Integrating Non-Feeding Interactions Into Food Webs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Human Niche Construction in Interdisciplinary Focus
Downloaded from rstb.royalsocietypublishing.org on February 14, 2011 Human niche construction in interdisciplinary focus Jeremy Kendal, Jamshid J. Tehrani and John Odling-Smee Phil. Trans. R. Soc. B 2011 366, 785-792 doi: 10.1098/rstb.2010.0306 References This article cites 46 articles, 16 of which can be accessed free http://rstb.royalsocietypublishing.org/content/366/1566/785.full.html#ref-list-1 Rapid response Respond to this article http://rstb.royalsocietypublishing.org/letters/submit/royptb;366/1566/785 Subject collections Articles on similar topics can be found in the following collections behaviour (1807 articles) evolution (2433 articles) Receive free email alerts when new articles cite this article - sign up in the box at the top Email alerting service right-hand corner of the article or click here To subscribe to Phil. Trans. R. Soc. B go to: http://rstb.royalsocietypublishing.org/subscriptions This journal is © 2011 The Royal Society Downloaded from rstb.royalsocietypublishing.org on February 14, 2011 Phil. Trans. R. Soc. B (2011) 366, 785–792 doi:10.1098/rstb.2010.0306 Introduction Human niche construction in interdisciplinary focus Jeremy Kendal1,*, Jamshid J. Tehrani1 and John Odling-Smee2 1Centre for the Coevolution of Biology and Culture, Department of Anthropology, University of Durham, South Road, Durham DH1 3LE, UK 2School of Anthropology, University of Oxford, 51/53 Banbury Road, Oxford OX2 6PE, UK Niche construction is an endogenous causal process in evolution, reciprocal to the causal process of natural selection. It works by adding ecological inheritance, comprising the inheritance of natural selection pressures previously modified by niche construction, to genetic inheritance in evolution. -
Geographically Variable Biotic Interactions and Implications for Species Ranges
ORE Open Research Exeter TITLE Geographically variable biotic interactions and implications for species ranges AUTHORS Early, R; Keith, S JOURNAL Global Ecology and Biogeography DEPOSITED IN ORE 22 November 2018 This version available at http://hdl.handle.net/10871/34864 COPYRIGHT AND REUSE Open Research Exeter makes this work available in accordance with publisher policies. A NOTE ON VERSIONS The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of publication 1 Geographically variable biotic interactions and implications for species 2 ranges 3 Running title: Geographic variation in biotic interactions 4 Abstract: 5 The challenge: Understanding how biotic interactions affect species’ geographic ranges, biodiversity 6 patterns, and ecological responses to environmental change is one of the most pressing challenges 7 in macroecology. Extensive efforts are underway to detect signals of biotic interactions in 8 macroecological data. However, efforts are limited by bias in the taxa and spatial scale for which 9 occurrence data are available, and by difficulty in ascribing causality to co-occurrence patterns. 10 Moreover, we are not necessarily looking in the right places: analyses are largely ad hoc, depending 11 on data availability, rather than focusing on regions, taxa, ecosystems, or interaction types where 12 biotic interactions might affect species’ geographic ranges most strongly. 13 Unpicking biotic interactions: We suggest that macroecology would benefit from recognising that 14 abiotic conditions alter two key components of biotic interaction strength: frequency and intensity. 15 We outline how and why variation in biotic interaction strength occurs, explore the implications for 16 species’ geographic ranges, and discuss the challenges inherent in quantifying these effects. -
The Flight of the Locus of Selection Some Intricate Relationships
Behavioural Processes 161 (2019) 31–44 Contents lists available at ScienceDirect Behavioural Processes journal homepage: www.elsevier.com/locate/behavproc The flight of the locus of selection: Some intricate relationships between evolutionary elements T ⁎ April M. Becker University of North Texas, Department of Behavior Analysis, United States ARTICLE INFO ABSTRACT Keywords: Selection has enriched our understanding of the world since it was first applied to the evolution of species. Behavior Selection stands as an alternative to essentialist thinking, as a generalized and multiply applicable concept, and Selection as a causal explanation for current forms within biology and behavior. Attempts to describe selection processes Ontogenetic in a generalizable way have provided clarity about their minimal elements, such as replicators and interactors. Phylogenetic This paper discusses the interconnectedness among different levels of selection using evidence garnered from Interdisciplinary evolutionary biology, development, epigenetics, neuroscience, and behavior analysis. Currently, it appears that Evolutionary dynamics replicators and interactors may be more fluid than previously supposed and that selection for particular traits may rely on both multiple levels of interaction and multiple levels of replication. Replicators, interactors, and environment share influence on one another, and different replicators may exchange critical control over similar interactor variation as evolution proceeds. Our current understanding of selection continues to undergo revision, and reference to a number of disparate fields can help to account for the complexity of these processes. An understanding of their interconnectedness may help resolve some mysteries that develop in fields that ex- clusively focus on one or a few, such as the focused study of behavior. 1. -
