Combating Ebola with Repurposed Therapeutics Using the CANDO Platform

Total Page:16

File Type:pdf, Size:1020Kb

Combating Ebola with Repurposed Therapeutics Using the CANDO Platform molecules Article Combating Ebola with Repurposed Therapeutics Using the CANDO Platform Gaurav Chopra 1,*, Sashank Kaushik 2,3, Peter L. Elkin 2,3 and Ram Samudrala 2,* 1 Department of Chemistry; Purdue Institute for Drug Discovery; Purdue Institute for Inflammation, Immunology, and Infectious Disease; Purdue Institute for Integrative Neuroscience; Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA 2 Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; [email protected] (S.K.); [email protected] (P.L.E.) 3 Department of Internal Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA * Correspondence: [email protected] (G.C.); [email protected] (R.S.); Tel.: +1-765-496-6108 (G.C.); +1-206-251-8852 (R.S.) Academic Editor: Derek J. McPhee Received: 29 July 2016; Accepted: 28 October 2016; Published: 25 November 2016 Abstract: Ebola virus disease (EVD) is extremely virulent with an estimated mortality rate of up to 90%. However, the state-of-the-art treatment for EVD is limited to quarantine and supportive care. The 2014 Ebola epidemic in West Africa, the largest in history, is believed to have caused more than 11,000 fatalities. The countries worst affected are also among the poorest in the world. Given the complexities, time, and resources required for a novel drug development, finding efficient drug discovery pathways is going to be crucial in the fight against future outbreaks. We have developed a Computational Analysis of Novel Drug Opportunities (CANDO) platform based on the hypothesis that drugs function by interacting with multiple protein targets to create a molecular interaction signature that can be exploited for rapid therapeutic repurposing and discovery. We used the CANDO platform to identify and rank FDA-approved drug candidates that bind and inhibit all proteins encoded by the genomes of five different Ebola virus strains. Top ranking drug candidates for EVD treatment generated by CANDO were compared to in vitro screening studies against Ebola virus-like particles (VLPs) by Kouznetsova et al. and genetically engineered Ebola virus and cell viability studies by Johansen et al. to identify drug overlaps between the in virtuale and in vitro studies as putative treatments for future EVD outbreaks. Our results indicate that integrating computational docking predictions on a proteomic scale with results from in vitro screening studies may be used to select and prioritize compounds for further in vivo and clinical testing. This approach will significantly reduce the lead time, risk, cost, and resources required to determine efficacious therapies against future EVD outbreaks. Keywords: drug repurposing and discovery; multitarget docking; compound–proteome interaction; candock 1. Introduction The 2014 Ebola epidemic was caused by a divergent strain of the Zaire Ebola Virus [1] and is believed to have affected more than 28,000 individuals globally, with an estimated mortality of 74% in confirmed Ebola cases [2]. The mainstay of EBV prevention and treatment is infection control precautions and supportive care to the affected individual(s) in order to maintain cardiovascular function while their immune system mobilizes an adaptive response. Considering the complexity [3] and cost [4] of developing a new drug combined with the fact that countries worst affected were also Molecules 2016, 21, 1537; doi:10.3390/molecules21121537 www.mdpi.com/journal/molecules Molecules 2016, 21, 1537 2 of 11 among the poorest in the world, finding an alternate cheaper route for future EVD outbreak treatments is of paramountMolecules 2016, 21 importance., 1537 2 of 12 Traditional approaches to drug discovery are highly specific to single targets (molecules and indications),among the focusing poorest in on the a world, limited find seting of an interactions alternate cheaper between route for individual future EVD protein outbreak targets treatments and is small moleculeof paramount compounds, importance. but applying the resulting treatments universally to all patients. The goal Traditional approaches to drug discovery are highly specific to single targets (molecules and generally is to target an essential protein responsible for pathogenesis so as to completely inhibit its indications), focusing on a limited set of interactions between individual protein targets and small function, and then determine its toxicity or side effect profile for human use. Almost all current drugs molecule compounds, but applying the resulting treatments universally to all patients. The goal havegenerally been developed is to target by an this essential approach. protein However, responsible the for number pathogenesis of novel so drugsas to completely being discovered inhibit its every year hasfunction, been reducedand then todetermine a handful. its toxicity Currently, or side less effect than profile 50 new for drugs human are use. approved Almost all each current year, drugs and most of themhave are been analogues developed to by other this existing approach. drugs However, or other the number patentworkarounds of novel drugs [being5]. The discovered estimated every average costsyear for developinghas been reduced a novel to a drug handful. and Currently, bringing itless to than market 50 new can drugs be up are to approved $2.6 billion each [6 ].year, Thus, and there is a dearthmost of of them novel are druganalogues development, to other existing which drug is time-s or other and patent cost-prohibitive workarounds [7 [5].