FAA-H-8083-16B; Glossary
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Canopy Rainfall Interception Measured Over 10 Years in a Coastal Plain Loblolly Pine
CANOPY RAINFALL INTERCEPTION MEASURED OVER TEN YEARS IN A COASTAL PLAIN LOBLOLLY PINE (PINUS TAEDA L.) PLANTATION M. J. Gavazzi, G. Sun, S. G. McNulty, E. A. Treasure, M. G. Wightman ABSTRACT. The area of planted pine in the southern U.S. is predicted to increase by over 70% by 2060, potentially alter- ing the natural hydrologic cycle and water balance at multiple scales. To better account for potential shifts in water yield, land managers and resource planners must accurately quantify water budgets from the stand to the regional scale. The amount of precipitation as rainfall intercepted by forest canopies is an important component of evapotranspiration in for- ested ecosystems, yet there is little information about intra- and inter-annual canopy interception variability in southern pine plantations. To address this knowledge gap, canopy rainfall interception was measured between 2005 and 2014 in a North Carolina coastal plain loblolly pine (Pinus taeda L.) plantation to quantify the range of annual and seasonal varia- bility in interception rates (IRs) as influenced by stand thinning and natural variation in rainfall rates and intensities. Over the study period, biweekly measured canopy IRs averaged 19% across all years, with a range of 14% to 23%. How- ever, at the annual scale, IRs averaged 12% and ranged from 2% to 17%. Thinning resulted in a 5% decrease in rainfall interception, but IRs quickly returned to pre-thin levels. Across years, the amount of annual rainfall intercepted by the canopy averaged 15% of total evapotranspiration, with a range of 2% to 24%. The decade-long data indicate that inter- annual variability of canopy interception is higher than reported in short-term studies. -
Aircraft Engine Performance Study Using Flight Data Recorder Archives
Aircraft Engine Performance Study Using Flight Data Recorder Archives Yashovardhan S. Chati∗ and Hamsa Balakrishnan y Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA Aircraft emissions are a significant source of pollution and are closely related to engine fuel burn. The onboard Flight Data Recorder (FDR) is an accurate source of information as it logs operational aircraft data in situ. The main objective of this paper is the visualization and exploration of data from the FDR. The Airbus A330 - 223 is used to study the variation of normalized engine performance parameters with the altitude profile in all the phases of flight. A turbofan performance analysis model is employed to calculate the theoretical thrust and it is shown to be a good qualitative match to the FDR reported thrust. The operational thrust settings and the times in mode are found to differ significantly from the ICAO standard values in the LTO cycle. This difference can lead to errors in the calculation of aircraft emission inventories. This paper is the first step towards the accurate estimation of engine performance and emissions for different aircraft and engine types, given the trajectory of an aircraft. I. Introduction Aircraft emissions depend on engine characteristics, particularly on the fuel flow rate and the thrust. It is therefore, important to accurately assess engine performance and operational fuel burn. Traditionally, the estimation of fuel burn and emissions has been done using the ICAO Aircraft Engine Emissions Databank1. However, this method is approximate and the results have been shown to deviate from the measured values of emissions from aircraft in operation2,3. -
Game Stats - 9/25/20 Scott High at Cumberland Gap