Niche Inheritance: a Cooperative Pathway to Enhance Cancer Cell Fitness Though Ecosystem Engineering
Niche inheritance: a cooperative pathway to enhance cancer cell fitness though ecosystem engineering Kimberline R. Yang4 Steven Mooney1 Jelani C. Zarif1 Donald S. Coffey1,2,3 Russell S. TaiChman5 Kenneth J. Pienta1,2,3,4 Authors' Affiliations: 1The James BuChanan Brady UrologiCal Institute and Departments of Urology, 2Oncology, 3Pharmacology and MoleCular Sciences, 4Cellular and MoleCular MediCine Program, Johns Hopkins SChool of MediCine, Baltimore, Maryland; 5Department of PeriodontiCs and Oral MediCine, University of MiChigan SChool of Dentistry, Ann Arbor, MiChigan Corresponding Author: Kenneth J. Pienta, The James BuChanan Brady UrologiCal Institute and Department of Urology, Departments of OnCology and Pharmacology and MoleCular SCienCes, The Johns Hopkins SChool of MediCine, 600 N Wolfe St, Baltimore, MD 21287. E-mail: [email protected] Key words: niChe ConstruCtion, diaspora, metastasis, genetiC instability, tumor Cell heterogeneity, dispersal filters Grant Support This work is finanCially supported by the NCI (grant no. U54CA143803 to K.J. Pienta, D.S. Coffey; grant nos. CA163124 and CA093900 to K.J. Pienta, R.S. TaiChman; and grant no. CA143055 to K.J. Pienta). Abstract: CanCer Cells Can be desCribed as an invasive speCies that is able to establish itself in a new environment. The concept of niChe ConstruCtion Can be utilized to desCribe the proCess by whiCh CanCer Cells terraform their environment, thereby engineering an eCosystem that promotes the genetiC fitness of the species. ECologiCal dispersion theory Can then be utilized to desCribe and model the steps and barriers involved in a successful diaspora as the CanCer Cells leave the original host organ and migrate to new host organs to suCCessfully establish a new metastatiC Community. -
Niche-Driven Socio-Environmental Linkages and Regional Sustainable Development
sustainability Article Niche-Driven Socio-Environmental Linkages and Regional Sustainable Development Dandan Liu 1 , Anmin Huang 1,*, Dewei Yang 2, Jianyi Lin 3 and Jiahui Liu 3 1 College of Tourism, Huaqiao University, Quanzhou 362021, China; [email protected] 2 School of Geographical Sciences, Southwest University, Chongqing 400715, China; [email protected] 3 Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; [email protected] (J.L.); [email protected] (J.L.) * Correspondence: [email protected] Abstract: The changes in niche roles and functions caused by competition for survival resources have implications in various domains, with natural science and social science standing out. Currently, expanding the ecological niche concept and its practical interpretation in the fields of social ecology, geography and sustainable science is becoming a crucial challenge. This paper is based on niche theory to observe niche evolution and resulting socio-ecological effects of 1186 towns in 19 prefecture cities in Yangtze River delta. The results indicate that: Towns around the Taihu Lake displayed obvious spatial agglomeration, which was leading the development of the entire region. The town niche shows obvious characteristics of north-south differences and hierarchy distribution. The niche coordination degree of Jiangsu Province was higher than that of Zhejiang Province. The higher the subsystem coordination degree, the better the town development. Towns with poor ecological conditions are often subject to competition, while towns with better ecological conditions often benefit from cooperative development. The niche separation and collaboration could enhance niche competition of towns and cities in the region. -
Ecosystems As Chimeras: a Thought Experiment in Rosennean Complexity