–10 ],The particularly estimated for rapidlyaverage emerging costs for indications developing such a novel as divergent drug and bringing strain EVD it to outbreaksmarket can orbe neglectedup to $2.6 billion indications [6]. Thus, such as orphanthere diseases is a dearth [11]. of novel drug development, which is time- and cost-prohibitive [7–10], particularly for rapidly emerging indications such as divergent strain EVD outbreaks or neglected indications One solution is to repurpose and reposition existing drugs that are relatively benign in terms of such as orphan diseases [11]. side effects for new indications [11–19]. We were one of the first to propose shotgun drug repurposing One solution is to repurpose and reposition existing drugs that are relatively benign in terms of for malariaside effects based for new on computational indications [11–19]. multitarget We were one docking of the first with to dynamicspropose shotgun [15]. drug Since repurposing then, we have validatedfor malaria our predictive based on computational models numerous multitarget times docking [9,16– 18with,20 –dynamics22]. This [15]. repurposing Since then, canwe have be made morevalidated accurate our by predictive considering models variations numerous (mutations) times [9,16–18,20–22]. in proteins This encoded repurposing by can individual be made more genomes. Systematicaccurate exploration by considering of drug variations repurposing (mutations) opportunities in proteins is hindered encoded by extensiveby individual competition genomes. in the pharmaceuticalSystematic exploration industry. We of drug utilize repurposing this repurposing opportunities paradigm is hindered along withby extensive a computational competition platform in we havethe developedpharmaceutical that industry. evaluates We relationships utilize this repurposing between compound–proteome paradigm along with interaction a computational signatures to predictplatform genome- we have and developed indication-specific that evaluates drug relationships regimens between for particular compound–proteome individuals in interaction a shotgun and signatures to predict genome- and indication-specific drug regimens for particular individuals in a holistic manner (i.e., against all indications simultaneously). To assess and improve the accuracy of shotgun and holistic manner (i.e., against all indications simultaneously). To assess and improve the our platform, we collaborate with experimental investigators for preclinical and clinical validation of accuracy of our platform, we collaborate with experimental investigators for preclinical and clinical our topvalidation ranking of drug our top candidates ranking drug (see Figurecandidates1). The (see experimental Figure 1). The resultsexperimental obtained results are obtained integrated are back into theintegrated modeling back platform into the modeling to iteratively platform improve to iteratively its accuracy. improve its accuracy. FigureFigure 1. The 1. The Computational Computational Analysis Analysis of of Novel Novel DrugDrug Opportunities (CANDO) (CANDO) platform platform as applied as applied to fiveto Ebolafive Ebola proteomes. proteomes. ( A(A)) GeneralGeneral version version of ofthe the platform platform used usedto determine to determine drug behavior drug behaviorand similarity by performing a virtual screen to predict interactions between “all” known drugs and “all” and similarity by performing a virtual screen to predict interactions between “all” known drugs protein structures; (B) CANDO platform as applied to Ebola, where the known drugs are docked to and “all” protein structures; (B) CANDO platform as applied to Ebola, where the known drugs are structures of five Ebola proteomes to identify the strongest multitarget inhibitors. Credit: Vignettes dockedderived to structures from Protein of five Data Ebola Bank (PDB) proteomes structures to identify depicting the Ebola strongest
Recommended publications
  • Download Product Insert (PDF)
    PRODUCT INFORMATION Quinestrol Item No. 10006320 CAS Registry No.: 152-43-2 Formal Name: 3-(cyclopentyloxy)-19-norpregna- 1,3,5(10)-trien-20-yn-17α-ol Synonyms: Ethylnyl Estradiol-3-cyclopentyl ether, W 3566 MF: C25H32O2 FW: 3645 Purity: ≥98% UV/Vis.: λmax: 202, 281 nm Supplied as: A crystalline solid Storage: -20°C Stability: ≥2 years Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Laboratory Procedures Quinestrol is supplied as a crystalline solid. A stock solution may be made by dissolving the quinestrol in an organic solvent purged with an inert gas. Quinestrol is soluble in organic solvents such as ethanol, DMSO, and dimethyl formamide (DMF). The solubility of quinestrol in ethanol is approximately 20 mg/ml and approximately 30 mg/ml in DMSO and DMF. Quinestrol is sparingly soluble in aqueous buffers. For maximum solubility in aqueous buffers, should first be dissolved in DMSO and then diluted with the aqueous buffer of choice. Quinestrol has a solubility of approximately 0.5 mg/ml in a 1:1 solution of DMSO:PBS (pH 7.2) using this method. We do not recommend storing the aqueous solution for more than one day. Description Quinestrol is a synthetic estrogen that is effective in hormone replacement therapy.1,2 It is a 3-cyclopentyl ether of ethynyl estradiol. After gastrointestinal absorption, it is stored in adipose tissue, where it is slowly released and metabolized in the liver to its active form, ethynyl estradiol. Quinestrol has found limited use in suppressing lactation in postpartum women and, in combination with synthetic progestogens, as contraceptive therapy, although additional studies are needed for both applications.