iScore Football Game Stats - 9/25/20 Scott High at Cumberland Gap Game Score 1 2 3 4 T Scott High 7 0 7 21 35 Cumberland Gap 0 0 0 0 0 Scott High Drive Summaries Cumberland Gap Drive Summaries START QTR HEADING POSS. YARDLINE PLAYS YARDS RESULT START QTR HEADING POSS. YARDLINE PLAYS YARDS RESULT 12:00 1 ✒ 01:16 ✒ 43 8 47 Missed Field Goal 10:43 1 ✒ 00:58 ✒ 20 4 -5 Punt 09:44 1 ✒ 00:00 ✒ 44 1 0 Fumble 09:43 1 ✒ 01:12 ✒ 39 4 9 Downs 08:30 1 ✒ 06:15 ✒ 48 7 48 Touchdown 02:14 1 ✒ 01:15 ✒ 27 3 2 Punt 00:58 1 ✒ 02:01 ✒ 37 6 29 Punt 10:56 2 ✒ 03:10 ✒ 20 5 31 Punt 07:45 2 ✒ 01:05 ✒ 13 3 8 Punt 06:39 2 ✒ 00:20 ✒ 47 3 16 Interception 06:18 2 ✒ 04:48 ✒ 18 6 54 Downs 01:29 2 ✒ 01:29 ✒ 28 2 7 End of Quarter 11:04 3 ✒ 03:49 ✒ 33 7 67 Touchdown 11:59 3 ✒ 00:54 ✒ 32 3 1 Punt 05:23 3 ✒ 00:55 ✒ 29 3 37 Interception 07:14 3 ✒ 01:50 ✒ 27 5 9 Punt 00:20 3 ✒ 03:20 ✒ 30 7 30 Touchdown 04:27 3 ✒ 00:29 ✒ 29 3 -3 Punt 08:16 4 ✒ 00:54 ✒ 24 2 24 Touchdown 08:59 4 ✒ 00:42 ✒ 28 2 -2 Fumble 05:25 4 ✒ 02:59 ✒ 39 7 61 Touchdown 07:21 4 ✒ 01:55 ✒ 28 3 2 Punt 02:25 4 ✒ 02:20 ✒ 30 3 4 End of Game Stat Comparison Scott High Cumberland Gap First Downs 20 4 First Downs: Rushing - Passing - Penalty 16-4-0 3-1-0 Rushing Yards 271 46 Passing: Completions - Attempts 8 / 13 3 / 12 Passing Yards 92 43 Passing: Touchdowns - Interceptions 2 / 1 0 / 1 Total Plays 57 40 Total Offense 363 89 Fumbles - Lost 2 / 1 3 / 3 Penalties - Yards 6 / 35 5 / 55 Defensive Sacks - Yards Lost 0 / 0 0 / 0 Time of Possession 27:34 20:26 3rd Down Efficiency 1 of 8 0 of 9 4th Down Efficiency 1 of 2 0 of 1 Punts - Average 4 / 30.75 7 / 32.14 page 1 / 11 iScore Football Game Stats - 9/25/20 Scott High at Cumberland Gap Scoring Plays SCORING TEAM QTR RESULT DESCRIPTION Scott High 1 Touchdown #11 Alex Chambers runs the ball from the > 4 and carries the ball to the endzone. -
RNAV Instrument Approach Procedures (IAP's) and the New Charting Format
Effective: Until Further Notice Area Navigation Systems Area Navigation (RNAV)/Wide Area Augmentation System (WAAS) Instrument Approach Procedures (IAP’s) and the New Charting Format. [REVISED 1/5/00] PURPOSE. Instrument procedures in the first half of the 21st century will be based on satellite navigation, also known as Global Navigation Satellite System (GNSS). Within the United States, the Global Positioning System (GPS), the Wide Area Augmentation system (WAAS), and the Local Area Augmentation System (LAAS) will comprise the primary components of the GNSS. Air navigation is increasingly dependent upon RNAV systems - as exemplified by Flight Management System (FMS) and Global Positioning System (GPS) avionics. These systems navigate with reference to geographic positions called “waypoints” (WP) specified in latitude/longitude rather than to/from a specific ground-based navigation aid. Reliance on RNAV systems for approach and departure operations will increase as new systems such as WAAS are developed and deployed. To foster and support full and optimal integration of RNAV into the National Airspace System (NAS), the FAA has developed a new procedure type for RNAV IAP’s. This Notice serves to inform the flying public of the new concepts being implemented with the RNAV IAP’s. OPERATIONS. In order to avoid unnecessary duplication and proliferation of instrument approach charts, Jeppesen will publish approach minimums for unaugmented GPS and WAAS (when operational) on the same chart. In addition, approach minimums will be established and published for LNAV/ VNAV - a new type of RNAV instrument approach with lateral and vertical navigation. The approach chart will be titled "RNAV RWY XX." The chart may contain as many as four columns of approach minimums: GLS; LNAV/VNAV; LNAV; and CIRCLING. -
Flight Inspection History Written by Scott Thompson - Sacramento Flight Inspection Office (May 2008)
Flight Inspection History Written by Scott Thompson - Sacramento Flight Inspection Office (May 2008) Through the brief but brilliant span of aviation history, the United States has been at the leading edge of advancing technology, from airframe and engines to navigation aids and avionics. One key component of American aviation progress has always been the airway and navigation system that today makes all-weather transcontinental flight unremarkable and routine. From the initial, tentative efforts aimed at supporting the infant air mail service of the early 1920s and the establishment of the airline industry in the 1930s and 1940s, air navigation later guided aviation into the jet age and now looks to satellite technology for direction. Today, the U.S. Federal Aviation Administration (FAA) provides, as one of many services, the management and maintenance of the American