Weighted Burden Analysis of Exome-Sequenced Case-Control Sample Implicates Synaptic Genes in Schizophrenia Aetiology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plasma Based Protein Signatures Associated with Small Cell Lung Cancer
cancers Article Plasma Based Protein Signatures Associated with Small Cell Lung Cancer Johannes F. Fahrmann 1,†, Hiroyuki Katayama 1,† , Ehsan Irajizad 1,†, Ashish Chakraborty 1 , Taketo Kato 1 , Xiangying Mao 1 , Soyoung Park 1, Eunice Murage 1, Leona Rusling 1, Chuan-Yih Yu 1, Yinging Cai 1, Fu Chung Hsiao 1, Jennifer B. Dennison 1, Hai Tran 2, Edwin Ostrin 3 , David O. Wilson 4, Jian-Min Yuan 5,6, Jody Vykoukal 1 and Samir Hanash 1,* 1 Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; [email protected] (J.F.F.); [email protected] (H.K.); [email protected] (E.I.); [email protected] (A.C.); [email protected] (T.K.); [email protected] (X.M.); [email protected] (S.P.); [email protected] (E.M.); [email protected] (L.R.); [email protected] (C.-Y.Y.); [email protected] (Y.C.); [email protected] (F.C.H.); [email protected] (J.B.D.); [email protected] (J.V.) 2 Department of Thoracic-Head & Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; [email protected] 3 Department of Pulmonary Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; [email protected] 4 Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; [email protected] 5 Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; [email protected] 6 Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA Citation: Fahrmann, J.F.; Katayama, * Correspondence: [email protected] † These authors contributed equally to this work. -
Sexual Dimorphism in Brain Transcriptomes of Amami Spiny Rats (Tokudaia Osimensis): a Rodent Species Where Males Lack the Y Chromosome Madison T
Ortega et al. BMC Genomics (2019) 20:87 https://doi.org/10.1186/s12864-019-5426-6 RESEARCHARTICLE Open Access Sexual dimorphism in brain transcriptomes of Amami spiny rats (Tokudaia osimensis): a rodent species where males lack the Y chromosome Madison T. Ortega1,2, Nathan J. Bivens3, Takamichi Jogahara4, Asato Kuroiwa5, Scott A. Givan1,6,7,8 and Cheryl S. Rosenfeld1,2,8,9* Abstract Background: Brain sexual differentiation is sculpted by precise coordination of steroid hormones during development. Programming of several brain regions in males depends upon aromatase conversion of testosterone to estrogen. However, it is not clear the direct contribution that Y chromosome associated genes, especially sex- determining region Y (Sry), might exert on brain sexual differentiation in therian mammals. Two species of spiny rats: Amami spiny rat (Tokudaia osimensis) and Tokunoshima spiny rat (T. tokunoshimensis) lack a Y chromosome/Sry, and these individuals possess an XO chromosome system in both sexes. Both Tokudaia species are highly endangered. To assess the neural transcriptome profile in male and female Amami spiny rats, RNA was isolated from brain samples of adult male and female spiny rats that had died accidentally and used for RNAseq analyses. Results: RNAseq analyses confirmed that several genes and individual transcripts were differentially expressed between males and females. In males, seminal vesicle secretory protein 5 (Svs5) and cytochrome P450 1B1 (Cyp1b1) genes were significantly elevated compared to females, whereas serine (or cysteine) peptidase inhibitor, clade A, member 3 N (Serpina3n) was upregulated in females. Many individual transcripts elevated in males included those encoding for zinc finger proteins, e.g. -
Mir-145 Inhibits Breast Cancer Cell Growth Through RTKN
1461-1466 24/3/2009 01:35 ÌÌ ™ÂÏ›‰·1461 INTERNATIONAL JOURNAL OF ONCOLOGY 34: 1461-1466, 2009 miR-145 inhibits breast cancer cell growth through RTKN SHIHUA WANG, CHUNJING BIAN, ZHUO YANG, YE BO, JING LI, LIFEN ZENG, HONG ZHOU and ROBERT CHUNHUA ZHAO Center of Tissue Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, P.R. China Received November 25, 2008; Accepted February 3, 2009 DOI: 10.3892/ijo_00000275 Abstract. MicroRNAs (miRNAs) represent a class of small miR-15a and miR-16 are down-regulated by hemizygous or non-coding RNAs regulating gene expression by inducing homozygous deletion or other unknown mechanisms in RNA degradation or interfering with translation. Aberrant 68% of CLLs (7) and miR-17-92 cluster is markedly over- miRNA expression has been described for several human expressed in B-cell lymphomas (8). Also in a large-scale malignancies. Herein, we show that miR-145 is down-regulated analysis of 540 tumor samples from lung, breast, stomach, in human cancer cell line MCF-7 when compared to normal prostate, colon, and pancreatic tumors, a so-called solid human mammary epithelial cell line MCF10A. Overexpression cancer microRNA signature was identified (9). However, of miR-145 by plasmid inhibits MCF-7 cell growth and induces although miRNAs have been the subject of extensive research apoptosis. Subsequently, RTKN is identified as a potential in recent years, the molecular basis of miRNA-mediated gene miR-145 target by bioinformatics. Using reporter constructs, regulation and the effect of these genes on tumor growth we show that the RTKN 3' untranslated region (3'UTR) remain largely unknown because of our limited understanding carries the directly binding site of miR-145. -
