Mission Accomplished? HTTPS Security After Diginotar
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Alcatel-Lucent Security Advisory Sa0xx
Alcatel-Lucent Security Advisory No. SA0053 Ed. 04 Information about Poodle vulnerability Summary POODLE stands for Padding Oracle On Downgraded Legacy Encryption. The POODLE has been reported in October 14th 2014 allowing a man-in-the-middle attacker to decrypt ciphertext via a padding oracle side-channel attack. The severity is not considered as the same for Heartbleed and/or bash shellshock vulnerabilities. The official risk is currently rated Medium. The classification levels are: Very High, High, Medium, and Low. The SSLv3 protocol is only impacted while TLSv1.0 and TLSv1.2 are not. This vulnerability is identified CVE- 2014-3566. Alcatel-Lucent Enterprise voice products using protocol SSLv3 are concerned by this security alert. Openssl versions concerned by the vulnerability: OpenSSL 1.0.1 through 1.0.1i (inclusive) OpenSSL 1.0.0 through 1.0.0n (inclusive) OpenSSL 0.9.8 through 0.9.8zb (inclusive) The Alcatel-Lucent Enterprise Security Team is currently investigating implications of this security flaw and working on a corrective measure, for OpenTouch 2.1.1 planned in Q4 2015, to prevent using SSLv3 that must be considered as vulnerable. This note is for informational purpose about the padding-oracle attack identified as “POODLE”. References CVE-2014-3566 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3566 Advisory severity CVSS Base score : 4.3 (MEDIUM) - AV:N/AC:M/Au:N/C:P/I:N/A:N https://www.openssl.org/news/secadv_20141015.txt https://www.openssl.org/~bodo/ssl-poodle.pdf Description of the vulnerabilities Information about Poodle vulnerability (CVE-2014-3566). -
Systematization of Vulnerability Discovery Knowledge: Review
Systematization of Vulnerability Discovery Knowledge Review Protocol Nuthan Munaiah and Andrew Meneely Department of Software Engineering Rochester Institute of Technology Rochester, NY 14623 {nm6061,axmvse}@rit.edu February 12, 2019 1 Introduction As more aspects of our daily lives depend on technology, the software that supports this technology must be secure. We, as users, almost subconsciously assume the software we use to always be available to serve our requests while preserving the confidentiality and integrity of our information. Unfortunately, incidents involving catastrophic software vulnerabilities such as Heartbleed (in OpenSSL), Stagefright (in Android), and EternalBlue (in Windows) have made abundantly clear that software, like other engineered creations, is prone to mistakes. Over the years, Software Engineering, as a discipline, has recognized the potential for engineers to make mistakes and has incorporated processes to prevent such mistakes from becoming exploitable vulnerabilities. Developers leverage a plethora of processes, techniques, and tools such as threat modeling, static and dynamic analyses, unit/integration/fuzz/penetration testing, and code reviews to engineer secure software. These practices, while effective at identifying vulnerabilities in software, are limited in their ability to describe the engineering failures that may have led to the introduction of vulnerabilities. Fortunately, as researchers propose empirically-validated metrics to characterize historical vulnerabilities, the factors that may have led to the introduction of vulnerabilities emerge. Developers must be made aware of these factors to help them proactively consider security implications of the code that they contribute. In other words, we want developers to think like an attacker (i.e. inculcate an attacker mindset) to proactively discover vulnerabilities. -
RSA-512 Certificates Abused in the Wild
RSA-512 Certificates abused in the wild During recent weeks we have observed several interesting publications which have a direct relation to an investigation we worked on recently. On one hand there was a Certificate Authority being revoked by Mozilla, Microsoft and Google (Chrome), on the other hand there was the disclosure of a malware attack by Mikko Hypponen (FSecure) using a government issued certificate signed by the same Certificate Authority. That case however is not self-contained and a whole range of malicious software had been signed with valid certificates. The malicious software involved was used in targeted attacks focused on governments, political organizations and the defense industry. The big question is of course, what