3.2 Flood Level of Risk* to Flooding Is a Common Occurrence in Northwest Oregon
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geologic Map of the Sauvie Island Quadrangle, Multnomah and Columbia Counties, Oregon, and Clark County, Washington
Geologic Map of the Sauvie Island Quadrangle, Multnomah and Columbia Counties, Oregon, and Clark County, Washington By Russell C. Evarts, Jim E. O'Connor, and Charles M. Cannon Pamphlet to accompany Scientific Investigations Map 3349 2016 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Director U.S. Geological Survey, Reston, Virginia: 2016 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. Suggested citation: Evarts, R.C., O'Connor, J.E., and Cannon, C.M., 2016, Geologic map of the Sauvie Island quadrangle, Multnomah and Columbia Counties, Oregon, and Clark County, Washington: U.S. Geological Survey Scientific Investigations Map 3349, scale 1:24,000, pamphlet 34 p., http://dx.doi.org/10.3133/sim3349. ISSN 2329-132X (online) Contents Introduction ................................................................................................................................................................... -
Timing of In-Water Work to Protect Fish and Wildlife Resources
OREGON GUIDELINES FOR TIMING OF IN-WATER WORK TO PROTECT FISH AND WILDLIFE RESOURCES June, 2008 Purpose of Guidelines - The Oregon Department of Fish and Wildlife, (ODFW), “The guidelines are to assist under its authority to manage Oregon’s fish and wildlife resources has updated the following guidelines for timing of in-water work. The guidelines are to assist the the public in minimizing public in minimizing potential impacts to important fish, wildlife and habitat potential impacts...”. resources. Developing the Guidelines - The guidelines are based on ODFW district fish “The guidelines are based biologists’ recommendations. Primary considerations were given to important fish species including anadromous and other game fish and threatened, endangered, or on ODFW district fish sensitive species (coded list of species included in the guidelines). Time periods were biologists’ established to avoid the vulnerable life stages of these fish including migration, recommendations”. spawning and rearing. The preferred work period applies to the listed streams, unlisted upstream tributaries, and associated reservoirs and lakes. Using the Guidelines - These guidelines provide the public a way of planning in-water “These guidelines provide work during periods of time that would have the least impact on important fish, wildlife, and habitat resources. ODFW will use the guidelines as a basis for the public a way of planning commenting on planning and regulatory processes. There are some circumstances where in-water work during it may be appropriate to perform in-water work outside of the preferred work period periods of time that would indicated in the guidelines. ODFW, on a project by project basis, may consider variations in climate, location, and category of work that would allow more specific have the least impact on in-water work timing recommendations. -
Portland Water Bureau and United States Forest Service Bull Run Watershed Management Unit Annual Report April 2019
Portland Water Bureau and United States Forest Service Bull Run Watershed Management Unit Annual Report April 2019 Bull Run Watershed Semi-Annual Meeting 1 2 CONTENTS A. OVERVIEW .................................................................................................................. 4 B. SECURITY and ACCESS MANAGEMENT ................................................................. 4 Bull Run Security Access Policies and Procedures ...................................................... 4 C. EMERGENCY PLANNING and RESPONSE .............................................................. 5 Life Flight Helicopter Landing Zones ............................. Error! Bookmark not defined. D. TRANSPORTATION SYSTEM ................................................................................... 5 2018 Projects: Road 10 (“10H”; Road 10 Shoulder Repair) ......................................... 5 2019 Projects: Road 10 (“10R”: MP 28.77 - 31.85) ....................................................... 5 E. FIRE PLANNING, PREVENTION, DETECTION, and SUPPRESSION ................... 6 Other Fires - 2017 ............................................................ Error! Bookmark not defined. Hickman Butte Fire Lookout ........................................................................................ 7 F. WATER MONITORING (Quality and Quantity) ...................................................... 8 G. NATURAL RESOURCES – TERRESTRIAL ............................................................... 9 Invasive Species - Plants ............................................................................................... -
Portland Harbor RI/FS Draft Final Remedial Investigation Report April 27, 2015