    [Show full text]
  • Clomifene Citrate(BANM, Rinnm) ⊗
    2086 Sex Hormones and their Modulators Profasi; UK: Choragon; Ovitrelle; Pregnyl; USA: Chorex†; Choron; Gonic; who received the drug for a shorter period.6 No association be- 8. Werler MM, et al. Ovulation induction and risk of neural tube Novarel; Ovidrel; Pregnyl; Profasi; Venez.: Ovidrel; Pregnyl; Profasi†. tween gonadotrophin therapy and ovarian cancer was noted in defects. Lancet 1994; 344: 445–6. Multi-ingredient: Ger.: NeyNormin N (Revitorgan-Dilutionen N Nr this study. The conclusions of this study were only tentative, 9. Greenland S, Ackerman DL. Clomiphene citrate and neural tube 65)†; Mex.: Gonakor. defects: a pooled analysis of controlled epidemiologic studies since the numbers who developed ovarian cancer were small; it and recommendations for future studies. Fertil Steril 1995; 64: has been pointed out that a successfully achieved pregnancy may 936–41. reduce the risk of some other cancers, and that the risks and ben- 10. Whiteman D, et al. Reproductive factors, subfertility, and risk efits of the procedure are not easy to balance.7 A review8 of epi- of neural tube defects: a case-control study based on the Oxford Clomifene Citrate (BANM, rINNM) ⊗ Record Linkage Study Register. Am J Epidemiol 2000; 152: demiological and cohort studies concluded that clomifene was 823–8. Chloramiphene Citrate; Citrato de clomifeno; Clomifène, citrate not associated with any increase in the risk of ovarian cancer 11. Sørensen HT, et al. Use of clomifene during early pregnancy de; Clomifeni citras; Clomiphene Citrate (USAN); Klomifeenisi- when used for less than 12 cycles, but noted conflicting results, and risk of hypospadias: population based case-control study.
    [Show full text]
  • Clomid (Clomiphene Citrate USP)
    PRODUCT MONOGRAPH PrCLOMID® (clomiphene citrate USP) 50 mg Tablets Ovulatory Agent sanofi-aventis Canada Inc. Date of Revision: 2905 Place Louis-R.-Renaud August 9, 2013 Laval, Quebec H7V 0A3 Submission Control No.: 165671 s-a Version 5.0 dated August 9, 2013 Page 1 of 23 PRODUCT MONOGRAPH PrCLOMID® (clomiphene citrate USP) 50 mg Tablets Ovulatory agent. ACTION AND CLINICAL PHARMACOLOGY CLOMID (clomiphene citrate) is an orally-administered, non-steroidal agent which may induce ovulation in anovulatory women in appropriately selected cases.1-16 The ovulatory response to cyclic CLOMID therapy appears to be mediated through increased output of pituitary gonadotropins, which in turn stimulate the maturation and endocrine activity of the ovarian follicle and the subsequent development and function of the corpus luteum. The role of the pituitary is indicated by increased plasma levels of gonadotropins and by the response of the ovary, as manifested by increased plasma level of estradiol. Antagonism of competitive inhibition of endogenous estrogen may play a role in the action of CLOMID on the hypothalamus. CLOMID is a drug of considerable pharmacologic potency. Its administration should be preceded by careful evaluation and selection of the patient, and must be accompanied by close attention to the timing of the dose. With conservative selection and management of the patient, CLOMID has been demonstrated to be a useful therapy for the anovulatory patient. Based on studies with 14C-labeled clomiphene, the drug is readily absorbed orally in humans, and is excreted principally in the feces. Cumulative excretion of the 14C-label averaged 51% of the oral dose after 5 days in 6 subjects, with mean urinary excretion of 8% and mean fecal excretion of 42%; less than 1% per day was excreted in fecal and urine samples collected from 31 to 53 days after 14C-labelled clomiphene administration.