Ecological Complexity xxx (xxxx) xxx–xxx Contents lists available at ScienceDirect Ecological Complexity journal homepage: www.elsevier.com/locate/ecocom Ecosystems as Chimeras: A thought experiment in Rosennean Complexity Patricia A. Lane Department of Biology, Dalhousie University, 1459 Oxford Street, Halifax, Nova Scotia B3H 4R2 Canada ARTICLE INFO ABSTRACT Keywords: Robert Rosen wrote an interesting paper entitled, “Cooperation and Chimera” in which he explained how living Rosennean complexity systems or their parts often combine with those of others to create chimeran individuals with new genotypes, Ecosystem chimera phenotypes, and environments. He concluded that these relationships are mainly cooperative in that the partners Niche construction provide functional capabilities to each other that the recipients cannot provide for themselves. Rosen developed Marine plankton his concept of chimeras within the broader areas of Rosennean Complexity and Relational Biology, providing Complexity synthesis insights into notions of purpose, function, causality, survival, persistence, and complexity. Loop analysis Chimeras are ubiquitous and occur throughout the biological hierarchy. At the ecosystem level, chimeras can be formed when the member populations are organized into functional groups such as the nodes of a food web, and they interact with each other through environmental modifications that feedback to change phenotypes and genotypes, and form a new individual with a purpose: ecological survival and evolutionary persistence. Thus, ecosystems -
Holobionts As Units of Selection and a Model of Their Population Dynamics and Evolution
Biological Theory https://doi.org/10.1007/s13752-017-0287-1 ORIGINAL ARTICLE Holobionts as Units of Selection and a Model of Their Population Dynamics and Evolution Joan Roughgarden1,6 · Scott F. Gilbert2 · Eugene Rosenberg3 · Ilana Zilber‑Rosenberg4 · Elisabeth A. Lloyd5 Received: 15 January 2017 / Accepted: 5 September 2017 © Konrad Lorenz Institute for Evolution and Cognition Research 2017 Abstract Holobionts, consisting of a host and diverse microbial symbionts, function as distinct biological entities anatomically, metabolically, immunologically, and developmentally. Symbionts can be transmitted from parent to offspring by a variety of vertical and horizontal methods. Holobionts can be considered levels of selection in evolution because they are well- defined interactors, replicators/reproducers, and manifestors of adaptation. An initial mathematical model is presented to help understand how holobionts evolve. The model offered combines the processes of horizontal symbiont transfer, within-host symbiont proliferation, vertical symbiont transmission, and holobiont selection. The model offers equations for the popula- tion dynamics and evolution of holobionts whose hologenomes differ in gene copy number, not in allelic or loci identity. The model may readily be extended to include variation among holobionts in the gene identities of both symbionts and host. Keywords Holobiont · Holobiont model · Hologenome · Level of selection · Microbiome · Microbiota · Symbiont Introduction also provides a model for the evolution of a holobiont that combines microbe and host population processes. This article discusses the concept of a holobiont—an ani- Following Lederberg and McCray (2001), a microbiome mal or plant host together with all the microbes living on or refers to an “ecological community of commensal, symbi- in it, exosymbionts and endosymbionts, respectively. -
Ecological Consequences of Human Niche Construction: Examining Long-Term Anthropogenic Shaping of Global Species Distributions Nicole L
SPECIAL FEATURE: SPECIAL FEATURE: PERSPECTIVE PERSPECTIVE Ecological consequences of human niche construction: Examining long-term anthropogenic shaping of global species distributions Nicole L. Boivina,b,1, Melinda A. Zederc,d, Dorian Q. Fuller (傅稻镰)e, Alison Crowtherf, Greger Larsong, Jon M. Erlandsonh, Tim Denhami, and Michael D. Petragliaa Edited by Richard G. Klein, Stanford University, Stanford, CA, and approved March 18, 2016 (received for review December 22, 2015) The exhibition of increasingly intensive and complex niche construction behaviors through time is a key feature of human evolution, culminating in the advanced capacity for ecosystem engineering exhibited by Homo sapiens. A crucial outcome of such behaviors has been the dramatic reshaping of the global bio- sphere, a transformation whose early origins are increasingly apparent from cumulative archaeological and paleoecological datasets. Such data suggest that, by the Late Pleistocene, humans had begun to engage in activities that have led to alterations in the distributions of a vast array of species across most, if not all, taxonomic groups. Changes to biodiversity have included extinctions, extirpations, and shifts in species composition, diversity, and community structure. We outline key examples of these changes, highlighting findings from the study of new datasets, like ancient DNA (aDNA), stable isotopes, and microfossils, as well as the application of new statistical and computational methods to datasets that have accumulated significantly in recent decades. We focus on four major phases that witnessed broad anthropogenic alterations to biodiversity—the Late Pleistocene global human expansion, the Neolithic spread of agricul- ture, the era of island colonization, and the emergence of early urbanized societies and commercial net- works. -
Individuality and Adaptation Across Levels of Selection: How Shall We Name and Generalize the Unit of Darwinism?