airway system. A little-seen but still important element of that maintenance process is airborne flight inspection. Flight inspection has long been a vital part of providing a safe air transportation system. The concept is almost as old as the airways themselves. The first flight inspectors flew war surplus open-cockpit biplanes, bouncing around with airmail pilots and watching over a steadily growing airway system predicated on airway light beacons to provide navigational guidance. The advent of radio navigation brought an increased importance to the flight inspector, as his was the only platform that could evaluate the radio transmitters from where they were used: in the air. With the development of the Instrument Landing System (ILS) and the Very High Frequency Omni-directional Range (VOR), flight inspection became an essential element to verify the accuracy of the system. -
MCO Arrival Wayfnding Map
MCO Arrival Wayfnding Map N SIDE Gates 1-29 Level 1 Gates 100-129 Ground Transportation & Baggage Claim (8A) Level 2 Baggage Claim Gates 10-19 Gates Ticketing Locations 20-29 Gates 100-111 A-1 A-2 Level 3 A-3 A-4 2 1 Gates Gates 1-9 112-129 Hyatt Regency - Lvl.4 - Lvl.4 Regency Hyatt Security Checkpoint To Gates 70 - 129 70 Gates To Food Court To Gates 1-59 1-59 Gates To Security Checkpoint Gates 70-79 Gates 50-59 To Parking “C” Gates 3 90-99 4 B-1 B-2 Level 3 B-3 B-4 Gates Gates 30-39 Ticketing Locations Gates 80-89 40-49 Gates 70-99 Level 2 Gates 30-59 Baggage Claim Level 1 Ground Transportation & Baggage Claim (28B) SIDE C Check-in and baggage claim locations subject to change. Please check signage on arrival. *Map not to scale Find it ALL in One Place Welcome to Orlando Download the Orlando MCO App Available for International Airport (MCO) OrlandoAirports.net /flymco @MCO @flymco Flight Arrival Guide 03/18 To reach the Main Terminal, The journey to the To retrieve checked baggage, take follow directions on the overhead Main Terminal (A-Side or B-Side) the stairs, escalator or elevator down signage to the shuttle station 2 takes just over one minute. As the 4 6 to the Arrivals/Baggage Claim on which is located in the center train transports you, observe the Level 2. Check the monitors to of the Airside Terminal. signage and listen to the instructions determine the correct carousel directing you to either Baggage Claim A for your flight. -
John V. Augustin, “ICAO and the Use of Force Against Civil Aerial Intruders”
INFORMATION TO USERS This manuscript has been reproduced from the microfilm mater. UMI films the t.xt directly from the original or copy submitted. ThuI, sorne thesil and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quallty of thl. reproduction 1••pendent upon the quallty of the cOPY IUbmittecl. Broken or indistinct print, coIored or poor qUBlity illustrations and photographs, print bleedthrough, subsfanctard margins, and improper alignment can adverselyaffect reproduction. ln the unlikely .vent that the adhor did not send UMI a comptete m8l1uscript and there are mi.ing pagel, the.. will be noted. AllO, if unauthortzed copyright material had ta be removed, a note will indicat8 the deletian. Qversize material. (•.g., map., drawingl, chartl) are reproduced by sectioning the original, begiming al the upper Ieft·...d corner 8I1d continui"", tram Ieft to right in equal sec:tionI with small overtaPl. Photographs induded in the original manuscript h8ve been reprodUCld xerographically in thil capy. Higher quality 8- x 9- bl8ck and white photographie prints are aVllilllble for .,y photogl'8Phl or illustrations 8ppearing in thil capy for an addlticnll charge. Contllct UMI direclly 10 ORIer. Bell & HoweIIlnf0nn8tion and Leaming 300 North Z8eb Raad. Ann Arbor. MI 48108-1348 USA 800-521-0800 • ICAO AND THE USE OF FORCE AGAINST CIVIL AERIAL INTRUDERS by John V. Augustin A thesis submitted ta the Faculty ofGraduate Studies and Research in partial fulfilment of the degree of Master of Laws (LL.M.) Institute of Air and Space Law Faculty of Law, McGill University Montreal, Quebec, canada August 1998 1.V. -
Assessment of the Ability of Existing Airport Gate Infrastructure to Accommodate Transport Category Aircraft with Increased Wingspan for Improved Fuel Efficiency