Identification of Differential Modules in Ankylosing Spondylitis Using Systemic Module Inference and the Attract Method
EXPERIMENTAL AND THERAPEUTIC MEDICINE 16: 149-154, 2018 Identification of differential modules in ankylosing spondylitis using systemic module inference and the attract method FANG-CHANG YUAN1, BO LI2 and LI-JUN ZHANG3 1Department of Orthopedics, People's Hospital of Rizhao, Rizhao, Shandong 276826; 2Department of Joint Surgery, Hospital of Xinjiang Production and Construction Corps, Urumchi, Xinjiang Uygur Autonomous Region 830002; 3Department of Orthopedics, The Fifth People's Hospital of Jinan, Jinan, Shandong 250022, P.R. China Received July 15, 2016; Accepted April 28, 2017 DOI: 10.3892/etm.2018.6134 Abstract. The objective of the present study was to identify spondyloarthropathies, which also includes reactive arthritis, differential modules in ankylosing spondylitis (AS) by inte- psoriatic arthritis and enteropathic arthritis (1). Several grating network analysis, module inference and the attract features, such as synovitis, chondroid metaplasia, cartilage method. To achieve this objective, four steps were conducted. destruction and subchondral bone marrow changes, are The first step was disease objective network (DON) for AS, commonly observed in the joints of patients with AS (2). Due and healthy objective network (HON) inference dependent on to the complex progression of the joint remodeling process, gene expression data, protein-protein interaction networks and clinical research has not systematically evaluated histopatho- Spearman's correlation coefficient. In the second step, module logical changes (3), and no clear sequence of the pathological detection was performed by utilizing a clique-merging algo- mechanism has been obtained for this disease. rithm, which comprised of exploring maximal cliques by clique With the development of high throughput technology and algorithm and refining or merging maximal cliques with a high gene data analysis over the past decade, rapid progress has been overlap. -
A Robust 11-Genes Prognostic Model Can
Lin et al. Cancer Cell Int (2020) 20:402 https://doi.org/10.1186/s12935-020-01491-6 Cancer Cell International PRIMARY RESEARCH Open Access A robust 11-genes prognostic model can predict overall survival in bladder cancer patients based on fve cohorts Jiaxing Lin1†, Jieping Yang1†, Xiao Xu2, Yutao Wang1, Meng Yu3* and Yuyan Zhu1* Abstract Background: Bladder cancer is the tenth most common cancer globally, but existing biomarkers and prognostic models are limited. Method: In this study, we used four bladder cancer cohorts from The Cancer Genome Atlas and Gene Expression Omnibus databases to perform univariate Cox regression analysis to identify common prognostic genes. We used the least absolute shrinkage and selection operator regression to construct a prognostic Cox model. Kaplan–Meier analysis, receiver operating characteristic curve, and univariate/multivariate Cox analysis were used to evaluate the prognostic model. Finally, a co-expression network, CIBERSORT, and ESTIMATE algorithm were used to explore the mechanism related to the model. Results: A total of 11 genes were identifed from the four cohorts to construct the prognostic model, including eight risk genes (SERPINE2, PRR11, DSEL, DNM1, COMP, ELOVL4, RTKN, and MAPK12) and three protective genes (FABP6, C16orf74, and TNK1). The 11-genes model could stratify the risk of patients in all fve cohorts, and the prognosis was worse in the group with a high-risk score. The area under the curve values of the fve cohorts in the frst year are all greater than 0.65. Furthermore, this model’s predictive ability is stronger than that of age, gender, grade, and T stage. -
Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing -
Involvement of Microrna in Solid Cancer: Role and Regulatory Mechanisms