happened, and how did the attackers obtain access to these certificates? We will explain here in detail how the attackers have used known techniques to bypass the Microsoft Windows code signing security model. Recently Mikko Hypponen wrote a blog on the F-Secure weblog (http://www.f-secure.com/weblog/archives/00002269.html) detailing the discovery of a certificate used to sign in the wild malware. Specifically this malware was embedded in a PDF exploit and shipped in August 2011. Initially Mikko also believed the certificate was stolen, as that is very common in these days, with a large amount of malware families having support, or optional support, for stealing certificates from the infected system. Apparently someone Mikko spoke to mentioned something along the lines that it had been stolen a long time ago. During the GovCert.nl symposium Mikko mentioned the certificate again, but now he mentioned that according to the people involved with investigating the case in Malaysia it likely wasn't stolen. -
Internet Security Threat Report VOLUME 21, APRIL 2016 TABLE of CONTENTS 2016 Internet Security Threat Report 2
Internet Security Threat Report VOLUME 21, APRIL 2016 TABLE OF CONTENTS 2016 Internet Security Threat Report 2 CONTENTS 4 Introduction 21 Tech Support Scams Go Nuclear, 39 Infographic: A New Zero-Day Vulnerability Spreading Ransomware Discovered Every Week in 2015 5 Executive Summary 22 Malvertising 39 Infographic: A New Zero-Day Vulnerability Discovered Every Week in 2015 8 BIG NUMBERS 23 Cybersecurity Challenges For Website Owners 40 Spear Phishing 10 MOBILE DEVICES & THE 23 Put Your Money Where Your Mouse Is 43 Active Attack Groups in 2015 INTERNET OF THINGS 23 Websites Are Still Vulnerable to Attacks 44 Infographic: Attackers Target Both Large and Small Businesses 10 Smartphones Leading to Malware and Data Breaches and Mobile Devices 23 Moving to Stronger Authentication 45 Profiting from High-Level Corporate Attacks and the Butterfly Effect 10 One Phone Per Person 24 Accelerating to Always-On Encryption 45 Cybersecurity, Cybersabotage, and Coping 11 Cross-Over Threats 24 Reinforced Reassurance with Black Swan Events 11 Android Attacks Become More Stealthy 25 Websites Need to Become Harder to 46 Cybersabotage and 12 How Malicious Video Messages Could Attack the Threat of “Hybrid Warfare” Lead to Stagefright and Stagefright 2.0 25 SSL/TLS and The 46 Small Business and the Dirty Linen Attack Industry’s Response 13 Android Users under Fire with Phishing 47 Industrial Control Systems and Ransomware 25 The Evolution of Encryption Vulnerable to Attacks 13 Apple iOS Users Now More at Risk than 25 Strength in Numbers 47 Obscurity is No Defense -
The Dark Reality of Open Source Spotlight Report
SPOTLIGHT The Dark Reality of Open Source Through the Lens of Threat and Vulnerability Management RiskSense Spotlight Report • May 2020 Executive Summary Open sourCe software (OSS) has quiCkly transformed both And while Heartbleed and the Apache Struts how modern applications are built and the underlying code vulnerabilities are the household names of open source they rely on. Access to high-quality and powerful open vulnerabilities, they are far from the only examples. Open source software projects has allowed developers to quickly source software is increasingly being targeted by integrate new capabilities into their applications without cryptominers, ransomware, and leveraged in DDoS having to reinvent the wheel. As a result, it is now estimated attacks. Unfortunately, OSS vulnerabilities are often a that between 80% and 90% of the code in most modern blind spot for many enterprises, who may not always be applications is made up of open source components. aware of all the open source projects and dependencies Likewise, many of the very tools that have enabled the that are used in their applications. growth of DevOps and CI/CD such as Jenkins, Kubernetes, and Docker are themselves open source projects. With this in mind, we have focused this version of the RiskSense Spotlight report on vulnerabilities in some of OSS also allows organizations to reduce their software today’s most popular open source software, including costs, and is often key to digital transformation efforts more than 50 OSS projects and over 2,600 vulnerabilities. and the transition of services to the cloud. It is no We then used this dataset to provide a risk-based surprise then that a 2020 report from Red Hat found that analysis of open source software to reveal the following: 95% of organizations view open source software as strategically important to their business. -