    [Show full text]
  • Management of Women with Clomifene Citrate Resistant Polycystic Ovary Syndrome – an Evidence Based Approach
    1 Management of Women with Clomifene Citrate Resistant Polycystic Ovary Syndrome – An Evidence Based Approach Hatem Abu Hashim Department of Obstetrics & Gynecology, Faculty of Medicine, Mansoura University, Mansoura, Egypt 1. Introduction World Health Organisation (WHO) type II anovulation is defined as normogonadotrophic normoestrogenic anovulation and occurs in approximately 85% of anovulatory patients. Polycystic ovary syndrome (PCOS) is the most common form of WHO type II anovulatory infertility and is associated with hyperandrogenemia (1,2). Moreover, PCOS is the most common endocrine abnormality in reproductive age women. The prevalence of PCOS is traditionally estimated at 4% to 8% from studies performed in Greece, Spain and the USA (3-6). The prevalence of PCOS has increased with the use of different diagnostic criteria and has recently been shown to be 11.9 ± 2.4% -17.8 ± 2.8 in the first community-based prevalence study based on the current Rotterdam diagnostic criteria compared with 10.2 ± 2.2% -12.0 ± 2.4% and 8.7 ± 2.0% using National Institutes of Health criteria and Androgen Excess Society recommendations respectively (7). Importantly, 70% of women in this recent study were undiagnosed (7). Clomiphene citrate (CC) is still holding its place as the first-line therapy for ovulation induction in these patients (2,8,9). CC contains an unequal mixture of two isomers as their citrate salts, enclomiphene and zuclomiphene. Zuclomiphene is much the more potent of the two for induction of ovulation, accounts for 38% of the total drug content of one tablet and has a much longer half-life than enclomiphene, being detectable in plasma 1 month following its administration (10).
    [Show full text]
  • Enhanced Solubility and Dissolution Rate of Raloxifene Using Cycloencapsulation Technique
    Journal of Analytical & Pharmaceutical Research Enhanced Solubility and Dissolution Rate of Raloxifene using Cycloencapsulation Technique Research Article Abstract Volume 2 Issue 5 - 2016 The aim of this study was to improve the water solubility of raloxifene by aqueous solution and solid state was evaluated by the phase solubility diagram, powdercomplexing X-ray it diffractometer,with sulphobutylether-β-cyclodextrin. Fourier-transform infrared Inclusion spectroscopy, complexation nuclear in magnetic resonance, scanning electron microscopy, hot stage microscopy and transmission electron microscopy. The inclusion complex behavior of raloxifene 1Department of Pharmaceutical Technology (Formulation), National Institute of Pharmaceutical Education and Research, classifiedand sulphobutylether-β-cyclodextrin as AL-type curve, indicating the were formation examined of 1:1 by stochiomatric molecular modelinginclusion India method. The phase solubility diagram with sulphobutylether-β-cyclodextrin was complex. The apparent solubility constants calculated from phase solubility 2 -1 Technology Development Center, National Institute of diagram was 753 M . Aqueous solubility and dissolution studies indicated that Pharmaceutical Education and Research, India the dissolution rates were remarkably increased in inclusion complex, compared 3Department of Pharmacoinformatics, National Institute of with the physical mixture and drug alone. In conclusion, inclusion complexation Pharmaceutical Education and Research, India 4 solubility and dissolution rate
    [Show full text]
  • Clomifene Or Letrozole Ovulation Induction Treatment
