-P-butyl in itchgrass ... 143 MOLECULAR BASIS FOR RESISTANCE TO FLUAZIFOP-P-BUTYL IN ITCHGRASS (Rottboellia cochinchinensis) FROM COSTA RICA1 Base Molecular para Resistência a Fluazifop-P-Butyl em Capim-Camalote (Rottboellia cochinchinensis) da Costa Rica CASTILLO-MATAMOROS, R.2, BRENES-ANGULO, A.2, HERRERA-MURILLO, F.3, and GÓMEZ-ALPÍZAR. L.2 ABSTRACT - Rottboellia cochinchinensis is an annual grass weed species known as itchgrass, or “caminadora” in America´s Spanish speaking countries, and has become a major and troublesome weed in several crops. The application of fluazifop-P-butyl at recommended rates (125 g a.i. ha-1) was observed to be failing to control itchgrass in a field in San José, Upala county, Alajuela province, Costa Rica. Plants from the putative resistant R. cochinchinensis population survived fluazifop-P-butyl when treated with 250 g a.i. ha-1 (2X label rate) at the three- to four-leaf stage under greenhouse conditions. PCR amplification and sequencing of partial carboxyl transferase domain (CT) of the acetyl-CoA carboxylase (ACCase) gene were used to determine the molecular mechanism of resistance. A single non-synonymous point mutation from TGG (susceptible plants) to TGC (putative resistant plants) that leads to a Trp-2027-Cys substitution was found. This Trp-2027-Cys mutation is known to confer resistance to all aryloxyphenoxyproprionate (APP) herbicides to which fluazifop-P-butyl belongs. To the best of our knowledge, this is the first report of fluazifop-P-butyl resistance and a mutation at position 2027 for a Costa Rican R. cochinchinensis population.
    [Show full text]
  • Data Standards Version 2.8 July 5
    Euro+Med Data Standards Version 2.8. July 5th, 2002 EURO+MED PLANTBASE PREPARATION OF THE INITIAL CHECKLIST: DATA STANDARDS VERSION 2.8 JULY 5TH, 2002 This document replaces Version 2.7, dated May 16th, 2002 Compiled for the Euro+Med PlantBase Editorial Committee by: Euro+Med PlantBase Secretariat, Centre for Plant Diversity and Systematics, School of Plant Sciences, The University of Reading, Whiteknights, Reading RG6 6AS United Kingdom Tel: +44 (0)118 9318160 Fax: +44 (0)118 975 3676 E-mail: [email protected] 1 Euro+Med Data Standards Version 2.8. July 5th, 2002 Modifications made in Version 2.0 (24/11/00) 1. Section 2.4 as been corrected to note that geography should be added for hybrids as well as species and subspecies. 2. Section 3 (Standard Floras) has been modified to reflect the presently accepted list. This may be subject to further modification as the project proceeds. 3. Section 4 (Family Blocks) – genera have been listed where this clarifies the circumscription of blocks. 4. Section 5 (Accented Characters) – now included in the document with examples. 5. Section 6 (Geographical Standard) – Macedonia (Mc) is now listed as Former Yugoslav Republic of Macedonia. Modification made in Version 2.1 (10/01/01) Page 26: Liliaceae in Block 21 has been corrected to Lilaeaceae. Modifications made in Version 2.2 (4/5/01) Geographical Standards. Changes made as discussed at Palermo General meeting (Executive Committee): Treatment of Belgium and Luxembourg as separate areas Shetland not Zetland Moldova not Moldavia Czech Republic
    [Show full text]