Combat Top Security Vulnerabilities: HPE Tippingpoint Intrusion
Business white paper Combat top security vulnerabilities HPE TippingPoint intrusion prevention system Business white paper Page 2 The year 2014 marked a new pinnacle for hackers. Vulnerabilities were uncovered in some of the most widely deployed software in the world—some of it in systems actually intended to make you more secure. HPE TippingPoint next-generation intrusion prevention system (IPS) and next-generation firewall (NGFW) customers rely on us to keep their networks safe. And when it comes to cyber threats, every second matters. So how did HPE TippingPoint do? This brief highlights the top security vulnerabilities of 2014—the ones that sent corporate security executives scrambling to protect their businesses. And it describes how HPE TippingPoint responded to keep our customers safe. Heartbleed—HPE TippingPoint intrusion prevention system stops blood flow early Any vulnerability is concerning, but when a vulnerability is discovered in software designed to assure security, it leaves businesses exposed and vulnerable. That was the case with the Heartbleed vulnerability disclosed by the OpenSSL project on April 7, 2014. They found the vulnerability in versions of OpenSSL—the open-source cryptographic library widely used to encrypt Internet traffic. Heartbleed grew from a coding error that allowed remote attackers to read information from process memory by sending heartbeat packets that trigger a buffer over-read. As a demonstration of the vulnerability, the OpenSSL Project created a sample exploit that successfully stole private cryptography keys, user names and passwords, instant messages, emails, and business-critical documents and communications. We responded within hours to protect TippingPoint customers. On April 8, we released a custom filter package to defend against the vulnerability. -
IBM X-Force Threat Intelligence Quarterly, 1Q 2015
IBM Security Systems March 2015 IBM X-Force Threat Intelligence Quarterly, 1Q 2015 Explore the latest security trends—from “designer vulns” to mutations in malware— based on 2014 year-end data and ongoing research 2 IBM X-Force Threat Intelligence Quarterly 1Q 2015 Contents Executive overview 2 Executive overview When we look back in history to review and understand the past year, you can be assured it will be remembered as a year of 4 Roundup of security incidents in 2014 significant change. 11 Citadel, the financial malware that continues to adapt In early January 2014, companies large and small scrambled to Are mobile application developers for Android putting their 14 better understand and analyze a major retail breach that left users at risk? them asking whether or not their own security measures would 17 Shaking the foundation: Vulnerability disclosures in 2014 survive the next storm. Before spring was barely in motion, we had our first taste of the “designer vuln”—a critical 21 About X-Force vulnerability that not only proved lethal for targeted attacks, 22 Contributors but also had a cleverly branded logo, website and call-name (or handle) that would forever identify the disclosure. 22 For more information 23 Footnotes These designer vulns appeared within long-held foundational frameworks used by the majority of websites, and they continued throughout 2014, garnering catchy name after catchy name—Heartbleed, Shellshock, POODLE, and into 2015, Ghost and FREAK. This in and of itself raises the question of what it takes for a vulnerability to merit a marketing push, PR and logo design, while the other thousands discovered throughout the year do not. -
TLS Attacks & DNS Security
IAIK TLS Attacks & DNS Security Information Security 2019 Johannes Feichtner [email protected] IAIK Outline TCP / IP Model ● Browser Issues Application SSLStrip Transport MITM Attack revisited Network Link layer ● PKI Attacks (Ethernet, WLAN, LTE…) Weaknesses HTTP TLS / SSL FLAME FTP DNS Telnet SSH ● Implementation Attacks ... ● Protocol Attacks ● DNS Security IAIK Review: TLS Services All applications running TLS are provided with three essential services Authentication HTTPS FTPS Verify identity of client and server SMTPS ... Data Integrity Detect message tampering and forgery, TLS e.g. malicious Man-in-the-middle TCP IP Encryption Ensure privacy of exchanged communication Note: