CHOKE INDUCTORS in RF PHANTOM CIRCUIT By
Total Page:16
File Type:pdf, Size:1020Kb
CHOKE INDUCTORS IN RF PHANTOM CIRCUIT by AMJAD RADI A Dissertation Submitted to the Graduate Faculty of Mercer University School of Engineering in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE IN ENGINEERING Macon, GA 2021 CHOKE INDUCTORS IN RF PHANTOM CIRCUIT by AMJAD RADI Approved: Dr. Jeng Nan Juang, Advisor Date Dr. Kevin Barnett, Committee Member Date Dr. Ramachandran Radharamanan, Committee Member Date Stephen D. Hill, Ph. D, Associate Dean School of Engineering Date Copyright 2021 AMJAD RADI All Rights Reserved ACKNOWLEDGEMENTS I would like to express the deepest appreciation to my adviser Dr. Jeng Nan Jaung, who has the attitude and the substance of genius; he continually and convincingly conveyed a spirit of adventure regarding research and an excitement regarding teaching. Without his guidance and persistent help this research would not have been possible. I would like to thank my committee members Dr. Ramachandran Radharamanan and Dr. Kevin Barnett for their guidance and continuous support and encouragement during the accomplishment of my research. I also thank you all for the knowledge that have been passed on and I will always be grateful for having the opportunity to study under you all. I am extremely grateful to my parents for their love, prayers, caring and sacrifices for educating and preparing me for my future. Their passion for learning and thriving in life fueled my own and they always did their best through it all to help, and never hinder, my academic progress and overall wellbeing. Table of Contents ABSTRACT .................................................................................................................................................. v CHAPTERS 1- INTRODUCTION TO THE STUDY .............................................................................................. 6 Inductors: .................................................................................................................................................. 7 2- THEORY OF BASIC COMPONENTS ........................................................................................ 13 2.1 The Resistance’s physical basis ........................................................................................................ 13 2.2 The Capacitance’s physical basis ...................................................................................................... 18 2.3 The Inductance’s physical basis ........................................................................................................ 28 Principle 1: There are circular rings of magnetic field lines around all currents: ............................... 28 Principle 2: Inductance is the number of webers of field lines around a conductor per amp of current through it: ............................................................................................................................................ 29 Principle 3: When the number of field lines around a conductor changes, there will be a voltage induced across the ends of the conductor:........................................................................................... 30 1-Self-inductance and mutual inductance ........................................................................................... 31 2-Loop Self and Mutual inductance .................................................................................................... 32 3-Partial inductance ............................................................................................................................ 34 4-Total inductance, net inductance and effective inductance ............................................................. 35 3- EXPERIMENT .............................................................................................................................. 39 Instruments and tools .............................................................................................................................. 39 Vector Network Analyzer ................................................................................................................... 39 NanoVNA ........................................................................................................................................... 40 Electromagnetic Shielding .................................................................................................................. 41 Q factor ............................................................................................................................................... 42 Experiment .............................................................................................................................................. 44 4- RESULTS ...................................................................................................................................... 46 LBM2016T1R8J ................................................................................................................................. 46 LBM2016T1R0J ................................................................................................................................. 50 Comparison ......................................................................................................................................... 54 5- CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH ........................... 55 REFERENCES ........................................................................................................................................... 56 i LIST OF FIGURES Figure Page Figure 1.1 Inductor symbols ........................................................................................................................ 7 Figure 1.2 Equivalent circuit of an inductor ................................................................................................ 8 Figure 1.3 Choke resonant frequencies ........................................................................................................ 9 Figure 1.4 Impedance vs. Frequency. as given by equations 1 (in red) and 2 (in blue). The total impedance (in black) shows the resonant frequency at the point where both impedances are equal. The impedance at this point is purely resistive and has a maximum value .............................................................................. 10 Figure 1.5 Coilcraft 0603CS & 0603LS 150 nH Impedance ..................................................................... 10 Figure 1.6 Choke color code chart ............................................................................................................. 11 Figure 2.1 Description of the geometrical features for an interconnect that will be modeled by an ideal element. The resistance is between the two end faces spaced a distance d, apart ...................................... 13 Figure 2.2 A uniform trace cut from a sheet can be divided into a number of squares, n=Len/w ............. 15 Figure 2.3 The resistance per length for traces with different line widths in 1-ounce copper and ½-ounce copper ......................................................................................................................................................... 17 Figure 2.4 Capacitance is a measure of the capacity to store charge for a given voltage between the conductors .................................................................................................................................................. 18 Figure 2.5 Most common approximation for the capacitance and geometry is for a pair of parallel plates with plate area, A and separation h ............................................................................................................ 21 Figure 2.6 The three cross-section geometries for which there are very good approximations for the capacitance per length: coax twin rods and rod over plane ........................................................................ 24 Figure 2.7 The cross-section geometries for stripline and microstrip interconnects illustrating the important geometrical features.................................................................................................................... 26 Figure 2.8 Some of the circular magnetic field lines around a current. The lines exist up and down the length of the wire ........................................................................................................................................ 28 Figure 2.9 Induced voltage on one conductor due to a changing current in another and the subsequent changing mutual-field lines between them are a form of cross talk............................................................ 31 Figure 2.10 A current loop with two legs: an initial current and its return current ..................................... 33 Figure 2.11 Total inductance of one wire bond (100 mil long) when an adjacent wire bond carries the same current, for the two cases of the currents in the same direction and in opposite directions. The wires are pulled apart, comparing the total inductances with the partial self and mutual inductances ................ 38 Figure 3.1 NanoVNA .................................................................................................................................. 41 Figure 3.2 Shield box .................................................................................................................................. 42 Figure 3.3 The lab used in this experiment ................................................................................................