Portland Harbor RI/FS Draft Final Remedial Investigation Report April 27, 2015 3.0 ENVIRONMENTAL SETTING This section describes the current and historical physical characteristics and human uses of the Portland Harbor Superfund Site. Physical characteristics of the site include meteorology, regional geology and hydrogeology, surface water hydrology, the physical system (which includes bathymetry, sediment characteristics, and hydrodynamics and sediment transport), habitat, and surface features. Human characteristics of the site that are discussed here include historical and current land and river use, the municipal sewer system, and human access and use. In addition to providing context to the RI sampling and analysis, the factors presented in this section are considered in the refinement of the Study Area-wide CSM, which is presented in Section 10. Sections 3.1 through 3.7 focuses primarily on the physical setting within the Study Area (RM 1.9 to 11.8). However, the physical features of the Willamette River from Willamette Falls (RM 26) to the Columbia River (RM 0), as well as the upstream portion of Multnomah Channel, are discussed as needed to place the Study Area’s physical characteristics into a regional context. The Willamette River basin has a drainage area of 11,500 square miles and is bordered by foothills and mountains of the Cascade and Coast ranges up to 10,000 feet high to the south, east, and west (Trimble 1963). The main channel of the Willamette forms in the southern portion of the valley near Eugene, at the convergence of the Middle and Coast forks. It flows through the broad and fertile Willamette Valley region and at Oregon City flows over the Willamette Falls and passes through Portland before joining the Columbia River (Map 3.1-1). -
TMDL Implementation Plan Annual Report
City of Portland, Oregon Total Maximum Daily Load (TMDL) Implementation Plan Fourth Annual Status Report Fiscal Year 2011-2012 (July 1, 2011 – June 30, 2012) Submitted to: Oregon Department of Environmental Quality November 1, 2012 TMDL Implementation Plan Fourth Annual Status Report November 1, 2012 Introduction This Total Maximum Daily Load (TMDL) Implementation Plan Fourth Annual Status Report summarizes key activities and accomplishments for the City of Portland (City) during fiscal year (FY) 2011-2012 (July 1, 2011 to June 30, 2012). This is the fourth annual status report submitted by the City following the approval of the Total Maximum Daily Load (TMDL) Implementation Plan (IP) on March 6, 2009, in accordance with the Willamette Basin TMDL Water Quality Management Plan (WQMP). The IP was updated in FY11-12 to reflect the revised National Pollutant Discharge Elimination System (NPDES) Municipal Separate Storm Sewer System (MS4) Stormwater Management Plan (SWMP), and the updated portion was included in the third annual status report. This report does not encompass all elements of the TMDL Implementation Plan, but rather focuses on the most important implementation actions. It also does not quantify the pollutant load reduction of every activity because reliable, consistent, and universally accepted tools are currently not available to assess pollutant load reduction effectiveness of many of the actions (e.g., pollution prevention, education, stream restoration). For parameters with EPA-approved stormwater-related TMDL Waste Load Allocations (WLAs), pollutant load reductions from structural facilities within the City’s MS4 area are estimated as part of NPDES MS4 permit compliance. That evaluation was most recently conducted as part of the 2008 NPDES MS4 Permit Renewal Submittal (http://www.portlandonline.com/bes/index.cfm?c=50333&a=246071). -
Protecting Freshwater Resources on Mount Hood National Forest Recommendations for Policy Changes
PROTECTING FRESHWATER RESOURCES ON MOUNT HOOD NATIONAL FOREST RECOMMENDATIONS FOR POLICY CHANGES Produced by PACIFIC RIVERS COUNCIL Protecting Freshwater Resources on Mount Hood National Forest Pacific Rivers Council January 2013 Fisherman on the Salmon River Acknowledgements This report was produced by John Persell, in partnership with Bark and made possible by funding from The Bullitt Foundation and The Wilburforce Foundation. Pacific Rivers Council thanks the following for providing relevant data and literature, reviewing drafts of this paper, offering important discussions of issues, and otherwise supporting this project. Alex P. Brown, Bark Dale A. McCullough, Ph.D. Susan Jane Brown Columbia River Inter-Tribal Fisheries Commission Western Environmental Law Center G. Wayne Minshall, Ph.D. Lori Ann Burd, J.D. Professor Emeritus, Idaho State University Dennis Chaney, Friends of Mount Hood Lisa Moscinski, Gifford Pinchot Task Force Matthew Clark Thatch Moyle Patrick Davis Jonathan J. Rhodes, Planeto Azul Hydrology Rock Creek District Improvement Company Amelia Schlusser Richard Fitzgerald Pacific Rivers Council 2011 Legal Intern Pacific Rivers Council 2012 Legal Intern Olivia Schmidt, Bark Chris A. Frissell, Ph.D. Mary Scurlock, J.D. Doug Heiken, Oregon Wild Kimberly Swan Courtney Johnson, Crag Law Center Clackamas River Water Providers Clair Klock Steve Whitney, The Bullitt Foundation Klock Farm, Corbett, Oregon Thomas Wolf, Oregon Council Trout Unlimited Bronwen Wright, J.D. Pacific Rivers Council 317 SW Alder Street, Suite 900 Portland, OR 97204 503.228.3555 | 503.228.3556 fax [email protected] pacificrivers.org Protecting Freshwater Resources on Mt. Hood National Forest: 2 Recommendations for Policy Change Table of Contents Executive Summary iii Part One: Introduction—An Urban Forest 1 Part Two: Watersheds of Mt. -