    What happens next? For most women (once the correct dose has been established) we would encourage you to continue for six months without having to be scanned. After this, if you are still not pregnant, please ring your Fertility Nurse for advice. If, during the time you are receiving treatment, your periods become irregular ie. longer than 33-34 days, or you lose over a stone in weight (gaining is not an option!), please contact your Fertility Nurse. Clomifene or Letrozole Good Luck (Please call if you are pregnant!) Ovulation Induction Cornwall Centre for Reproductive Medicine treatment Wheal Unity Clinic Administrator – 01872 253044 Fertility Nurses – 01872 252061 If you would like this leaflet in large print, braille, audio version or in another language, please contact the General Office on 01872 252690 RCHT 557 © RCHT Design & Publications 2002 Revised 12/2018 V3 Review due 12/2021 What is clomifene? There is also a theoretical, but not proven, concern that prolonged use may Clomifene citrate or Letrozole are the most commonly used drug in the make the development of ovarian cancer more likely. Therefore it is treatment of women who fail to ovulate (produce an egg) regularly. Clomifene recommended to be taken for a year only, taking it for any longer is unlikely to or Letrozole drugs have the effect of boosting the production of those give any significant benefit. hormones that stimulate eggs to grow. When and how is it taken? Does it work for everyone? Take clomifene/letrozole for four days starting the day after your period starts Over half of women will respond to clomifene/letrozole treatment (more so if (ie.
    [Show full text]
  • 6. Endocrine System 6.1 - Drugs Used in Diabetes Also See SIGN 116: Management of Diabetes, 2010
    1 6. Endocrine System 6.1 - Drugs used in Diabetes Also see SIGN 116: Management of Diabetes, 2010 http://www.sign.ac.uk/guidelines/fulltext/116 Insulin Prescribing Guidance in Type 2 Diabetes http://www.fifeadtc.scot.nhs.uk/media/6978/insulin-prescribing-in-type-2-diabetes.pdf 6.1.1 Insulins (Type 2 Diabetes) 6.1.1.1 Short Acting Insulins 1st Choice S – Insuman ® Rapid (Human Insulin) S – Humulin S ® S – Actrapid ® 2nd Choice S – Insulin Aspart (NovoRapid ®) (Insulin Analogues) S – Insulin Lispro (Humalog ®) 6.1.1.2 Intermediate and Long Acting Insulins 1st Choice S – Isophane Insulin (Insuman Basal ®) (Human Insulin) S – Isophane Insulin (Humulin I ®) S – Isophane Insulin (Insulatard ®) 2nd Choice S – Insulin Detemir (Levemir ®) (Insulin Analogues) S – Insulin Glargine (Lantus ®) Biphasic Insulins 1st Choice S – Biphasic Isophane (Human Insulin) (Insuman Comb ® ‘15’, ‘25’,’50’) S – Biphasic Isophane (Humulin M3 ®) 2nd Choice S – Biphasic Aspart (Novomix ® 30) (Insulin Analogues) S – Biphasic Lispro (Humalog ® Mix ‘25’ or ‘50’) Prescribing Points For patients with Type 1 diabetes, insulin will be initiated by a diabetes specialist with continuation of prescribing in primary care. Insulin analogues are the preferred insulins for use in Type 1 diabetes. Cartridge formulations of insulin are preferred to alternative formulations Type 2 patients who are newly prescribed insulin should usually be started on NPH isophane insulin, (e.g. Insuman Basal ®, Humulin I ®, Insulatard ®). Long-acting recombinant human insulin analogues (e.g. Levemir ®, Lantus ®) offer no significant clinical advantage for most type 2 patients and are much more expensive. In terms of human insulin. The Insuman ® range is currently the most cost-effective and preferred in new patients.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,723,320 B2 Bunschoten Et Al