ASSESSMENT OF THE ABILITY OF EXISTING AIRPORT GATE INFRASTRUCTURE TO ACCOMMODATE TRANSPORT CATEGORY AIRCRAFT WITH INCREASED WINGSPAN FOR IMPROVED FUEL EFFICIENCY Kristina C. Bishop and R. John Hansman This report is based on the Masters Thesis of Kristina C. Bishop submitted to the Department of Aeronautics and Astronautics in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology. Report No. ICAT-2012-4 May 2012 MIT International Center for Air Transportation (ICAT) Department of Aeronautics & Astronautics Massachusetts Institute of Technology Cambridge, MA 02139 USA [This Page Intentionally Left Blank] 2 ASSESSMENT OF THE ABILITY OF EXISTING AIRPORT GATE INFRASTRUCTURE TO ACCOMMODATE TRANSPORT CATEGORY AIRCRAFT WITH INCREASED WINGSPAN FOR IMPROVED FUEL EFFICIENCY By Kristina Bishop Submitted to the Department of Aeronautics and Astronautics On May 24th, 2012 in Partial Fulfillment of the Requirements for the Degree of Master of Science in Aeronautics and Astronautics. Abstract The continuous trend of rising fuel prices increases interest in improving the fuel efficiency of aircraft operations. Additionally, since fuel burn is directly linked to aircraft CO2 emissions, reducing fuel consumption has environmental benefits. One approach to reducing airline cost and mitigating environmental impacts of aviation is to achieve higher fuel efficiency by increasing aircraft wingspan. One concern is that airports may not be able to accommodate increased-wingspan aircraft since existing gate infrastructure may have been sized for the past and current aircraft. This results in a potential tradeoff for airlines; increasing wingspan increases fuel efficiency, but it also limits the number of gates available to maintain current aircraft operations. -
Aviation Suzanne Pinkerton
University of Miami Law School Institutional Repository University of Miami Inter-American Law Review 9-1-1978 Aviation Suzanne Pinkerton Follow this and additional works at: http://repository.law.miami.edu/umialr Recommended Citation Suzanne Pinkerton, Aviation, 10 U. Miami Inter-Am. L. Rev. 530 (1978) Available at: http://repository.law.miami.edu/umialr/vol10/iss2/11 This Report is brought to you for free and open access by Institutional Repository. It has been accepted for inclusion in University of Miami Inter- American Law Review by an authorized administrator of Institutional Repository. For more information, please contact [email protected]. LAWYER OF THE AMERICAS AVIATION REPORT SUZANNE C. PINKERTON* United Nations In September 1977, the International Civil Aviation Organization (ICAO) held its Twenty-second Assembly. Among the resolutions adopted was Resolution A 22-16,1 in which the Assembly requested those member states which had not previously done so, to become parties to the Conven- tion for the Suppression of Unlawful Seizure of Aircraft (Hague, 1970)2 and the Convention for the Suppression of Unlawful Acts against the Safety of Civil Aviation (Montreal, 1971).1 On November 3, 1977, the United Nations General Assembly, in response to the concern voiced by the ICAO, adopted by consensus Resolution 32/84 on the safety of international civil aviation. In adopting the resolution the General Assembly reaffirmed its condemna- tion of aerial hijacking and other interference with civil air travel. Two days earlier the Special Political Commitee had approved, by consensus, the resolution in draft form? In its final form, Resolution 32/8 is divided into five paragraphs. -
Excellence with Equity: It’S Everybody’S Business Findings and Recommendations from the Achievement Gap Study Group