Shipping in Pacific Northwest Halted Due to Cracked Barge Lock at Bonneville Dam
Shipping in Pacific Northwest Halted Due to Cracked Barge Lock at Bonneville Dam Reports of a broken barge lock at the Bonneville Dam on the Columbia River surfaced on September 9th. The crack was discovered last week and crews began working Monday morning on repairs. The cause of the damage is unknown. To begin the repairs, the crews must first demolish the cracked concrete section. It remains unclear, however, when the repairs will be complete. Navigation locks allow barges to pass through the concrete dams that were built across the Columbia and Snake Rivers to generate hydroelectricity for the West. A boat will enter the lock which is then sealed. The water is then lowered or raised inside the lock to match the level of the river on the other side of the dam. When the levels match, the lock is then opened and the boat exits. The concrete that needs to be repaired acts as the seal for the lock. The damage to the concrete at the Bonneville Dam resulted in significant leaking—enough that water levels were falling when the lock was in operation. Thus, immediate repair was necessary. The Columbia River is a major shipping highway and the shutdown means barges cannot transport millions of tons of wheat, wood, and other goods from the inland Pacific Northwest to other markets. Eight million tons of cargo travel inland on the Columbia and Snake rivers each year. Kristin Meira, the executive director of the Pacific Northwest Waterways Association said that 53% of U.S. wheat exports were transported on the Columbia River in 2017. -
To Save the Salmon Here’S a Bit of History and Highlights of the Corps' Work to Assure Salmon Survival and Restoration
US Army Corps of Engineers R Portland District To Save North Pacific Region: Northwestern Division The Salmon Pacific Salmon Coordination Office P.O. Box 2870 Portland, OR 97208-2870 Phone: (503) 808-3721 http://www.nwd.usace.army.mil/ps/ Portland District: Public Information P.O. Box 2946 Portland, OR 97208-2946 Phone: (503)808-5150 http://www.nwp.usace.army.mil Walla Walla District: Public Affairs Office 201 N. 3rd Ave Walla Walla, WA 99362-1876 Phone: (509) 527-7020 http://www.nww.usace.army.mil 11/97 Corps Efforts to Save the Salmon Here’s a bit of history and highlights of the Corps' work to assure salmon survival and restoration. 1805-1900s: Lewis and Clark see “multitudes” 1951: The Corps embarks on a new research of migrating fish in the Columbia River. By program focusing on designs for more effective 1850, settlements bring agriculture, commercial adult fishways. fishing to the area. 1955: A fisheries field unit was established at 1888: A Corps report warns Congress of “an Bonneville Dam. There, biologists and enormous reduction in the numbers of spawning technicians work to better understand and fish...” in the Columbia River. improve fish passage conditions on the river 1900s-1930s: Overfishing, pollution, non- system. federal dams, unscreened irrigation ditches and 1960s: Experimental diversion screens at Ice ruined spawning grounds destroy fish runs. Harbor Dam guide some juveniles away from the Early hatchery operations impact habitat or turbine units, and lead to a major effort to develop close the Clackamas, Salmon and Grande Ronde juvenile bypass systems using screens for other rivers to salmon migration. -
Columbia River Treaty History and 2014/2024 Review
U.S. Army Corps of Engineers • Bonneville Power Administration Columbia River Treaty History and 2014/2024 Review 1 he Columbia River Treaty History of the Treaty T between the United States and The Columbia River, the fourth largest river on the continent as measured by average annual fl ow, Canada has served as a model of generates more power than any other river in North America. While its headwaters originate in British international cooperation since 1964, Columbia, only about 15 percent of the 259,500 square miles of the Columbia River Basin is actually bringing signifi cant fl ood control and located in Canada. Yet the Canadian waters account for about 38 percent of the average annual volume, power generation benefi ts to both and up to 50 percent of the peak fl ood waters, that fl ow by The Dalles Dam on the Columbia River countries. Either Canada or the United between Oregon and Washington. In the 1940s, offi cials from the United States and States can terminate most of the Canada began a long process to seek a joint solution to the fl ooding caused by the unregulated Columbia provisions of the Treaty any time on or River and to the postwar demand for greater energy resources. That effort culminated in the Columbia River after Sept.16, 2024, with a minimum Treaty, an international agreement between Canada and the United States for the cooperative development 10 years’ written advance notice. The of water resources regulation in the upper Columbia River U.S. Army Corps of Engineers and the Basin. -