    US007723320B2 (12) United States Patent (10) Patent No.: US 7,723,320 B2 Bunschoten et al. (45) Date of Patent: May 25, 2010 (54) USE OF ESTROGEN COMPOUNDS TO DE 23,36434. A 4, 1975 INCREASE LIBDO IN WOMEN WO WO96 O3929 A 2, 1996 (75) Inventors: Evert Johannes Bunschoten, Heesch OTHER PUBLICATIONS (NL); Herman Jan Tijmen Coelingh Bennink, Driebergen (NL); Christian Holinka CF et al: “Comparison of Effects of Estetrol and Taxoxifen Franz Holinka, New York, NY (US) with Those of Estriol and Estradiol on the Immature Rat Uterus'; Biology of Reproduction; 1980; pp. 913-926; vol. 22, No. 4. (73) Assignee: Pantarhei Bioscience B.V., Al Zeist Holinka CF et al; "In-Vivo Effects of Estetrol on the Immature Rat (NL) Uterus'; Biology of Reproduction; 1979: pp. 242-246; vol. 20, No. 2. Albertazzi Paola et al.; "The Effect of Tibolone Versus Continuous Combined Norethisterone Acetate and Oestradiol on Memory, (*) Notice: Subject to any disclaimer, the term of this Libido and Mood of Postmenopausal Women: A pilot study': Data patent is extended or adjusted under 35 base Biosis "Online!; Oct. 31, 2000: pp. 223-229; vol. 36, No. 3; U.S.C. 154(b) by 1072 days. Biosciences Information Service.: Philadelphia, PA, US. Visser et al., “In vitro effects of estetrol on receptor binding, drug (21) Appl. No.: 10/478,264 targets and human liver cell metabolism.” Climacteric (2008) 11(1) Appx. II: 1-5. (22) PCT Filed: May 17, 2002 Visser et al., “First human exposure to exogenous single-dose oral estetrol in early postmenopausal women.” Climacteric (2008) 11(1): (86).
    [Show full text]
  • Hormone Replacement Therapy and Osteoporosis
    This report may be used, in whole or in part, as the basis for development of clinical practice guidelines and other quality enhancement tools, or a basis for reimbursement and coverage policies. AHRQ or U.S. Department of Health and Human Services endorsement of such derivative products may not be stated or implied. AHRQ is the lead Federal agency charged with supporting research designed to improve the quality of health care, reduce its cost, address patient safety and medical errors, and broaden access to essential services. AHRQ sponsors and conducts research that provides evidence-based information on health care outcomes; quality; and cost, use, and access. The information helps health care decisionmakers— patients and clinicians, health system leaders, and policymakers—make more informed decisions and improve the quality of health care services. Systematic Evidence Review Number 12 Hormone Replacement Therapy and Osteoporosis Prepared for: Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 2101 East Jefferson Street Rockville, MD 20852 http://www.ahrq.gov Contract No. 290-97-0018 Task Order No. 2 Technical Support of the U.S. Preventive Services Task Force Prepared by: Oregon Health Sciences University Evidence-based Practice Center, Portland, Oregon Heidi D. Nelson, MD, MPH August 2002 Preface The Agency for Healthcare Research and Quality (AHRQ) sponsors the development of Systematic Evidence Reviews (SERs) through its Evidence-based Practice Program. With guidance from the third U.S. Preventive Services Task Force∗ (USPSTF) and input from Federal partners and primary care specialty societies, two Evidence-based Practice Centers—one at the Oregon Health Sciences University and the other at Research Triangle Institute-University of North Carolina—systematically review the evidence of the effectiveness of a wide range of clinical preventive services, including screening, counseling, immunizations, and chemoprevention, in the primary care setting.