Technically, not all services are required to be used Can raise risk for security issues! IAIK Review: TLS Handshake RFC 5246 = Establish parameters for cryptographically secure data channel Full handshake Client Server scenario! Optional: ClientHello 1 Only with ServerHello Client TLS! Certificate 2 ServerKeyExchange Certificate CertificateRequest ClientKeyExchange ServerHelloDone CertificateVerify 3 ChangeCipherSpec Finished ChangeCipherSpec 4 Finished Application Data Application Data IAIK Review: Certificates Source: http://goo.gl/4qYsPz ● Certificate Authority (CA) = Third party, trusted by both the subject (owner) of the certificate and the party (site) relying upon the certificate ● Browsers ship with set of > 130 trust stores (root CAs) IAIK Browser Issues Overview Focus: Relationship between TLS and HTTP Problem? ● Attacker wants to access encrypted data ● Browsers also have to deal with legacy websites Enforcing max. security level would „break“ connectivity to many sites Attack Vectors ● SSLStrip ● MITM Attack …and somehow related: Cookie Stealing due to absent „Secure“ flag… IAIK Review: ARP Poisoning How? Attacker a) Join WLAN, ● Sniff data start ARP Poisoning ● Manipulate data b) Create own AP ● Attack HTTPS connections E.g. -
Web and Mobile Security
Cyber Security Body of Knowledge: Web and Mobile Security Sergio Maffeis Imperial College London bristol.ac.uk © Crown Copyright, The National Cyber Security Centre 2021. This information is licensed under the Open Government Licence v3.0. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open- government-licence/. When you use this information under the Open Government Licence, you should include the following attribution: CyBOK Web & Mobile Security Knowledge Area Issue 1.0 © Crown Copyright, The National Cyber Security Centre 2021, licensed under the Open Government Licence http://www.nationalarchives.gov.uk/doc/open- government-licence/. The CyBOK project would like to understand how the CyBOK is being used and its uptake. The project would like organisations using, or intending to use, CyBOK for the purposes of education, training, course development, professional development etc. to contact it at [email protected] to let the project know how they are using CyBOK. bristol.ac.uk Web & Mobile Security KA • This webinar covers and complements selected topics from the “Web & Mobile Security Knowledge Area - Issue 1.0” document [WMS-KA for short] • “The purpose of this Knowledge Area is to provide an overview of security mechanisms, attacks and defences in modern web and mobile ecosystems.” • We assume basic knowledge of the web and mobile platforms – The WMS-KA also covers some of the basic concepts assumed here Web and Mobile Security 3 Scope • The focus of WMS-KA is on the intersection of mobile and web security, as a result of recent appification and webification trends. – The KA does not cover specific mobile-only aspects including mobile networks, mobile malware, side channels. -
SSL/TLS Interception Proxies and Transitive Trust Jeff Jarmoc Dell Secureworks Counter Threat Unit℠ Threat Intelligence
SSL/TLS Interception Proxies and Transitive Trust Jeff Jarmoc Dell SecureWorks Counter Threat Unit℠ Threat Intelligence Presented at Black Hat Europe – March 14, 2012. Introduction Secure Sockets Layer (SSL) [1] and its successor Transport Layer Security (TLS) [2] have become key components of the modern Internet. The privacy, integrity, and authenticity [3] [4] provided by these protocols are critical to allowing sensitive communications to occur. Without these systems, e- commerce, online banking, and business-to-business exchange of information would likely be far less frequent. Threat actors have also recognized the benefits of transport security, and they are increasingly turning to SSL to hide their activities. Advanced Persistent Threat (APT) attackers [5], botnets [6], and even commodity web attacks can leverage SSL encryption to evade detection. To counter these tactics, organizations are increasingly deploying security controls that intercept end- to-end encrypted channels. Web proxies, data loss prevention (DLP) systems, specialized threat detection solutions, and network intrusion prevention systems (NIPS) offer functionality to intercept, inspect, and filter encrypted traffic. Similar functionality is present in lawful intercept systems and solutions enabling the broad surveillance of encrypted communications by governments. Broadly classified as “SSL/TLS interception proxies,” these solutions act as a “man in the middle,” violating the end-to-end security promises of SSL. This type of interception comes at a cost. Intercepting SSL-encrypted connections sacrifices a degree of privacy and integrity for the benefit of content inspection, often at the risk of authenticity and endpoint validation. Implementers and designers of SSL interception proxies should consider these risks and understand how their systems operate in unusual circumstances. -