biomedicines Review Involvement of microRNA in Solid Cancer: Role and Regulatory Mechanisms Ying-Chin Lin 1,2,†, Tso-Hsiao Chen 3,†, Yu-Min Huang 4,5 , Po-Li Wei 4,6,7,8,9,* and Jung-Chun Lin 10,11,12,* 1 Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan 2 Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; [email protected] 3 Division of Nephrology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; [email protected] 4 Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan 5 Division of Gastrointestinal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan; [email protected] 6 Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan 7 Cancer Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan 8 Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan 9 Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 110, Taiwan 10 School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan 11 Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan 12 Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan Citation: Lin, Y.-C.; Chen, T.-H.; * Correspondence: [email protected] (P.-L.W.); [email protected] (J.-C.L.); Huang, Y.-M.; Wei, P.-L.; Lin, J.-C. -
A De Novo 2Q35-Q36.1 Deletion Incorporating IHH in a Chinese Boy (47,XYY) with Syndactyly, Type III Waardenburg Syndrome, and Congenital Heart Disease
A de novo 2q35-q36.1 deletion incorporating IHH in a Chinese boy (47,XYY) with syndactyly, type III Waardenburg syndrome, and congenital heart disease D. Wang1,2*, G.F. Ren3*, H.Z. Zhang1, C.Y. Yi4 and Z.J. Peng3 1Medical Institute of Pediatrics, Qilu Children’s Hospital of Shandong University, Jinan, Shandong, China 2Institute of Cardiovascular Disease, General Hospital of Jinan Military Region, Jinan, Shandong, China 3Department of Pediatrics, Qilu Children’s Hospital of Shandong University, Jinan, Shandong, China 4Children’s Medical Laboratory Diagnosis Center, Qilu Children’s Hospital of Shandong University, Jinan, Shandong, China *These authors contributed equally to this study. Corresponding authors: C.Y. Yi / Z.J. Peng E-mail: [email protected] / [email protected] Genet. Mol. Res. 15 (4): gmr15049060 Received August 5, 2016 Accepted November 8, 2016 Published December 2, 2016 DOI http://dx.doi.org/10.4238/gmr15049060 Copyright © 2016 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution ShareAlike (CC BY-SA) 4.0 License. ABSTRACT. Reports of terminal and interstitial deletions of the long arm of chromosome 2 are rare in the literature. Here, we present a case report concerning a Chinese boy with a 47,XYY karyotype and a de novo deletion comprising approximately 5 Mb between 2q35 and q36.1, along with syndactyly, type III Waardenburg syndrome, and congenital heart disease. High-resolution chromosome analysis Genetics and Molecular Research 15 (4): gmr15049060 D. Wang et al. 2 to detect copy number variations was carried out using an Affymetrix microarray platform, and the genes affected by the patient’s deletion, including IHH, were determined. -
Rho/Rhotekin-Mediated NF-Jb Activation Confers Resistance to Apoptosis
Oncogene (2004) 23, 8731–8742 & 2004 Nature Publishing Group All rights reserved 0950-9232/04 $30.00 www.nature.com/onc Rho/Rhotekin-mediated NF-jB activation confers resistance to apoptosis Ching-Ann Liu1, Mei-Jung Wang2, Chin-Wen Chi3, Chew-Wun Wu4 and Jeou-Yuan Chen*,2 1Graduate Institute of Life Sciences, National Defense Medical Center, Taiwan, ROC; 2Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC; 3Department of Medical Research and Education, Taiwan, ROC; 4Department of Surgery, Veterans General Hospital, Taipei, Taiwan, ROC Rhotekin (RTKN), the gene coding for the Rho effector, Introduction RTKN, was shown to be overexpressed in human gastric cancer (GC). In this study, we further showed that RTKN The Rho GTPases are members of the Ras superfamily is expressed at a low level in normal cells and is of monomeric low molecular mass (approx. 21 kDa) overexpressed in many cancer-derived cell lines. The guanine nucleotide-binding proteins. By cycling between function of RTKN as an effector protein in Rho GTPase- an active (GTP-bound) and an inactive (GDP-bound) mediated pathways regulating apoptosis was investigated. state, Rho GTPases function as molecular switches to By transfection and expression of RTKN in cells that control signal transduction pathways in regulation of a expressed endogenous RTKN at a low basal level, we plethora of cellular processes, including cytoskeleton showed that RTKN overexpression conferred cell resis- reorganization, gene transcription, cell-cycle progres- tance to apoptosis induced by serum deprivation or sion, and survival (Bishop and Hall, 2000). The diverse treatment with sodium butyrate, and the increased function of Rho GTPases is mediated through interact- resistance correlated to the level of RTKN. -
Proteasome Biology: Chemistry and Bioengineering Insights