Bull Run River Water Temperature Evaluation, June 2004
Bull Run River Water Temperature Evaluation Prepared by: City of Portland Bureau of Water Works Portland, Oregon June 2004 Contents Page Preface................................................................................................................................................... 1 Report Purpose ....................................................................................................................... 1 Report Organization............................................................................................................... 1 Executive Summary............................................................................................................................ 2 Section 1. Introduction ...................................................................................................................... 3 The Bull Run River and Associated Water Development ................................................ 3 Current and Historical Anadromous Fish Use of the Lower Bull Run .......................... 3 Historical and Current City Water Supply Operations .................................................... 4 River Reaches of the Bull Run River.................................................................................... 4 Water Quality Criteria and Beneficial Uses of the Bull Run ............................................ 5 Section 2. What were the pre-project (natural) temperature conditions in the lower Bull Run River? .......................................................................................................................................... -
The Columbia River Gorge: Its Geologic History Interpreted from the Columbia River Highway by IRA A
VOLUMB 2 NUMBBI3 NOVBMBBR, 1916 . THE .MINERAL · RESOURCES OF OREGON ' PuLhaLed Monthly By The Oregon Bureau of Mines and Geology Mitchell Point tunnel and viaduct, Columbia River Hi~hway The .. Asenstrasse'' of America The Columbia River Gorge: its Geologic History Interpreted from the Columbia River Highway By IRA A. WILLIAMS 130 Pages 77 Illustrations Entered aa oeoond cl,... matter at Corvallis, Ore., on Feb. 10, l9lt, accordintt to tbe Act or Auc. :U, 1912. .,.,._ ;t ' OREGON BUREAU OF MINES AND GEOLOGY COMMISSION On1cm or THm Co><M188ION AND ExmBIT OREGON BUILDING, PORTLAND, OREGON Orncm or TBm DtBIICTOR CORVALLIS, OREGON .,~ 1 AMDJ WITHY COMBE, Governor HENDY M. PABKB, Director C OMMISSION ABTBUB M. SWARTLEY, Mining Engineer H. N. LAWRill:, Port.land IRA A. WILLIAMS, Geologist W. C. FELLOWS, Sumpter 1. F . REDDY, Grants Pass 1. L. WooD. Albany R. M. BIITT8, Cornucopia P. L. CAI<PBELL, Eugene W 1. KEBR. Corvallis ........ Volume 2 Number 3 ~f. November Issue {...j .· -~ of the MINERAL RESOURCES OF OREGON Published by The Oregon Bureau of Mines and Geology ~•, ;: · CONTAINING The Columbia River Gorge: its Geologic History l Interpreted from the Columbia River Highway t. By IRA A. WILLIAMS 130 Pages 77 Illustrations 1916 ILLUSTRATIONS Mitchell Point t unnel and v iaduct Beacon Rock from Columbia River (photo by Gifford & Prentiss) front cover Highway .. 72 Geologic map of Columbia river gorge. 3 Beacon Rock, near view . ....... 73 East P ortland and Mt. Hood . 1 3 Mt. Hamilton and Table mountain .. 75 Inclined volcanic ejecta, Mt. Tabor. 19 Eagle creek tuff-conglomerate west of Lava cliff along Sandy river. -
Fish Creek Watershed, Clackamas River, Oregon
United States Department of Agriculture The Fisheries Program Forest Service Pacific Response to the Floods Northwest Region 2001 of the mid-1990’s Wash Creek Bridge, Fish Creek Watershed, Clackamas River, Oregon. Mt. Hood National Forest 2001 Thank you to the employees of the Mt. Hood National Forest who contributed photographs and information for this report. The Fisheries Program Response to the Floods of the mid-1990’s Mt. Hood National Forest 2001 Report by Tracii Hickman Table of Contents Introduction................................................................................................................1 The February 1996 Storm ..........................................................................................1 Flood Impacts on the Mt. Hood National Forest .......................................................3 Fish Habitat Restoration ............................................................................................6 Case Studies...............................................................................................................7 Barlow Ranger District Ramsey Creek ................................................................................................10 Clackamas River Ranger District Upper Clackamas Side Channels...................................................................11 Fish Creek ......................................................................................................12 Zigzag Ranger District Little Zigzag Culvert Replacement................................................................13