    [Show full text]
  • Pharmacology/Therapeutics II Block III Lectures 2013-14
    Pharmacology/Therapeutics II Block III Lectures 2013‐14 66. Hypothalamic/pituitary Hormones ‐ Rana 67. Estrogens and Progesterone I ‐ Rana 68. Estrogens and Progesterone II ‐ Rana 69. Androgens ‐ Rana 70. Thyroid/Anti‐Thyroid Drugs – Patel 71. Calcium Metabolism – Patel 72. Adrenocorticosterioids and Antagonists – Clipstone 73. Diabetes Drugs I – Clipstone 74. Diabetes Drugs II ‐ Clipstone Pharmacology & Therapeutics Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones, March 20, 2014 Lecture Ajay Rana, Ph.D. Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones Date: Thursday, March 20, 2014-8:30 AM Reading Assignment: Katzung, Chapter 37 Key Concepts and Learning Objectives To review the physiology of neuroendocrine regulation To discuss the use neuroendocrine agents for the treatment of representative neuroendocrine disorders: growth hormone deficiency/excess, infertility, hyperprolactinemia Drugs discussed Growth Hormone Deficiency: . Recombinant hGH . Synthetic GHRH, Recombinant IGF-1 Growth Hormone Excess: . Somatostatin analogue . GH receptor antagonist . Dopamine receptor agonist Infertility and other endocrine related disorders: . Human menopausal and recombinant gonadotropins . GnRH agonists as activators . GnRH agonists as inhibitors . GnRH receptor antagonists Hyperprolactinemia: . Dopamine receptor agonists 1 Pharmacology & Therapeutics Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones, March 20, 2014 Lecture Ajay Rana, Ph.D. 1. Overview of Neuroendocrine Systems The neuroendocrine
    [Show full text]
  • Supplementary Methods
    1 Supplementary Methods Definitions of the reproductive traits used in the analysis Reproductive trait Definition Age at first birth (years) Age at first live birth (females only). Age at last birth (years) Age at last live birth (females only). Age at menarche (years) Age at menarche between 9 and 17 years. Age at natural menopause (years) Age at last menstrual period excluding those with surgical menopause or taking hormone replacement therapy. Bilateral oophorectomy Ever had bilateral oophorectomy (case) vs. never (control). Breast cancer Breast cancer on registry (ICD10 C50, ICD9 174&175), vs no cancer reported (control). Dysmenorrhea Dysmenorrhea listed as an illness (reported at interview). Early menarche Youngest 5% of BMI adjusted age at menarche(case) vs oldest 5% (control). Age at menarche defined as above. Early menopause Age at natural menopause (as defined above) at 20-45 years (case) vs. 50-60 years (control). Endometrial cancer Endometrial cancer on registry (ICD10 C54, ICD9 182) vs no cancer reported. Endometriosis Endometriosis listed as an illness (reported at interview). Fibroids Fibroids listed as an illness (reported at interview). Hysterectomy Ever had hysterectomy (case) vs. never (control). Irregular menstrual cycles Women still menstruating reporting irregular cycles (case) vs. regular cycles (control). Length of menstrual cycle (days) Women still menstruating reporting regular cycles. Excludes women taking oral contraceptives, HRT or hormone medications (see list below) and pregnant women. Long menstrual cycle (vs average) Length of menstrual cycle >31 days (case) vs 28 days (control). As defined above. Menopausal symptoms Menopausal symptoms listed as an illness (reported at interview). Menorrhagia Menorrhagia listed as an illness (reported at interview).
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,284,263 B1 Place (45) Date of Patent: Sep
    USOO6284263B1 (12) United States Patent (10) Patent No.: US 6,284,263 B1 Place (45) Date of Patent: Sep. 4, 2001 (54) BUCCAL DRUG ADMINISTRATION IN THE 4,755,386 7/1988 Hsiao et al. TREATMENT OF FEMALE SEXUAL 4,764,378 8/1988 Keith et al.. DYSFUNCTION 4,877,774 10/1989 Pitha et al.. 5,135,752 8/1992 Snipes. 5,190,967 3/1993 Riley. (76) Inventor: Virgil A. Place, P.O. Box 44555-10 5,346,701 9/1994 Heiber et al. Ala Kahua, Kawaihae, HI (US) 96743 5,516,523 5/1996 Heiber et al. 5,543,154 8/1996 Rork et al. ........................ 424/133.1 (*) Notice: Subject to any disclaimer, the term of this 5,639,743 6/1997 Kaswan et al. patent is extended or adjusted under 35 6,180,682 1/2001 Place. U.S.C. 154(b) by 0 days. * cited by examiner (21) Appl. No.: 09/626,772 Primary Examiner Thurman K. Page ASSistant Examiner-Rachel M. Bennett (22) Filed: Jul. 27, 2000 (74) Attorney, Agent, or Firm-Dianne E. Reed; Reed & Related U.S. Application Data ASSciates (62) Division of application No. 09/237,713, filed on Jan. 26, (57) ABSTRACT 1999, now Pat. No. 6,117,446. A buccal dosage unit is provided for administering a com (51) Int. Cl. ............................. A61F 13/02; A61 K9/20; bination of Steroidal active agents to a female individual. A61K 47/30 The novel buccal drug delivery Systems may be used in (52) U.S. Cl. .......................... 424/435; 424/434; 424/464; female hormone replacement therapy, in female 514/772.3 contraception, to treat female Sexual dysfunction, and to treat or prevent a variety of conditions and disorders which (58) Field of Search ....................................
    [Show full text]