Excellence with Equity: It’s Everybody’s Business Findings and Recommendations from the Achievement Gap Study Group July 2016 Foreword What an honor it has been to work alongside such a dedicated group of educators. Our focus has been on ensuring the highest quality of education for every child in the Commonwealth. We can close the achievement gap if we are willing to consistently implement strategies that are backed by empirical data starting with the removal of stereotypical barriers that inflict adults and affect our children. Frederick Douglass has sagaciously suggested that, “It is easier to build strong children than it is to repair broken adults” (paraphrased). For that reason, this committee has put great emphasis on early childhood education to establish essential building blocks as a solid foundation for the installation of interlocking levels of knowledge critical to assuring that our children can successfully navigate the educational maze that holds the key to their future and ours. If we as policymakers and power brokers are not intentional Dedication about the origination of the solution to the present educational devastation that is devouring us, we will not be successful in steering our children to an intellectual This report is dedicated in destination that will lift the next generation to the heights we collectively aspire. memory of Lynda Thomas. A long-time Prichard This report rebukes the need for further study of what we should do and challenges Committee member all who are strategically positioned to make a difference by doing what we already and leader at Kentucky know. All children achieve more when challenged at high levels. -
Regional Rail
STATION LOCATIONS CONNECTING SERVICES * SATURDAYS, SUNDAYS and MAJOR HOLIDAYS PHILADELPHIA INTERNATIONAL AIRPORT TERMINALS E and F 37, 108, 115 )DUH 6HUYLFHV 7UDLQ1XPEHU AIRPORT INFORMATION AIRPORT TERMINALS C and D 37, 108, 115 =RQH Ê*Ë6WDWLRQV $0 $0 $0 $0 $0 $0 30 30 30 30 30 30 30 30 30 30 30 30 30 $0 D $LUSRUW7HUPLQDOV( ) TERMINAL A - EAST and WEST AIRPORT TERMINAL B 37, 108, 115 REGIONAL RAIL AIRPORT $LUSRUW7HUPLQDOV& ' D American Airlines International & Caribbean AIRPORT TERMINAL A EAST 37, 108, 115 D $LUSRUW7HUPLQDO% British Airways AIRPORT TERMINAL A WEST 37, 108, 115 D $LUSRUW7HUPLQDO$ LINE EASTWICK (DVWZLFN Qatar Airways 37, 68, 108, 115 To/From Center City Philadelphia D 8511 Bartram Ave & D 3HQQ0HGLFLQH6WDWLRQ Eastern Airlines PENN MEDICINE STATION & DDWK6WUHHW6WDWLRQ ' TERMINAL B 3149 Convention Blvd 40, LUCY & DD6XEXUEDQ6WDWLRQ ' 215-580-6565 Effective September 5, 2021 & DD-HIIHUVRQ6WDWLRQ ' American Airlines Domestic & Canadian service MFL, 9, 10, 11, 13, 30, 31, 34, 36, 30th STREET STATION & D7HPSOH8QLYHUVLW\ The Philadelphia Marketplace 44, 49, 62, 78, 124, 125, LUCY, 30th & Market Sts Amtrak, NJT Atlantic City Rail Line • Airport Terminals E and F D :D\QH-XQFWLRQ ² ²² ²² ²² ² ² ² Airport Marriott Hotel SUBURBAN STATION MFL, BSL, 2, 4, 10, 11, 13, 16, 17, DD)HUQ5RFN7& ² 27, 31, 32, 33, 34, 36, 38, 44, 48, 62, • Airport Terminals C and D 16th St -
FAA Airspace Classifications
United States Main article: Airspace class (United States) The U.S. adopted a slightly modified version of the ICAO system on September 16 , 1993 , when regions of airspace designated according to older classifications were converted wholesale. The exceptions are some Terminal Radar Service Areas (TRSA), which have special rules and still exist in a few places. • With some exceptions, Class A airspace is applied to all airspace between 18,000 feet(5,500 m) and Flight Level 600 (approximately 60,000 ft). Above FL600, the airspace reverts to Class E (Reference Order 7400.9P, Subpart E). The transition altitude (see Flight level ) is also consistently 18,000 feet (5,500 m). All operations in US Class A airspace must be conducted under IFR. SVFR flight in Class A airspace is prohibited. • Class B airspace is used around major airports , in a funnel shape that is designed to contain arriving and departing commercial air traffic operating under IFR, up to10,000 feet (3,000 m) above MSL (12,000 feet above Denver, Colorado ). Class C airspace is used around airports and military air bases with a moderate traffic level. Class • Class D is used for smaller airports that have a control tower. The U.S. uses a modified version of the ICAO class C and D airspace, where only radio contact with ATC rather than an ATC clearance is required for VFR operations. • Other controlled airspace is designated as Class E - this includes a large part of the lower airspace. Class E airspace exists in many forms. It can serve as a surface-based extension to Class D airspace to accommodate IFR approach/departure procedure areas.