Individuality and adaptation across levels of selection: How shall we name and generalize the unit of Darwinism? Stephen Jay Gould*† and Elisabeth A. Lloyd‡ *Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138; and ‡History and Philosophy of Science, Indiana University, 130 Goodbody Hall, Bloomington, IN 47405 Contributed by Stephen Jay Gould, June 2, 1999 Two major clarifications have greatly abetted the understanding and none more pressing than learning how to think about the viscerally fruitful expansion of the theory of natural selection in recent years: unfamiliar (and in many ways counterintuitive) supraorganismal the acknowledgment that interactors, not replicators, constitute the levels of organization and selection. (Given the reductionist tradi- causal unit of selection; and the recognition that interactors are tions of Western science, we are naturally more comfortable with Darwinian individuals, and that such individuals exist with potency at suborganismal units of genes and cell lineages.) We claim that several levels of organization (genes, organisms, demes, and species evolutionists have generally not appreciated the importance of in particular), thus engendering a rich hierarchical theory of selection higher levels, particularly the species level of selection, because in contrast with Darwin’s own emphasis on the organismic level. But species-individuals may not build many adaptations of their own. a piece of the argument has been missing, and individuals at levels False emphasis on adaptation therefore leads biologists to down- distinct from organisms have been denied potency (although granted grade the species level as only weakly operative in the processes of existence within the undeniable logic of the theory), because they do selection. -
Niche Construction in Evolutionary Theory: the Construction of an Academic 4 Niche? 5 6 Manan Gupta1,2, N
bioRxiv preprint doi: https://doi.org/10.1101/109793; this version posted February 19, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 PERSPECTIVES 2 3 Niche construction in evolutionary theory: the construction of an academic 4 niche? 5 6 Manan Gupta1,2, N. G. Prasad3, Sutirth Dey4, Amitabh Joshi1 and T. N. C. Vidya2* 7 8 1 Evolutionary Biology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal 9 Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560 064, India. 10 11 2 Animal Behaviour and Sociogenetics Laboratory, Evolutionary and Organismal Biology Unit, 12 Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560 064, 13 India. 14 15 3 Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, 16 Knowledge City, Sector 81, SAS Nagar, P.O. Manauli, Mohali, Punjab140 306, India. 17 18 4 Population Biology Laboratory, Biology Division, Indian Institute of Science Education and 19 Research Pune, Dr. Homi Bhabha Road, Pune 411 008, India. 20 21 22 23 For correspondence: Email: [email protected]; [email protected] 24 25 These authors contributed equally to this work. This is contribution no. 2 from FOGEG (see 26 Acknowledgments for details). 27 28 Running title: A critique of the claims of niche construction theorists 29 30 1 bioRxiv preprint doi: https://doi.org/10.1101/109793; this version posted February 19, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. -
Cultural Niche Construction
Biol Theory DOI 10.1007/s13752-012-0026-6 THEMATIC ISSUE ARTICLE: CULTURAL NICHE CONSTRUCTION Cultural Niche Construction: An Introduction Kevin N. Laland • Michael J. O’Brien Received: 15 December 2011 / Accepted: 29 May 2012 Ó Konrad Lorenz Institute for Evolution and Cognition Research 2012 Abstract Niche construction is the process whereby The organism influences its own evolution, by being organisms, through their activities and choices, modify both the object of natural selection and the creator of their own and each other’s niches. By transforming natural- the conditions of that selection (Levins and Lewontin selection pressures, niche construction generates feedback 1985, p. 106). in evolution at various different levels. Niche-constructing The conventional view of evolution is that species, through species play important ecological roles by creating habitats the action of natural selection, have come to exhibit those and resources used by other species and thereby affecting characteristics that best enable them to survive and the flow of energy and matter through ecosystems—a reproduce in their environments. Although environmental process often referred to as ‘‘ecosystem engineering.’’ An change may trigger bouts of selection, from the standard important emphasis of niche construction theory (NCT) is evolutionary perspective it is always changes in organisms, that acquired characters play an evolutionary role through rather than changes in environments, that are held respon- transforming selective environments. This is particularly sible for generating the organism–environment match that relevant to human evolution, where our species has is commonly described as ‘‘adaptation.’’ Organisms are engaged in extensive environmental modification through generally perceived as being molded by selection to cultural practices. -
Ideas Are Not Replicators but Minds Are
Ideas are Not Replicators but Minds Are To appear in vol. 19(1) of Biology and Philosophy (ms # BIPH264-02). Liane Gabora [email protected] Department of Psychology University of California, Berkeley 3210 Tolman Hall, Berkeley CA 94720-1650 USA CONTENTS 1 Does Culture Evolve like Biological Lineages Do? ..................................................................... 2 2 Two Kinds of Replicators ............................................................................................................. 3 2.1 Coded Replicators ................................................................................................................. 4 2.2 Primitive Replicators ............................................................................................................. 5 3 Does Anything in Culture Constitute a Replicator? ..................................................................... 7 3.1 Ideas and Artifacts are not Coded Replicators ...................................................................... 8 3.1.1 Are Cultural Entities Interpreted ?.................................................................................. 8 3.1.2 Are Cultural Entities Copied (without Interpretation)? .................................................. 9 3.2 Interconnected Worldview as Primitive Replicator ............................................................. 10 3.2.1 Conceptual Closure ...................................................................................................... 11 4 Implications for the Evolution