polymers Review Proteasome Biology: Chemistry and Bioengineering Insights Lucia Raˇcková * and Erika Csekes Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia; [email protected] * Correspondence: [email protected] or [email protected] Received: 28 September 2020; Accepted: 23 November 2020; Published: 4 December 2020 Abstract: Proteasomal degradation provides the crucial machinery for maintaining cellular proteostasis. The biological origins of modulation or impairment of the function of proteasomal complexes may include changes in gene expression of their subunits, ubiquitin mutation, or indirect mechanisms arising from the overall impairment of proteostasis. However, changes in the physico-chemical characteristics of the cellular environment might also meaningfully contribute to altered performance. This review summarizes the effects of physicochemical factors in the cell, such as pH, temperature fluctuations, and reactions with the products of oxidative metabolism, on the function of the proteasome. Furthermore, evidence of the direct interaction of proteasomal complexes with protein aggregates is compared against the knowledge obtained from immobilization biotechnologies. In this regard, factors such as the structures of the natural polymeric scaffolds in the cells, their content of reactive groups or the sequestration of metal ions, and processes at the interface, are discussed here with regard to their -
Advancing the Role of Gamma-Tocotrienol As Proteasomes Inhibitor: a Quantitative Proteomic Analysis of MDA-MB-231 Human Breast Cancer Cells
biomolecules Article Advancing the Role of Gamma-Tocotrienol as Proteasomes Inhibitor: A Quantitative Proteomic Analysis of MDA-MB-231 Human Breast Cancer Cells Premdass Ramdas 1,2, Ammu Kutty Radhakrishnan 3 , Asmahani Azira Abdu Sani 4 , Mangala Kumari 5, Jeya Seela Anandha Rao 6 and Puteri Shafinaz Abdul-Rahman 1,7,* 1 Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia; [email protected] 2 Department of Medical Biotechnology, School of Health Sciences, International Medical University, 57000 Kuala Lumpur, Malaysia 3 Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Selangor, Malaysia; [email protected] 4 Malaysian Genome Institute, National Institute of Biotechnology, 43000 Bangi, Malaysia; [email protected] 5 Division of Human Biology, International Medical University, 57000 Kuala Lumpur, Malaysia; [email protected] 6 Division of Pathology, International Medical University, 57000 Kuala Lumpur, Malaysia; [email protected] 7 University of Malaya Centre of Proteomics Research (UMCPR), University of Malaya, 50603 Kuala Lumpur, Malaysia * Correspondence: [email protected] Received: 27 November 2019; Accepted: 14 December 2019; Published: 21 December 2019 Abstract: Tocotrienol, an analogue of vitamin E has been known for its numerous health benefits and anti-cancer effects. Of the four isoforms of tocotrienols, gamma-tocotrienol (γT3) has been frequently reported for their superior anti-tumorigenic activity in both in vitro and in vivo studies, when compared to its counterparts. In this study, the effect of γT3 treatment in the cytoplasmic and nuclear fraction of MDA-MB-231 human breast cancer cells were assessed using the label-free quantitative proteomics analysis. -
Identification of Predictive Biomarkers of Response to HSP90 Inhibitors In
International Journal of Molecular Sciences Article Identification of Predictive Biomarkers of Response to HSP90 Inhibitors in Lung Adenocarcinoma Ángela Marrugal 1, Irene Ferrer 1,2, David Gómez-Sánchez 1,2, Álvaro Quintanal-Villalonga 3, María Dolores Pastor 4, Laura Ojeda 1, Luis Paz-Ares 1,2,5,6,*,† and Sonia Molina-Pinelo 2,4,*,† 1 H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Hospital 12 de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain; [email protected] (Á.M.); [email protected] (I.F.); [email protected] (D.G.-S.); [email protected] (L.O.) 2 CIBERONC, Respiratory Tract Tumors Program, 28029 Madrid, Spain 3 Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; [email protected] 4 Institute of Biomedicine of Seville (IBIS) (HUVR, CSIC, Universidad de Sevilla), 41013 Sevilla, Spain; [email protected] 5 Medical Oncology Department, Hospital Universitario Doce de Octubre, 28041 Madrid, Spain 6 Medical School, Universidad Complutense, 28040 Madrid, Spain * Correspondence: [email protected] (L.P.-A.); [email protected] (S.M.-P.) † These authors contributed equally to this work. Abstract: Heat shock protein 90 (HSP90) plays an essential role in lung adenocarcinoma, acting as a key chaperone involved in the correct functioning of numerous highly relevant protein drivers of this disease. To this end, HSP90 inhibitors have emerged as promising therapeutic strategies, even Citation: Marrugal, Á.; Ferrer, I.; though responses to them have been limited to date. Given the need to maximize treatment efficacy, Gómez-Sánchez, D.; the objective of this study was to use isobaric tags for relative and absolute quantitation (iTRAQ)- Quintanal-Villalonga, Á.; Pastor, based proteomic techniques to identify proteins in human lung adenocarcinoma cell lines whose M.D.; Ojeda, L.; Paz-Ares, L.; basal abundances were correlated with response to HSP90 inhibitors (geldanamycin and radicicol Molina-Pinelo, S.