Certificate Transparency: New Part of PKI Infrastructure
Certificate transparency: New part of PKI infrastructure A presentation by Dmitry Belyavsky, TCI ENOG 7 Moscow, May 26-27, 2014 About PKI *) *) PKI (public-key infrastructure) is a set of hardware, software, people, policies, and procedures needed to create, manage, distribute, use, store, and revoke digital certificates Check the server certificate The server certificate signed correctly by any of them? Many trusted CAs NO YES Everything seems to We warn the user be ok! DigiNotar case OCSP requests for the fake *.google.com certificate Source: FOX-IT, Interim Report, http://cryptome.org/0005/diginotar-insec.pdf PKI: extra trust Independent Trusted PKI source certificate DANE (RFC 6698) Certificate pinning Limited browsers support Mozilla Certificate Patrol, Chrome cache for Google certificates Certificate transparency (RFC 6962) Inspired by Google (Support in Chrome appeared) One of the authors - Ben Laurie (OpenSSL Founder) CA support – Comodo Certificate Transparency: how it works • Log accepts cert => SCT Client • Is SCT present and signed correctly? Client • Is SCT present and signed correctly? Auditor • Does log server behave correctly? Monitor • Any suspicious certs? Certificate Transparency: how it works Source: http://www.certificate-transparency.org Certificate Transparency how it works Source: http://www.certificate-transparency.org Certificate Transparency current state Google Chrome Support (33+) http://www.certificate-transparency.org/certificate-transparency-in-chrome Google Cert EV plan http://www.certificate-transparency.org/ev-ct-plan Certificate Transparency current state Open source code 2 pilot logs Certificate Transparency: protect from what? SAVE from MITM attack ü Warning from browser ü Site owner can watch logs for certs Do NOT SAVE from HEARTBLEED! Certificate transparency and Russian GOST crypto Russian GOST does not save from the MITM attack Algorithm SHA-256 >>> GOSTR34.11-2012 Key >>> GOST R 34.10-2012 Q&A Questions? Drop ‘em at: [email protected] . -
Automating Patching of Vulnerable Open-Source Software Versions in Application Binaries
Automating Patching of Vulnerable Open-Source Software Versions in Application Binaries Ruian Duan:, Ashish Bijlani:, Yang Ji:, Omar Alrawi:, Yiyuan Xiong˚, Moses Ike:, Brendan Saltaformaggio,: and Wenke Lee: fruian, ashish.bijlani, yang.ji, alrawi, [email protected], [email protected] [email protected], [email protected] : Georgia Institute of Technology, ˚ Peking University Abstract—Mobile application developers rely heavily on open- while ensuring backward compatibility, and test for unin- source software (OSS) to offload common functionalities such tended side-effects. For the Android platform, Google has as the implementation of protocols and media format playback. initiated the App Security Improvement Program (ASIP) [21] Over the past years, several vulnerabilities have been found in to notify developers of vulnerable third-party libraries in popular open-source libraries like OpenSSL and FFmpeg. Mobile use. Unfortunately, many developers, as OSSPolice [15] and applications that include such libraries inherit these flaws, which LibScout [4] show, do not update or patch their application, make them vulnerable. Fortunately, the open-source community is responsive and patches are made available within days. However, which leaves end-users exposed. Android developers mainly mobile application developers are often left unaware of these use Java and C/C++ [1] libraries. While Derr et al. [14] flaws. The App Security Improvement Program (ASIP) isa show that vulnerable Java libraries can be fixed by library- commendable effort by Google to notify application developers level update, their C/C++ counterparts, which contain many of these flaws, but recent work has shown that many developers more documented security bugs in the National Vulnerability do not act on this information.